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Abstract: In this study a panel method is used as a numerical technique for the solution of the potential
three dimensional flows about a complete aircraft configuration to determine the aerodynamic
characteristics. This approach seems to be more economic, from the computational point of view than
methods that solve the flow field in the whole fluid volume such as finite difference, finite element or
finite volume techniques. A system of source and doublet distributions is implemented and Dirichlet
boundary conditions are applied. A computer program using Matlab is developed. Firstly flow over
three dimensional swept wings is solved and the results are compared with experimental data to validate
the numerical panel code. After the ideas have been discussed a sample calculations around complete
aircraft are presented to illustrate the gain of using panel method technique.
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1. INTRODUCTION

The main purpose of this paper is to develop a MATLAB code as a computational tool for the
solution of potential flow around three dimensional swept wings and complete aircraft to
obtain the aerodynamics characteristics by using the panel method.

Panel method is a technique used for solving the potential flow around 2D and 3D
geometries, based on simplifying assumptions about the physics and properties of the flow of
air over these geometries. The viscosity and compressibility of air in the flow field is neglected,
and the curl of the velocity field is assumed to be zero (no vorticity in the flow field) [1]. Under
these assumptions, the vector velocity describing the flow field can be represented as the
gradient of a scalar velocity potential, and the resulting flow is referred to as potential flow. A
statement of conservation of mass in the flow field leads to Laplace's equation as the governing
equation for the velocity potential (V2@ = 0) [2].

The governing equation (Laplace’s equation) is recast into an integral equation. The
integral equation involves quantities such as velocity, only on the surface, whereas the original
equation involved the velocity potential all over the flow field. The surface is divided into
panels and the integral is approximated by an algebraic expression on each of these panels. A
system of linear algebraic equations results for the unknowns at the solid surface, which may
be solved to determine the unknowns at the body surface [3].
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Panel programs can be subdivided into two groups: low order and high order. In a low
order panel method, singularities are distributed with constant strength over each panel, while in
a higher order method, singularity strengths are allowed to vary linearly or quadratic over each
panel [4].

The first paper on a practical three-dimensional method to solve the linearized potential
equations was published by Hess and Smith [5]. Their method itself was simplified, in that it
did not include lifting flows and hence was mainly applied to ship hulls and aircraft fuselages.
The first lifting Panel Code (A230) was described in a paper written by Paul Rubbert and Gary
Saaris of Boeing Aircraft in 1968. In time, more advanced three-dimensional panel codes were
developed at Boeing (PANAIR,A502), Lockheed (Quadpan), Douglas (HESS), McDonnell
Aircraft (MACAERO), NASA (PMARC) and Analytical Methods (WBAERO, USAERO and
VSAERO) [6].

2. PROBLEM FORMULATION

The problem under consideration in this paper is that of the potential flow of an
incompressible, inviscid flow. The exact solution of the potential flow for arbitrary boundaries
can be approached in a variety of ways, all of which must finally become numerical and make
use of a computing machine. More efficient methods are based on the reduction of the problem
to integral equations over the boundary surface. Finally the integral equations may be
approximated by a set of linear algebraic equations which are solved by any of the usual
techniques.

3. INTEGRAL EQUATIONS OF POTENTIAL FLOW

Integral equations of potential flow are formed in suitable forms for use in panel method
calculations. Starting with the Gauss Divergence theorem which relates a volume integral and
a surface integral, [6]:

\J/.VAdV - ! AndS, M

Consider the problem as shown in figure (1):

Figure 1: Nomenclature used to define the potential flow problem [7]

Introducing the vector (A):
A=V, — 9,V )

where ¢,, ¢, are two scalar functions of position. By substitution in equation (1):
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[ V(0:70, = 0,0, )AV = [ (6,0, — 4.V, )nds, )
\% S

once V(§,Vd, — d,Va,) is equal to (¢,V2d, — d,V?d, ), then:
j(w%z 6.V, AV = j 0V, — 9,6, )ndS @

where: S =S + S, +S, + S,

By defining ¢, =% and¢, = ¢, where ¢ is the potential (a function that satisfies
Laplace’s equation) of the flow of interest inV , and r is the distance from the interest point
P(x, y, z) as shown in figure (1). The % term is a source singularity in three dimensions. Then

equation (4) can be rewrite using these terms as:

el foolton s

The region V is enclosed by the surface S, . Recognize that on the left hand side of
equation (5) the first term (V2¢) is equal to zero, so equation (5) becomes:

- J ¢v2(%jdv = ! G V- ¢V(%D-nd8 (6)

. . . 1.
If point P is external to the S, then Vz(lj = 0 everywhere since — is the source, and
r r

thus satisfies Laplace’s equation. This leaves the left hand side of equation (6) equal to zero,

with the following result: [8]
| (% Vo - d)V(%D.ndS -0 %

S

If point P is inside the S, then Vz(lj — oo at r = 0, therefore we exclude this point
r

by defining a new region which excludes the origin by drawing a sphere of radius & around
r = 0, and applying equation (7) to the region between ¢ and S :[8]

ﬂ%w—w(%jj s - (120 % s .

arbitrary  region sphere

Consider the first integral on the left hand side of equation (8), let € —» 0, where

(as & —0),wetake ¢ ~ constant (? = Oj, assuming that ¢ is well-behaved and using
r
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the mean value theorem. Then evaluate J.J. d—f over the surface of the sphere where ¢ = 1.
Jor

For sphere the elemental area as seen from figure (2) is:
dS = r2sin 0 dod¢ 9
By substituting into the integral:

ds r2sin0 dod .
198 = [ =S80 _ffsino dods 10)
Integration from 6 = 0 tow and ¢ = 0 to 2xt, we get:

G=21 O0=7
: _ 11
Iq):o L:Osm 0dodo = 4n (12)

Figure 2: Nomenclature of spherical coordinate system [6]

The final result for the right side integral in equation (8) is:

I (5 L %}ds = 4nf (12)

r or

Replacing this integral by its value into equation (8), the expression for the potential at
any point P as (where the origin can be placed anywhere inside the region S):

o(P) = 4—1n | G Vo - ¢V(%D.nds (13)

And the value of ¢ at any point P in the flow, within the region V is now known as a

o9

function of ¢ and T on the boundaries S . In equation (13) S is S; + S, + S, . If the flow

of interest occurs inside the boundary of Sy, and the resulting “internal potential” is ¢;, for
this flow the point P (which in the region V') is exterior to Sg, then:

! G Vo, - ¢iV(1n.ndS —0 (14)

4r 5 r
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Equation (13) becomes:

o(P) = — ( V(o -0)-(6- ¢)(Dnds 4175%

1 1
i j S (F Vo — oV Fj.nds (15)

+9

The (%) in the above equation (15) can be interpreted as a source of strength % and

the V[l
r

of a distribution of sources and doublets on the surface. In equation (15),(¢—¢i) is the

difference between the external and internal potentials.
When S, is considered to be far from S the potential can be defined as ¢, (P):

j term as a doublet of strength ¢ . Therefore, we can find the potential as a function

1 1 1
¢.(P) = - Sj(; Vo — oV ;j.nds (16)
Equation (15) becomes:

_ j( —(o-0 Vv ( Dnds+%S£[%V¢—¢V%}nd5+¢m(P) 17)

The wake is generally considered to be infinitely thin (not solid surface); with % =0

therefore only doublets are used to represent the wakes. Then equation (17) becomes:
1 1 1
¢o(P) = j [ V(o — )~ (¢ — & )V[—]}nds - [¢nv=ds +¢.(P) (18)
r 47 S r

This formula, equation (18), gives the value of ¢(P) at any point in the flow within the
region V as a function of ¢ and % (denote the differentiating in the direction of the outwards

normal to the surface Sg) on the boundary.

Figure 3: The velocity potential near solid boundary [7]

To define the difference between the external and internal potentials (d) - d)i), consider
the segment of the boundary Sy as shown in figure (3), is:

“n=0-0 19
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The difference between the normal derivatives of the external and internal potentials is
defined as:

U ) 0
on on
On the boundaries ¢; = 0 and % = 0. The source strength is required to be:
c =nd, (21)

These elements are called doublet (1) and source (), and the minus sign is a result of
the normal vector n pointing into Sy . The vector N here is the local normal to the surface,

o9

which points in the doublet direction; there it is convenient to replace n.V by Pl By these
n

terms equation (18) becomes:

oP)= -~ (c{%j wl (%Dds - &N[“% GDO'S +0,(P) @)

The problem is to find the values of the unknown source o and doublet p strengths for
a specific geometry and given free stream ¢, . In addition, equation (22) now has an integral
equation to solve for the unknown surface singularity distributions instead of a partial

differential equation. The problem is linear, allowing us to use superposition to construct
solutions.

