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Abstract: The paper starts by presenting the model of the star-shaped octorotor. LQR control is 
chosen to stabilize the attitude and altitude of the vehicle. Waypoint navigation is also implemented. 
Numerical simulations demonstrate the effectiveness of the control strategy under nominal conditions. 
However, in practice mass related uncertainties can occur. In this case the results are unsatisfactory. 
Thus the improvement of the applied LQR control strategy is proposed. It is shown that after adding 
integral action to the altitude controller the issue is solved. 
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1. INTRODUCTION

Day by day quadrotor UAVs (unmanned aerial vehicles) are being used in more and more 
fields of activity. As their name suggests, they are powered by four rotors. Unlike 
conventional helicopters, they have fixed pitch propellers. Thus control is achieved by 
varying the speed of the rotors in order to induce the desired forces and moments. Although 
they are remarkable vehicles, some issues regarding their reliability and payload restrictions 
have to be considered. The quadrotor depends on all of the four rotors in order to provide full 
control. If even just one of them is completely inoperative then stabilization is impossible 
without reversing the direction of the motor or sacrificing the controllability of the yaw state, 
as seen in [1]. Octorotor configurations were proposed in [2] and [3]. The additional four 
rotors provide an increase in thrust, which translates into a higher payload capacity, and 
redundancy. The star-shaped octorotor (see [2]) is capable of VTOL (vertical take-off and 
landing) and it is highly manoeuvrable. It can be used for aerial imaging (remote monitoring 
of important points of interest, news coverage, commercials) and mapping (landscaping, 
agriculture), traffic surveillance, search and rescue operations, security missions and a lot 
more. Additionally, it can be deployed in environments which are dangerous for humans 
(highly toxic or radioactive, for example). 
 Section 2 presents the non-linear dynamic model of the star-shaped octorotor and its 
nominal parameters. In Section 3 a control strategy is proposed. Careful observation of the 
dynamics reveals the fact that the control problem can be separated into two parts - one for 
attitude control and one for position control. The model is simplified and some of the 
equations are linearized around the hover state. Section 4 presents the design of the LQR 
(Linear Quadratic Regulator) control laws (see for instance [6] and [7]). In Section 5 their 
effectiveness is tested using numerical simulations. As long as uncertainties are not present 
the desired results are achieved. However, in the case of mass related uncertainties problems 
appear. Thus in Section 6 integral action is added to the altitude controller (see for instance 
[4] and [5]). Testing confirms the correct approach has been taken. Conclusions and future 
developments are presented in Section 7. 
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2. DYNAMICS

The layout of the star-shaped octorotor is presented in Fig. 1. It consists of eight equal rods 
that are connected by a central plate which carries the avionics and power supply of the 
vehicle. There is a 45 degree angle between the neighbouring arms. The axis system is 
chosen to facilitate the transition from the quadrotor model. The standard definition of a 
positive rotation is used: this is defined as a counter-clockwise rotation around the axis as 
seen from directly in front of the axis line. Two reference frames are used – a body axes 
frame B fixed at the vehicle’s centre of gravity and an earth fixed frame E. 

 
Fig. 1 – Star-shaped octorotor layout 

 In order to obtain a configuration similar to that of the quadrotor the actuators are paired 
together two by two in the following manner: pair A - 1 with 2 ( A 21 ), pair B - 3 

with 4 ( B 43 ), pair C - 5 with 6 ( C 65 ) and pair D - 7 with 8 

( ). The rotors belonging to the same pair spin at the same speed and have 
propellers of the same type (either puller or pusher, depending on the direction of rotation). 

D87

 To increase the roll angle, the thrust of pair B is decreased while the thrust of pair D is 
increased such that overall thrust remains the same. To obtain a positive pitch angle, the 
thrust of pair A is decreased while the thrust of pair C is simultaneously increased. For a 
positive yaw angle, the speed of the clockwise spinning rotors is increased while the speed of 
the counter-clockwise ones is decreased. The rotor arrows from Fig. 1 indicate the direction 
of the resulting torque which is opposite to the direction of rotation. 

