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Section 2 – Flight dynamics simulation 

Abstract: In this study a panel method is used as a numerical technique for the solution of the potential 

three dimensional flows about a complete aircraft configuration to determine the aerodynamic 

characteristics. This approach seems to be more economic, from the computational point of view than 

methods that solve the flow field in the whole fluid volume such as finite difference, finite element or 

finite volume techniques. A system of source and doublet distributions is implemented and Dirichlet 

boundary conditions are applied. A computer program using Matlab is developed. Firstly flow over 

three dimensional swept wings is solved and the results are compared with experimental data to validate 

the numerical panel code. After the ideas have been discussed a sample calculations around complete 

aircraft are presented to illustrate the gain of using panel method technique. 
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1. INTRODUCTION 

The main purpose of this paper is to develop a MATLAB code as a computational tool for the 

solution of potential flow around three dimensional swept wings and complete aircraft to 

obtain the aerodynamics characteristics by using the panel method. 

Panel method is a technique used for solving the potential flow around 2D and 3D 

geometries, based on simplifying assumptions about the physics and properties of the flow of 

air over these geometries. The viscosity and compressibility of air in the flow field is neglected, 

and the curl of the velocity field is assumed to be zero (no vorticity in the flow field) [1]. Under 

these assumptions, the vector velocity describing the flow field can be represented as the 

gradient of a scalar velocity potential, and the resulting flow is referred to as potential flow. A 

statement of conservation of mass in the flow field leads to Laplace's equation as the governing 

equation for the velocity potential(∇2∅ = 0) [2]. 

The governing equation (Laplace’s equation) is recast into an integral equation. The 

integral equation involves quantities such as velocity, only on the surface, whereas the original 

equation involved the velocity potential all over the flow field. The surface is divided into 

panels and the integral is approximated by an algebraic expression on each of these panels. A 

system of linear algebraic equations results for the unknowns at the solid surface, which may 

be solved to determine the unknowns at the body surface [3]. 
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Panel programs can be subdivided into two groups: low order and high order. In a low 

order panel method, singularities are distributed with constant strength over each panel, while in 

a higher order method, singularity strengths are allowed to vary linearly or quadratic over each 

panel [4]. 

The first paper on a practical three-dimensional method to solve the linearized potential 

equations was published by Hess and Smith [5]. Their method itself was simplified, in that it 

did not include lifting flows and hence was mainly applied to ship hulls and aircraft fuselages. 

The first lifting Panel Code (A230) was described in a paper written by Paul Rubbert and Gary 

Saaris of Boeing Aircraft in 1968. In time, more advanced three-dimensional panel codes were 

developed at Boeing (PANAIR,A502), Lockheed (Quadpan), Douglas (HESS), McDonnell 

Aircraft (MACAERO), NASA (PMARC) and Analytical Methods (WBAERO, USAERO and 

VSAERO) [6]. 

2. PROBLEM FORMULATION 

The problem under consideration in this paper is that of the potential flow of an 

incompressible, inviscid flow. The exact solution of the potential flow for arbitrary boundaries 

can be approached in a variety of ways, all of which must finally become numerical and make 

use of a computing machine. More efficient methods are based on the reduction of the problem 

to integral equations over the boundary surface. Finally the integral equations may be 

approximated by a set of linear algebraic equations which are solved by any of the usual 

techniques. 

3. INTEGRAL EQUATIONS OF POTENTIAL FLOW 

Integral equations of potential flow are formed in suitable forms for use in panel method 

calculations. Starting with the Gauss Divergence theorem which relates a volume integral and 

a surface integral, [6]: 

 

SV

ndSAAdV . , (1) 

Consider the problem as shown in figure (1): 

 

Figure 1: Nomenclature used to define the potential flow problem [7] 

Introducing the vector ( A ): 

1221 A  (2) 

where 1 , 2  are two scalar functions of position. By substitution in equation (1): 

http://en.wikipedia.org/wiki/1968
http://en.wikipedia.org/wiki/Boeing
http://en.wikipedia.org/wiki/Lockheed_Corporation
http://en.wikipedia.org/wiki/Douglas_Aircraft_Company
http://en.wikipedia.org/wiki/McDonnell_Aircraft
http://en.wikipedia.org/wiki/McDonnell_Aircraft
http://en.wikipedia.org/wiki/NASA
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    
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ndSdV .12211221 , (3) 

Once  1221   is equal to  1
2

22
2

1  , then: 

    
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ndSdV .12211
2
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2
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where:   SSSSS WB  

