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Abstract: The jet flow problem concerning the discharge of a fluid (from an orifice in a container) 
into the atmosphere is studied herein in the framework of the Helmholtz-Kirchhoff model. The 
problem is reduced to the study of a system of nonlinear equations. Using Leray-Schauder's fixed 
point theorem we prove that the system of functional equations has at least one solution. Then we 
present a semi-inverse method which gives us the possibility to calculate numerically the unknown 
free lines for symmetric jets whose walls consist of semi-infinite straight lines and arcs of circle and 
for non-symmetric jets whose walls consist of semi-infinite straight lines. 
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1. INTRODUCTION 

 

2

1

The jet flow problem is concerned with the discharge of a fluid from an orifice (in a fixed 
vessel or container) into an atmosphere at constant pressure. For purposes of theory the 
convenient idealization assumes that the vessel has two semi-infinite walls  and  
(extending to infinity upstream) each of them consisting of a semi-infinite straight portion 
and a finite curvilinear portion nearby the orifice (figure 1). We use herein the Helmholtz-
Kirchhoff theory as it is presented in [1], [2], [3], [4], [5], [8].  

1

In the present paper we extend the results obtained in [3], [4] for symmetric jets, taking 
also into consideration the case of non-symmetric jets with straight walls.  

  consists of an arc of circle having the radius We assume that the wall R  and the 

length  and a semi-infinite straight line, stretching to infinity upstream (R1 x ) and 

making with the  - axis the angle Ox  )1(  where 
2

1
0 1 

2

. 

  consists of an arc of circle having the radius We also assume that the wall R  and 

the length   and a semi-infinite straight line, stretching to infinity upstream (R2 x ) 

and making with the  - axis the angle µπ where Ox
2

1
0 2 . Let  and A B  be the 
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edges of the orifice of the jet (i.e. the endpoints of the walls 1  and ) and let 2

BA zzL   be the length of the jet orifice.  

Two free lines 1  and 2  detach from the edges of the orifice (named the detachment 
points) and extend to infinity downstream. The domain bounded by the walls of the vessel 
and by the free lines is the flow domain. We neglect the gravity and we consider that the jet 
emerges because of the difference of the pressures inside and outside the vessel. We consider 
that the fluid is ideal, incompressible and the fluid flow is plane, steady and irrotational. We 
denote by  the velocity, by φ the potential of the velocity and by  the 
stream function. 

), v(u ),( yxv

 
Fig. 1 Flow domain 

),( yxi),()( yxzfThe function   (named the complex potential) is holomorphic, 

and denoting by ),( yxv),()( iyxuzw   the complex velocity, we have w
zd

fd
 . 

The walls of the vessel and the free lines are stream-lines i.e. 

22

h
,

2 211

h
   (1) 

Outside the flow domain the fluid is at rest. From Bernoulli’s law we deduce that 

.const

f

022
V

zd

fd
  (2) 

2. LEVI-CIVITA’s FUNCTION 

From (1) we deduce that the flow domain in the  - plane a strip. The detachment points are 

22

h
i,

21 f
h

if BA    
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The function 

 i






















h

i
h

f ,
2

cos
1

2

1
ln 0  (3) 

with 







 

h
2






 






h 2

1
1

12

12
0 exp,exp,cos   

is the conformal mapping of the unit half-disk from the   - plane onto the infinite horizontal 

strip of width  in the  − plane. h f

),(We introduce T. Levi -Civita’s function [7] ),()(   iz  

))(iexp())(()( 0 V
zd

fd
zw  (4) 

From (4) it follows 

)(arg w

),(  Ox

]1,1[

),(,
)(

ln),(
0





V

w
 (5) 

is the angle of the velocity with the  - axis. From relation (2) we deduce that 

,0)0,(    (6) 

On the unit half - circle the function ],0[,)sin,(cos  sss  is discontinuous in  
because 

0s




sin,(coslim,)sin,(coslim
00

sss
ss

  )s

),( 

  

We shall introduce therefore the continuous function ),()(  Ti

],0[ 0

, such 
that 

,)sin,(cos)sin,(cos  sssss  (7) 

],[ 0,)sin,(cos)sin,(cos   sssss  (8) 

]1,1[,0)0,( T  (9) 

From (7) - (9) it follows 

  ,)(exp,)()( ],0[ 0 ssiRe  (10) 

  ,)(exp,)()( ],[ 0  ssiRe  (11) 

  ,0)()( ]1,1[mI  (12) 

From (10) - (12) we deduce that 
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)(0 2
)exp(

)exp(
ln2)(

0

0 




i

i
i  (13) 

From (4) and (13) it follows 







d

fd
)(

Ox













iii
i

i

Vd

zd
2

)exp(

)exp(
ln2exp

1
0

0

0

0

 (14) 

3. SYMMETRICAL JETS. THE FUNCTIONAL EQUATION 

If the walls of the jet are symmetric with respect to the  - axis we have 


,21 20 

)(s 1

   

Denoting by l  the length of the arc from   having the endpoints  and 

 we deduce from (3) and (14) that 

))(exp( si

)0(z

z






 


2

,0





 



  ,tan

22
cot))((exp 2

0

ss
s

sT
V

h

sd

ld
 (15) 

(In the sequel we shall use the notations )sin, ss(cos)( TsT  , )sin, ss(cos)(s  ,  

)sin, ss

)(

(cos)(s  .) 