4. REDUCTION OF THE PROBLEM TO A SET OF LINEAR ALGEBRAIC
EQUATIONS

Equation (22) is the basis of many numerical solutions of potential flow, to describes and
solves the flow it is important to set the problem in form of algebraic equations. The approach
adopted consists of approximating equation (22) by a set of linear algebraic equations. The
boundary or body surface about which the flow is to be computed is approximated by a large
number of surface elements, whose characteristics dimensions are small compared to those of
the body.

Consider a body with known boundaries Sg submerged in a potential flow as shown in

figure (4). The flow of interest is in the outer region V where incompressible, irrotational
continuity equation, in the body’s frame of reference, in terms of the total potential ¢* is:

Vi =0 (23)

v

Body
coordinates

Wake

Figure 4: Potential flow over a closed body [7]
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The solution of equation (23) is constructed by a sum of source ¢ and doublet n
distributions placed on the boundaries Sg as:

o*(x,y,2) = - 4—17[ JH%) —u % GDdS + ¢, (24)

Where ¢, is the free stream potential (U_x +V_y +W,z). If the wake is modeled by a
thin doublet sheet, equation (24) can be written as:

. 1 o(1 1 1

¢ (X’ . Z) ) E body:!.wakeug (Fjds ) 4_7t body({?jdS ’ ¢OO (25)

When applying the Dirichlet boundary condition by specifying ¢* on the boundaries Sg

, and distributing the singularity elements on the surface (the point ( x, y, z ) inside the surface
Sg ) the inner potential ¢; in terms of singularity distribution is obtained as:

1 o(1 1 1
; » Yo = — - | — dS — - dS o
di(x.y.2) 4 -[ Man(rj 4 -[ G(rj te (26)
body+wake body
On the solid boundaries Sg the condition:
V(o +d,)n=0 27)
In terms of velocity potential, becomes:
¢ = (¢+9,) = cons (28)
Equation (26) becomes:
1 o(1 1 1
(X y,2)=— —|=dS-—— = |dS + ¢, = cons
¢ (x, v, 2) a | “an(rjd o c{rj +¢ 29)
ody+wake body

The solution to equation (29) depends on the value of the inner potential ¢}, when the
inner potential is set to be ¢ = (¢ + ¢, ). = ¢, the equation reduced to:

1 o(1 1 1
— —|=dS - — —1dS=0
4n -[ uan(rJd 4n G(r) (30)

body+wake
In order to solve equation (30) numerically, the surface boundary Sg and the wake S,

are dividedto Ny surface panelsand N,, wake panels as shown in figure (5) and the boundary
conditions are specified at the collocation points.

Figure 5: Discretization of the wing surface and wake [7]
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By using Dirichlet boundary condition for each of the collocation points, equation (30)
can be written as:

Np Nw Ng
1 o(1 1 o(1 1 1
— —|=dS+ > — —|=dsS-)>» — —dS=0
21:4nb!du8n(rj §4n I Man(rJ ;4n I G(rj (31)
[ y J wake ! body

The first and third integrals of the above equation are carried out over each panel of the
body surface Sy and the second integral is taken over each panel of the wake panel S, , thus
the summation of the influences of all i body panels and j wake panels is needed in order to

confirm that the boundary condition is satisfied. For the panel geometry the quadrilateral panel
is used to represent the body and wake panels as shown in figure (6):

« P{xy7)

(‘-’2» _\'1,0}

Figure 6: Geometry of the panel [7]

The quadrilateral panel defined by four corners(1,2,3,4), for constant strength element
equation (31) can be written as:

Npg o (1 Ny (1 Ng 1
214% j %(Fjdhz“_i j 5[?}8_24%”(?}18:0 (32)

body j=1 wake

< .
4n bodyan r 4n Wakean r

For a constant strength p element: 1 0 [ljds =C 1 '[ i[leS = C;. For

a constant strength o element: — 1 I [ljds = B;, C;,C,, B, are the influence coefficients
T r

body
(defined as the velocities induced at a control points) of the panel. These integrals are a
function of points 1,2,3,4 and P only.