By defining 
r

1
1   and 2 , where   is the potential (a function that satisfies 

Laplace’s equation) of the flow of interest inV , and r  is the distance from the interest point 

),,( zyxP as shown in figure (1). The 
r

1
 term is a source singularity in three dimensions. Then 

equation (4) can be rewrite using these terms as: 
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The region V  is enclosed by the surface S . Recognize that on the left hand side of 

equation (5) the first term ( 2 ) is equal to zero, so equation (5) becomes: 
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If point P  is external to the S , then 0
12 









r
 everywhere since 

r

1
 is the source, and 

thus satisfies Laplace’s equation. This leaves the left hand side of equation (6) equal to zero, 

with the following result: [8] 

0.
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If point P  is inside the S , then 









r

12  at 0r , therefore we exclude this point 

by defining a new region which excludes the origin by drawing a sphere of radius   around 

0r , and applying equation (7) to the region between   and S :[8] 
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(8) 

Consider the first integral on the left hand side of equation (8), let 0 , where 

 0as , we take   constant 












0

r
, assuming that   is well-behaved and using 
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the mean value theorem. Then evaluate 


2r

dS
 over the surface of the sphere where r . 

For sphere the elemental area as seen from figure (2) is: 

 ddrdS sin2  (9) 

By substituting into the integral: 



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 dd
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 (10) 

Integration from  to0  and  20 to , we get: 
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Figure 2: Nomenclature of spherical coordinate system [6] 

The final result for the right side integral in equation (8) is: 
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Replacing this integral by its value into equation (8), the expression for the potential at 

any point P  as (where the origin can be placed anywhere inside the region S ): 
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And the value of   at any point P  in the flow, within the region V  is now known as a 

function of   and 
n


 on the boundaries S . In equation (13) S  is  SSS WB . If the flow 

of interest occurs inside the boundary of BS , and the resulting “internal potential” is i , for 

this flow the point P  (which in the region V ) is exterior to BS , then: 

0.
11

4

1



















 
BS

ii ndS
rr

 (14) 

 

 

 

 

 



7 Implementation of the panel method to the solution of flow around aircraft 
 

INCAS BULLETIN, Volume 7, Issue 2/ 2015 

Equation (13) becomes: 
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The (
r

1
) in the above equation (15) can be interpreted as a source of strength 

n


, and 

the 

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
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
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1
 term as a doublet of strength  . Therefore, we can find the potential as a function 

of a distribution of sources and doublets on the surface. In equation (15),  i  is the 

difference between the external and internal potentials. 

When S  is considered to be far from BS  the potential can be defined as  P : 
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Equation (15) becomes: 
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The wake is generally considered to be infinitely thin (not solid surface); with 0




n
 

therefore only doublets are used to represent the wakes. Then equation (17) becomes: 
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This formula, equation (18), gives the value of  P  at any point in the flow within the 

region V  as a function of   and 
n


 (denote the differentiating in the direction of the outwards 

normal to the surface BS ) on the boundary. 
 
 

 

 

 

 

 

Figure 3: The velocity potential near solid boundary [7] 

To define the difference between the external and internal potentials  i , consider 

the segment of the boundary BS  as shown in figure (3), is: 

i  (19) 
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The difference between the normal derivatives of the external and internal potentials is 

defined as: 

nn

i





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
  (20) 

On the boundaries 0i  and 0




n

i . The source strength is required to be: 

 .n  (21) 

These elements are called doublet    and source   , and the minus sign is a result of 

the normal vector n  pointing into BS . The vector n  here is the local normal to the surface, 

which points in the doublet direction; there it is convenient to replace .n  by 
n


. By these 

terms equation (18) becomes: 
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The problem is to find the values of the unknown source   and doublet   strengths for 

a specific geometry and given free stream  . In addition, equation (22) now has an integral 

equation to solve for the unknown surface singularity distributions instead of a partial 

differential equation. The problem is linear, allowing us to use superposition to construct 

solutions. 

4. REDUCTION OF THE PROBLEM TO A SET OF LINEAR ALGEBRAIC 

EQUATIONS 

Equation (22) is the basis of many numerical solutions of potential flow, to describes and 

solves the flow it is important to set the problem in form of algebraic equations. The approach 

adopted consists of approximating equation (22) by a set of linear algebraic equations. The 

boundary or body surface about which the flow is to be computed is approximated by a large 

number of surface elements, whose characteristics dimensions are small compared to those of 

the body. 