The dynamics of the star-shaped octorotor were derived taking into account the work on 
quadrotors which is presented in [6]-[12]. The following assumptions were made: 

- the structure is rigid and symmetric 
- the centre of gravity lies at the origin of the body axis reference frame 
- the inertia matrix is diagonal 
- the propellers are rigid 
- actuator lag is considered negligible 
- the thrust is proportional to the square of the speed of the rotor 
- the drag is proportional to the square of the speed of the rotor 
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The equations describing the dynamics of the star-shaped octorotor are (as in the case of 
the quadrotor modelling presented in [10] and [12]): 
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The outputs of the system are x ,  and y z - which denote the position of the vehicle with 

respect to the Earth fixed frame, and p ,  and q r  - which denote the angular velocity of the 
vehicle with respect to the body fixed frame. In order to obtain the angular velocity with 
respect to the Earth fixed frame the following multiplication is performed (see [13], [14]): 
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 The control inputs of the system, , ,  and , and the disturbance  (which 

depends on the speed of the rotors - , 
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where: 

,0322cos 0  lP  (4)

.0322sin 0  lp  (5)

Because of the pairing, some of the terms in equation set (3) cancel and therefore: 
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The inputs become: 
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From equation set (7) it follows that: 
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 The nominal parameters of the star-shaped octorotor are: ml 4.0  - arm length, 

 - mass,  - inertia on x axis,  - inertia on y 

axis,  - inertia on z axis,  - thrust coefficient, 

 - drag coefficient and  - rotor inertia. 
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3. MODELLING FOR CONTROL DESIGN 

The design process can be simplified by modifying the dynamic model describing the 
behaviour of the vehicle as follows (see [2] and [6]-[10]): 
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This model is widely used in different research materials. This approximation is valid when 

perturbations from hover flight are small and .  ),,(),,( rqp 

 Analysis of the simplified dynamics reveals the fact that the model can be split into two 
sub-systems: one for translation (x, y and z) and one for rotation ( ,   and  ). One notices 
that the angles and their time derivatives are independent of the translation components. 
However, the latter clearly depend on the rotation components. Thus the control structure 
presented in Fig. 2 is proposed. An altitude controller will provide  which dictates overall 

thrust. The controller for the 
4U

yx   position will compute the desired roll and pitch angles 

depending on the desired values for x  and . These angles, along with the desired yaw 

angle, are fed into the attitude controller which provides ,  and . 

y
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Fig. 2 – The proposed control structure 

 The following notations are introduced: 

,sinsincossincos  xu  (10)

.cossinsinsincos  yu  (11)

The control variables  and  can be regarded as virtual commands which rotate the 

thrust vector  in such a way that the desired 

xu yu

4U yx   translation motion is achieved. 

Consider the system comprised of these two equations. If the values of ,  and xu yu   are 
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 The following system comprises the attitude related equations of the simplified dynamic 
model presented in (9): 
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This system is linearized around the hover state which corresponds to rad0   

and . The result can be seen below: srad /0  
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 The following system, which is obtained from (9) by using (10) and (11), comprises the 
x  and  position related equations of the simplified dynamic model: y
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 In regard to the altitude related equation of the simplified dynamic model (9), the 
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 The simplified dynamic model becomes: 
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The state vector is chosen as: 

  ,121110987654321
TT xxxxxxxxxxxxX   (26)

namely: 
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4. LQR CONTROLLER DESIGN 

 a) Attitude Control 

 Let us define the attitude state vector as: 
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 Then the attitude system can be written in state space form as follows: 
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001000

000000

000010

A  (30)

and: 
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



























z

y

x

I

I

I

B

/100

000

0/10

000

00/1

000

 (31)

denote the state matrix and the input matrix, respectively, and  TUUUU 321

UBXA a 

 denotes the 

input vector. Given the continuous-time linear system  the aim is to find 

the stabilizing feedback control law 

X a 

aXKU   that minimizes the following cost function: 