Figure 7: Influence of panel i on point P [7]
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After computing the influence of each panel on each other panel equation (31) for each
point P inside the body in terms of influence coefficients becomes:

Ng Ny Ng
i=1 j=1 i=1

Equation (33) can be evaluated for each collocation point inside the body.

Trailing edge

Figure 8: Relation between trailing edge upper and lower panel doublet strength and wake doublet strength [7]

From figure (8) it is clear that there is a relation between the trailing edge upper and lower
doublet strength and the wake doublet strength as:

My =M=y (34)
The influence of wake element becomes:

Ny Ny
D Ciuy =2 Ciluy — ), (35)
=L i-1

This algebraic relation can be substituted into the C; coefficients of the unknown surface
doublets such that:
A =C if panel is not at trailing edge.
A =C; +C; if panel at upper surface of the trailing edge.

A =G -C, if panel at lower surface of the trailing edge.
Equation (33) becomes:

ZN: An + ZN: Bio; =0 (36)

Where A and B are influence coefficients.
The source strength o is known from equation (21), thus equation (36) becomes:

Z A = _Z Bio; (37)

Calculation of equation (37) ateach N control point (i =1 — N) results in the following
equation with unknown p;:
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8, ap, ———— ay |1 | by by, ————by | o
By Ay ———— ayy | M2 by 0, ———— by | ©2
- - === === - - =—=== = |- (38)
Ayi Ay ——— — Ay | M| byy by, ———— byy || o |
The right hand side of equation (38) is known, thus:
8y, a, ————ay |[m | [RHS]
Q1 Bp ———— Ay | M2 RHS,
- = === == |=|- (39)
ayy vy, ———— aw | My ] | RHSy |

The values of p; can be computed by solving this full matrix equation.

5. CALCULATION OF PRESSURE DISTRIBUTIONS AND
AERODYNAMIC LOADS

After the solution of equation (39) for the unknowns p; the velocity components are evaluated
in terms of panel local coordinates (I, m, n) as shown in figure (9) below:

Figure 9: Panel local coordinate system for evaluating the tangential velocity components [7]

0 0
0= =2 G =0 (40)
The total velocity in the local (1, m, n) direction of the panel i is:
qi = (qoo| ’ qoom ' qwn )i + (ql ’ qma qn )i (41)
From the above equation the value of the velocity component at each control point is:
oy,
U = U, + a—l' (42)
OLL
V.=V, +— 43
[ m am ( )
Wi =W, —Gj (44)
The pressure coefficient is calculated as:
2
\VA
Co =1—|—L (45)
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2 2 2
where: V, = 1/U.” +Vi“+W;

The contribution of each panel to the non-dimensional fluid dynamic loads is hormal to
the panel surface and is:

AR
AC. = !
In terms of the pressure coefficient the panel contribution to the fluid dynamics load
becomes:

CPiSASi n
The individual contributions of the panel elements now can be summed up to compute the
desired aerodynamic forces and moments. The forces can be obtained as:

ACy = - (47)

N
Fo=->.C,Sinyg k=xy,12 (48)
i=1
The moments also obtained as:
N N
L= Zcpisinyiqczi - Zcpi Sinziqcyi (49)
i=1 i=1
N N
M = _Zcpi Sinxiqczi + Zcpi Sinziqcxi (50)
i=1 i=1
N N
N = > C,Sinqc, — > C,Sin,qc, (51)
i=1 i=1
6. ANALYSIS

6.1 Flow around a finite swept wings

The actual wing is replaced by a number of panels with distributions of singularities. The grid
cover the wing subdivides it into a number of small panels. On each panel the particular
singularity strength is held constant. Flow around swept wings with NACAQ0015, NACA2412
and NACA64A010 airfoil sections is investigated. The results for the C, distributions at
upper and lower surfaces of the wing with NACA0015 airfoil section at o = 4° are shown in

figure (10) and the difference in pressure distribution is clear between the lower surface and
the upper surface.