Consider a body with known boundaries BS  submerged in a potential flow as shown in 

figure (4). The flow of interest is in the outer region V  where incompressible, irrotational 

continuity equation, in the body’s frame of reference, in terms of the total potential   is: 

02    (23) 

 
Figure 4: Potential flow over a closed body [7] 
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The solution of equation (23) is constructed by a sum of source   and doublet   

distributions placed on the boundaries BS  as: 
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Where   is the free stream potential ( zWyVxU   ). If the wake is modeled by a 

thin doublet sheet, equation (24) can be written as: 
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When applying the Dirichlet boundary condition by specifying   on the boundaries  BS

, and distributing the singularity elements on the surface (the point ( zyx ,, ) inside the surface 

BS ) the inner potential i  in terms of singularity distribution is obtained as: 
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On the solid boundaries BS  the condition: 

  0.   n  (27) 

In terms of velocity potential, becomes: 
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The solution to equation (29) depends on the value of the inner potential i , when the 

inner potential is set to be    


ii , the equation reduced to: 
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In order to solve equation (30) numerically, the surface boundary BS  and the wake WS  

are divided to BN  surface panels and WN  wake panels as shown in figure (5) and the boundary 

conditions are specified at the collocation points. 

 

Figure 5: Discretization of the wing surface and wake [7] 
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By using Dirichlet boundary condition for each of the collocation points, equation (30) 

can be written as: 
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The first and third integrals of the above equation are carried out over each panel of the 

body surface BS  and the second integral is taken over each panel of the wake panel WS , thus 

the summation of the influences of all i  body panels and j  wake panels is needed in order to 

confirm that the boundary condition is satisfied. For the panel geometry the quadrilateral panel 

is used to represent the body and wake panels as shown in figure (6): 

 

Figure 6: Geometry of the panel [7] 

The quadrilateral panel defined by four corners  4,3,2,1 , for constant strength element 

equation (31) can be written as: 
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For a constant strength   element: i
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(defined as the velocities induced at a control points) of the panel. These integrals are a 

function of points 1,2,3,4 and P  only. 

 
Figure 7: Influence of panel i  on point P  [7] 
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After computing the influence of each panel on each other panel equation (31) for each 

point P  inside the body in terms of influence coefficients becomes: 

  
  


B W BN

i

N

j

N

i

iijjii BCC
1 1 1

0  (33) 

Equation (33) can be evaluated for each collocation point inside the body. 

 

Figure 8: Relation between trailing edge upper and lower panel doublet strength and wake doublet strength [7] 

From figure (8) it is clear that there is a relation between the trailing edge upper and lower 

doublet strength and the wake doublet strength as: 

luw   (34) 

The influence of wake element becomes: 

 



WW N

j

jluj

N

j

jj CC
11

 (35) 

This algebraic relation can be substituted into the iC  coefficients of the unknown surface 

doublets such that: 

                                      ii CA                   if panel is not at trailing edge. 

                           jii CCA          if panel at upper surface of the trailing edge. 

                           jii CCA          if panel at lower surface of the trailing edge. 

Equation (33) becomes: 





N

i

ii

N

i

ii BA
11

0  (36) 

Where A and B are influence coefficients. 

The source strength   is known from equation (21), thus equation (36) becomes: 





N

i

ii

N

i

ii BA
11

 (37) 

Calculation of equation (37) at each N  control point ( Ni  1 ) results in the following 

equation with unknown i : 
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 (38) 

The right hand side of equation (38) is known, thus: 
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The values of i  can be computed by solving this full matrix equation. 

5. CALCULATION OF PRESSURE DISTRIBUTIONS AND 

AERODYNAMIC LOADS 

After the solution of equation (39) for the unknowns i  the velocity components are evaluated 

in terms of panel local coordinates ( nml ,, ) as shown in figure (9) below: 

 
Figure 9: Panel local coordinate system for evaluating the tangential velocity components [7] 

l
ql




 , 

m
qm




 , inq   (40) 

The total velocity in the local ( nml ,, ) direction of the panel i  is: 

   
inmlii qqqqqqq

nml
,,,,    (41) 

From the above equation the value of the velocity component at each control point is: 

l
uu i

i l 


   (42) 

m
vv i

i m 


 


 (43) 

ii l
ww    (44) 

The pressure coefficient is calculated as: 

2

1 











V

V
C i

Pi
 (45) 
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where: 
222

iiii wvuV   

The contribution of each panel to the non-dimensional fluid dynamic loads is normal to 

the panel surface and is: 

SV

F
C

i

i
Fi 2

2
1 


  (46) 

In terms of the pressure coefficient the panel contribution to the fluid dynamics load 

becomes: 

i
iiP

F n
S

SC
C

i
.