,)(
0


 dtURUXQXJ T
a

T
a  (32)

where  and  are weighting matrices of appropriate dimensions. The first term 
corresponds to the energy of the controlled output, while the second term corresponds to the 
energy of the control signal. Thus, depending on the desired performance and the available 
capabilities, the choice of the Q and R matrices is an important issue. As a starting point, 
Bryson’s rule can be applied (see for instance [15]). Afterwards, the matrices can be refined 
through a trial-and-error iterative process until the desired response characteristics are 
obtained. Bryson’s rule states that Q and R can be chosen diagonal as follows: 

0Q 0R

,6,1,
  

1
2,  i

Xof  value  acceptable  maximum
Q

ia
ii  (33)

.3,1,
  

1
2,  j

Uof  value  acceptable  maximum
R

j
jj  (34)

 K is defined as: 
,1 PBRK T  (35)

while P denotes the stabilizing solution of the algebraic Riccati equation: 
.01   QPBRBPAPPA TT  (36)

 When desired state values ( ) are imposed, the feedback control law takes the form: 
daX

.)(
daa XXKU   (37)

 Remark 1. The above control law used for tracking essentially exploits the 
expression of the state matrix  derived above. Indeed, assuming that the desired state 
vector  is  constant and satisfies the condition: 

A

daX

,
dd aa XAX   (38)

by subtracting the above equation from equation (29) one obtains: 
,UBeAe   (39)

where  denotes the tracking error. Then the solution of the linear quadratic 

problem for the above system is just 
daa XXe 

)(
daa XXKU  . Let us notice that the condition 

 is fulfilled if 
daXA

daX   T
ddd 000 ad

X   with d , d  and d  assumed 

constant. For a more general case when the condition  is not accomplished one 
daXA

daX 
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can see for instance [16], [17] and their references. After applying the iterative trial-and-error 
design procedure the following form for the Q and R matrices is reached: 

,

500000

0350000

001000

0005.700

000010

000005.7



























Q  (40)

,

025.000

005.00

0005.0
















R  (41)

 After computing the solution of the algebraic Riccati equation and replacing in the 
corresponding formula K is found to be: 

.

3731.144166.370000

005911.42474.1200

00005911.42474.12
















K  (42)

 b) Altitude Control 
 In this case the state vector is chosen as: 





























5

5

6

5

x

x

z

z

x

x
X z 

 (43)

and then the system is written in state space form as follows: 

,
1

0

00

10

6

5

6

5
zu

x

x

x

x





































 (44)

where  is the state matrix,  denotes the input matrix and  is the 

input. Given the continuous-time linear system  the aim is to find the 

stabilizing feedback control law u











00

10
zA 










1

0
zB

X

zz XK

zu

zzz uBzz XA

z   that minimizes the following cost function: 

,)(
0

dtuRuXQXJ zz
T
zzz

T
zz 


  (45)

where and are weighting matrices of appropriate dimensions. is defined as: 0zQ 0zR zK

,1
z

T
zzz PBRK   (46)

while  stands for the stabilizing solution of the algebraic Riccati equation: zP

.01  
zz

T
zzzzzzz

T
z QPBRBPAPPA  (47)

 When desired state values ( ) are imposed, the feedback control law takes the form 

(see Remark 1 from 4.a): 
dzX

.)(
dzzzz XXKu   (48)

 After applying the iterative trial-and-error design procedure the following form for the 
 and  matrices is reached: zQ zR
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,
10

01








zQ  (49)

.1.0zR  (50)

 After computing the stabilizing solution of the algebraic Riccati equation and replacing 
in the corresponding formula  is found to be: zK

 .0404.41623.3zK  (51)

 c) Position Control on the  and  axes x y
 For the position control on the x  and  axes the state vector is chosen as: y

.