Figure 10: Pressure distributions at upper surface (left) and lower surface (right)
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The below figures (11,12 and 13) show the validation for the panel code with experimental
published data for the wings with NACAQ0015, NACA64A010 and NACA2412 airfoil
sections, a good agreement is shown.

The difference between the values at higher angles of attack is due to the neglecting of
the viscosity in potential flow calculations.

1 T T
| |
| |
08 ©  Panel method
’ | _* Experimental data_|
0.6 *
0.4 //
o’ /
0.2 /
*
o
*®
022
045 4 2 0 2 4 6 8 10 12 14 16
alpha(deg)

Figure 11: Comparison between lift coefficients for swept back symmetrical wing with NACAOQO015 airfoil section

14 T T

13 —6—Panel method

g | ¢ Experimental data| /
12 o
11

*
1
g 09 /

0.8 /
0.7
06 //
0.5 /
04 d

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

%

Figure 12: Comparison between drag polar for swept back cambered wing with NACA2412 airfoil section

0.7 T T
| |

06 O Panel method /

. | * Experimental data| //
5

0.5 //
P

0.4

—
g /,/

0.3
/
0.2 /
0.1 /
0 1 2 3 4 5 6 7 8 9 10 11 12
alpha(deg)

Figure 13: Comparison between lift coefficients for swept back wing with NACA64A010 airfoil section
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6.2 Flow around a complete aircraft

Figure 14 shows the grid for Airbus A380 aircraft used, from where the numerical solution
was obtained. A comparison was made between the DATCOM and numerical results from the
panel method code as in figures 15 and 16.

The more important effect of the elevator in pitching moment is to provide the stability
for the aircraft, to keep it flying straight. Figure 17 shows the contributions of elevator to the
lift coefficient. Figures 18 and 19 indicate the contributions of the rudder to the rolling and
yawing moment.

The rudder usually when deflected, it provides a strong yawing moment and some rolling
moments.

Figures 20 and 21 illustrate the effect of the aileron deflection on rolling and yawing
moment coefficients, when the aircraft is banked the natural tendency of the aircraft is to slip
in the direction of the turn because the lower wing is producing less lift, so the airflow will
strikes the side of the aircraft and large surface as the fin which are behind the center of gravity
therefore causing the nose to yaw in the direction of the turn. At roll the lift increases on the
wing with the downward-deflected aileron because the deflection effectively increases the
camber of that portion of the wing.

Conversely, lift decreases on the wing with the upward-deflected aileron since the camber
is decreased.

The result of this difference in lift is that wing with more lift rolls upward to create the
desired rolling motion.

Unfortunately, drag is also affected by this aileron deflection. More specifically, the drag,
is increased when ailerons are deployed.

Thus, the wing on which the aileron is deflected downward to generate more lift also
experiences more drag than the other wing.

However, the drag on each side is not equal, and a larger total drag force exists on the
wing with the down aileron.

This difference in drag creates a yawing motion in the opposite direction of the roll. Since
the yaw motion partially counteracts the desired roll motion, this is known as adverse yaw.
Thus the deflection of the ailerons leads to additional yawing moments once the aircraft starts
to roll.

Figure 14: Airbus A380
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Figure 15: Comparison of lift coefficient obtained from panel code with DATCOM
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Figure 16: Comparison of drag coefficient obtained from panel code with DATCOM
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Figure 17: Variation of lift coefficient curve with elevator deflection
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Figure 18: Variation of yawing moment coefficient curve with rudder deflection
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Figure 19: Variation of rolling moment coefficient curve with rudder deflection
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Figure 20: Variation of rolling moment coefficient curve with aileron deflection
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Figure 21: Variation of yawing moment coefficient curve with aileron deflection

7. CONCLUSION

This work presents the importance of using the panel method technique for the solution of the
flow around 3D bodies. A good agreement was obtained between the numerical solutions when
compared with experimental published data for three dimensional wings and DATCOM for
the flow around Airbus A380 aircraft. The approach revealed to be faster in calculations than
other numerical methods (finite difference, finite volume and finite element) since the solution
is at the body surface only.
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