  (47) 

The individual contributions of the panel elements now can be summed up to compute the 

desired aerodynamic forces and moments. The forces can be obtained as: 





N

i

kiipk zyxkqnSCF
i

1

,,,  (48) 

The moments also obtained as: 





N

i

yiziip

N

i

ziyiip qcnSCqcnSCL
ii

11

 (49) 





N

i

xiziip

N

i

zixiip qcnSCqcnSCM
ii

11

 (50) 





N

i

xiyiip

N

i

yixiip qcnSCqcnSCN
ii

11

 (51) 

6. ANALYSIS 

6.1 Flow around a finite swept wings 

The actual wing is replaced by a number of panels with distributions of singularities. The grid 

cover the wing subdivides it into a number of small panels. On each panel the particular 

singularity strength is held constant. Flow around swept wings with NACA0015, NACA2412 

and NACA64A010 airfoil sections is investigated. The results for the PC  distributions at 

upper and lower surfaces of the wing with NACA0015 airfoil section at 04  are shown in 

figure (10) and the difference in pressure distribution
 
is clear between the lower surface and 

the upper surface. 

        

Figure 10: Pressure distributions at upper surface (left) and lower surface (right) 
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The below figures (11,12 and 13) show the validation for the panel code with experimental 

published data for the wings with NACA0015, NACA64A010 and NACA2412 airfoil 

sections, a good agreement is shown. 

The difference between the values at higher angles of attack is due to the neglecting of 

the viscosity in potential flow calculations. 

 

Figure 11: Comparison between lift coefficients for swept back symmetrical wing with NACA0015 airfoil section 

 
Figure 12: Comparison between drag polar for swept back cambered wing with NACA2412 airfoil section 

 

Figure 13: Comparison between lift coefficients for swept back wing with NACA64A010 airfoil section 
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6.2 Flow around a complete aircraft 

Figure 14 shows the grid for Airbus A380 aircraft used, from where the numerical solution 

was obtained. A comparison was made between the DATCOM and numerical results from the 

panel method code as in figures 15 and 16. 

The more important effect of the elevator in pitching moment is to provide the stability 

for the aircraft, to keep it flying straight. Figure 17 shows the contributions of elevator to the 

lift coefficient. Figures 18 and 19 indicate the contributions of the rudder to the rolling and 

yawing moment. 

The rudder usually when deflected, it provides a strong yawing moment and some rolling 

moments. 
Figures 20 and 21 illustrate the effect of the aileron deflection on rolling and yawing 

moment coefficients, when the aircraft is banked the natural tendency of the aircraft is to slip 

in the direction of the turn because the lower wing is producing less lift, so the airflow will 

strikes the side of the aircraft and large surface as the fin which are behind the center of gravity 

therefore causing the nose to yaw in the direction of the turn. At roll the lift increases on the 

wing with the downward-deflected aileron because the deflection effectively increases the 

camber of that portion of the wing. 

Conversely, lift decreases on the wing with the upward-deflected aileron since the camber 

is decreased. 

The result of this difference in lift is that wing with more lift rolls upward to create the 

desired rolling motion. 

Unfortunately, drag is also affected by this aileron deflection. More specifically, the drag, 

is increased when ailerons are deployed. 

Thus, the wing on which the aileron is deflected downward to generate more lift also 

experiences more drag than the other wing. 

However, the drag on each side is not equal, and a larger total drag force exists on the 

wing with the down aileron. 

This difference in drag creates a yawing motion in the opposite direction of the roll. Since 

the yaw motion partially counteracts the desired roll motion, this is known as adverse yaw. 

Thus the deflection of the ailerons leads to additional yawing moments once the aircraft starts 

to roll. 

 
Figure 14: Airbus A380 
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Figure 15: Comparison of lift coefficient obtained from panel code with DATCOM

 

Figure 16: Comparison of drag coefficient obtained from panel code with DATCOM 

 

Figure 17: Variation of lift coefficient curve with elevator deflection 
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Figure 18: Variation of yawing moment coefficient curve with rudder deflection 

 

Figure 19: Variation of rolling moment coefficient curve with rudder deflection 

 

Figure 20: Variation of rolling moment coefficient curve with aileron deflection 
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Figure 21: Variation of yawing moment coefficient curve with aileron deflection 

7. CONCLUSION 

This work presents the importance of using the panel method technique for the solution of the 

flow around 3D bodies. A good agreement was obtained between the numerical solutions when 

compared with experimental published data for three dimensional wings and DATCOM for 

the flow around Airbus A380 aircraft. The approach revealed to be faster in calculations than 

other numerical methods (finite difference, finite volume and finite element) since the solution 

is at the body surface only. 
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