3

3

1

1

4

3

2

1





























































x

x

x

x

y

y

x

x

x

x

x

x

X xy








 (52)

 The corresponding state space equations are: 

,

0

00

0

00

0000

1000

0000

0010

4

3

2

1

4

3

2

1






















































































y

x

u

u

g

g

x

x

x

x

x

x

x

x









 (53)

where is the state matrix, is the input matrix and  

is the input vector. For the continuous-time linear system  the 

optimal control problem consists of finding the stabilizing feedback control law 
 that minimizes the following cost function: 





















0000

1000

0000

0010

xyA

xyxy XK





















g

g

0

00

0

00

Bxy 






y

x
xy u

U

xyxy UB

u

xyxy X xy AX 

xyU 

,)(
0


 dtURUXQXJ xyxy
T
xyxyxy

T
xyxy  (54)

where  and  are weighting matrices of appropriate dimensions. is 

defined as: 

0xyQ 0xyR xyK

,1
xy

T
xyxyxy PBRK   (55)

while  is obtained by solving the continuous-time algebraic Riccati equation: xyP

.01  
xyxy

T
xyxyxyxyxyxyxy

T
xy QPBRBPAPPA  (56)

 When desired state values ( ) are constant, based on a similar reasoning as in 

Remark 1 (see 4.a), the feedback control law takes the form: 
dxyX

.)(
dxyxyxyxy XXKU   (57)

 After applying the iterative trial-and-error design procedure the following form for the 
 and  matrices is reached: xyQ xyR
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,

25.0000

0125.000

0025.00

000125.0



















xyQ  (58)

.
20

02








xyR  (59)

 After computing the stabilizing solution of the algebraic Riccati equation and replacing 
in the corresponding formula  is found to be: xyK

.
4195.02500.000

004195.02500.0








xyK  (60)

5. NUMERICAL SIMULATIONS FOR THE LQR CONTROLLER 

The dynamics of the star-shaped octorotor is simulated using the proper model presented in 
(1). The true capabilities of the actuators are taken into consideration, as saturation may 
affect the control process. The simplified model described in equation set (9) is only used as 
the starting point for designing the control laws.  For all test scenarios the star-shaped 
octorotor starts from the origin being tilted by  degrees on all three axes. The first test 
investigates the vehicle’s ability to hover. In order to provide support for human control it 
needs to stabilize itself automatically. One easily observes from Fig. 3 that the target altitude 
of 20 metres is reached around 

30

st 6 , while the roll and pitch angles are stabilized before 

. The desired yaw value is obtained around st 2 s5.2t  . In the second test the mass and 
mass-related parameters of the vehicle are considered to be 20% lower than their nominal 
values. In practice this can happen when using a lighter battery, for example. The star-shaped 
octorotor has to perform the same task as in the first scenario. For easy comparison the time 
responses are plotted against each other in Fig. 3. 
The effect produced by changing the inertia coefficients of the star-shaped octorotor is barely 
noticeable in the case of the attitude stabilization. However, regarding altitude control, a 
steady state error is present. The impact on the altitude controller is greater than the one 
noticed in the case of attitude control. The magnitude of the involved coefficients can 
provide hints about the way they affect the behaviour of the vehicle. 
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c) Yaw angle d) Altitude 

Fig. 3 Time responses for the first and second scenarios 

 The third test deals with the vehicle’s ability to carry objects. It is assumed that an item 
attached to the star-shaped octorotor causes an increase of the mass and mass-related 
parameters by 30%. The vehicle drops the object at st 6 . Thus the previously mentioned 
parameters return to their nominal values. 

During this test the vehicle has to navigate to the waypoint defined by hile 

maintaining a stable yaw angle of  degrees. 

)20,10,10(  w

0
As seen in Fig. 4, the vehicle can handle the additional weight. However, this load has a 

major impact especially on altitude control. The decrease in performance is noticeable when 
compared to the payload-free case. 
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Fig. 4 Time responses for the third scenario 

 Having the ability to carry a variable payload is an important feature. In the next section 
which is dedicated to integral action the LQR controller for altitude will be developed in 
order to properly accommodate for this issue. 

6. AUGMENTATION OF THE ALTITUDE CONTROLLER 

The integral action in a control configuration is required in order to ensure the tracking of a 
constant reference (see [4], [5] and [16]). Before using this approach for the altitude control 
of the star-shaped octorotor some remarks should be emphasized. Consider the linear system: 

,uBxAx   (61)
where the pair  is assumed to be controllable, and the regulated output: ),( BA

.xCz   (62)
 Let the tracking error of a constant reference r  be defined as: 

.rxCe   (63)
 Then the augmented system with integral action has the state space equations: 

uBxAx   (64)

xCz   (65)
or equivalently, 

,uBxAx aaaa   (66)

where ,  and . The solution of the linear quadratic 

problem associated with the augmented system is given by: 

 TTT
a zxx  



 0Ca




0A
A 



B




0

Ba

,1
aa

T
aa xPBRu   (67)

where  denotes the stabilizing solution of the algebraic Riccati equation: aP

,01  
aa

T
aaaaaaa

T
a QPBRBPAPPA  (68)

where  and  are weighting matrices for the augmented state  and for the 

control , respectively. Let us notice that in the case when the system  has 

transmission zeros in the origin then the pair  may become uncontrollable, thus the 
control problem having no solution (see [21]). In fact, a similar assumption, namely the fact 
that the transmission zeros of  must not coincide with the poles of the intern model 

0aQ

u

0aR ax

(A ), C, B

),( aa BA

),,( CBA
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(1  in our case), is made in [18]. In the following developments the subscript “ ” will be 
removed for simplicity of writing. Let 

s/ a

55 ex i  , where dxxe 555  . For a constant 

reference  it follows that . The augmented state vector is in this case: dx5 55 xe  
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
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
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
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
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0

zX








z

x

x

e

X   (69)

 The system can be written in state space form as follows: 

00

00

01








 (70)

where: 

z  (71)

and: 

zB  (72)

denote the state matrix and the input matrix, respectively and  is the control variable. zu

zz uB Given the continuous-time linear system  the aim is to find the 

feedback control law zu   that minimizes the following cost function: 

,) dtuR zz

 zz QP

,









(
0


 X

zK

 zz AP

9








zQ

 uX T
zz

,1
z

T
zz PB

1 T
zzz BR

000025.0

05

0

.1.0

QJ z
T
zz  (73)

  being given by: z

P

K

zQ

R  (74)

while  is the stabilizing solution of the continuous-time algebraic Riccati equation: z

.0zz
T
z BPPA  (75)

 After applying the iterative trial-and-error design procedure the following form for the 
 and  matrices is reached: zR

00

.50

05.

 (76)

zR  (77)
 After computing the stabilizing solution of the algebraic Riccati equation and replacing 
in the corresponding formula  is found to be: zK

 .0158.06326.87608.9zK  (78)
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Fig. 5 Time responses for the fourth scenario 

 The fourth scenario assumes a 20% increase of the mass and mass related parameters. 
The vehicle has to stabilize its attitude and reach an altitude of 20 metres. The same initial 
conditions which were used for the previous simulations are considered. The target altitude 
is reached around st 5.5 , while the attitude is stabilized before st 2 . 

Thus the results presented in Fig. 5 demonstrate the controller’s ability to cope with the 
mass related uncertainty. 

7. CONCLUSIONS AND FUTURE DEVELOPMENTS 

The LQR methodology was used to design controllers for the attitude and position of the 
star-shaped octorotor. Numerical simulations were carried out using the non-linear dynamic 
model of the vehicle. Multiple scenarios were considered. Under nominal conditions the 
controllers proved to be effective. 

However, in the case of mass related uncertainty altitude control was not precise. In 
practice this can easily occur by adding or removing equipment depending on the mission 
objectives. 

For example, a video camera can be installed. An autonomous UAV should overcome 
such uncertainties. 

Thus adding integral action to the LQR altitude controller was proposed. This approach 
provided the desired results and it should be extended to the other controllers as this should 
result in better performance in the case of uncertainties. 

Future work focuses on applying non-linear control techniques like integral 
backstepping and integral sliding mode on the star-shaped octorotor (see [19] and [20]). The 
investigation of fault tolerant controllers is also considered (see [12]). 
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