The function z

)(

 maps the unit half - circle onto a curve consisting of half - lines and 
arcs of circle. 

According to Schwarz's principle concerning the analytic continuation the function z  

can be extended in a vicinity of the half - circle  ],0;)(exp ssi . 

Taking into account (14) one deduces that the function )(  can also be extended in a 

vicinity of the half – circle  ],0 ;)(exp ssi . 

The conjugate harmonic functions T  and   satisfy the relation 

sn

T








 (16) 


where 

n


 is the inward normal derivative and  is the tangential derivative. 
s

Using U. Dini's formula and seeking for )( 0)0( such that  we get 











2

0
)((expln

)(1
)( si

n

sT
i ) sd

)(

 (17) 

From (9) it follows that the function 

),(

 can be extended to the whole unit disk, 
according to Schwarz's continuation principle, by means of the relations 

),(,),(),(    TT  (18) 

On the other hand, because of the symmetry of the domain we have 
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),(,),(),( ),(  TT  (19) 

From (18) and (19) we deduce that 





 


2

,0















,)()(,],0[,)()2( ss
n

T
s

n

T
ss

n

T
s

n

T
 (20) 

From (17) and (20) it follows: 











 2

0 )((exp))((exp

)((exp))((exp
ln)(

1
)(

sisi

sisi
s

n

T
i




)

)
sd

)(exp

 (21) 

From (21), putting  i  and separating the real parts we obtain 






 

2
,0















 



,
sinsin

sinsin
ln)(

2

1
)( 2

0

2

sd
s

s
s

n

T
T  (22) 

From (16) and (22) it follows: 






 

2
,0

10))
















 



,
sinsin

sinsin
ln)(

2

1
)( 2

0

2

sd
s

s
s

n
T  (23) 

Let (exp( isz  represent the point where the rectilinear and the circular portions 
are matching. Obviously we have 

 0,0 s0 ,
1

)(,
2

,,0)( s
R

s
ld

d
sss

ld

d









 




 (24) 

From (7), (15) and (24) it follows 







 

2
,0s




,0)( ss
s

 (25) 

 0,0 s2

0

,tan
24

cot))(exp()( ss
s

sT
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h
s

s






 






   (26) 

From (23), (25) and (26) we deduce: 

 












 



 0

0

2

0
2 sinsin

sinsin
lntan

24
cot

2

))(exp(
)(

s

s

s
s

s
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sTh
T 







2

sd  (27) 

4. THE EXISTENCE OF THE SOLUTION 

We shall consider the operator 2

2
R


0 ,0]1,0[:),,),(( 

 CkhssT DF  given by the 

right hand side of the system of equations 
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 

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
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
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 
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From (28) - (30) we easily check that  is continuous with respect to 

, ,  and uniformly continuous with respect to . 

(( sTF
(T

In [2] one demonstrates that there is a constant 

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whence it follows that  has no fixed point on (( sTF  . 
Taking into account the expression of the kernel of the integral equation (28) it follows 

that  maps the Cartesian product of an arbitrary bounded set of continuous functions with 

an arbitrary bounded set from 

F
2R  onto the product of a bounded set of equi-continuous 

functions with a bounded set from 2R . Taking into account Arzela's theorem we deduce that 
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Hence the topological degree of the operator )0,,0 h),s(( sTI F  in 2R
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1
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0  is 

. From Leray - Schauder [6] fixed point theorem it follows that  has at least 

one fixed point, 
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5. THE SEMI - INVERSE METHOD. NUMERICAL RESULTS 

 
Fig. 2 Example 
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Considering 

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T : whence we deduce the lower and upper bounds for 
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For  and  small enough the two bounds coincide because  is a contraction. In the 

sequel for various values of  and  we shall verify numerically that the lower and upper 

bounds coincide. For calculating  we consider an equidistant grid on 

h
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

,,,0 10 2
 m ],0[ 0s   and another grid on  consisting 
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of the nodes 010 ,,~,~0 ss ~ ssp  

)() i

. Using Simpson's quadrature formula one calculates 

0(T L  and then, iterativelyL , . )()0( iT  3(TL2 )()0 i
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n TT LL  where We stop the calculations when   is an a priori 

given small number. Using Cauchy's formula we calculate then )sin,(cos ii  . We 

calculate also ]1,0[,)0,(  ii   by means of Schwarz - Villat formula. From (29) and (30) 

we then calculate   and . L
Then by means of (14) one may calculate numerically the positions of the points 

belonging to the free lines. In figure 2, we give an example of flow domain and calculated 
free lines. 

6. NON-SYMMETRICAL JETS WITH RECTILINEAR WALLS 

If the walls of the jet are rectilinear we have 0  and 0 . The detachment points are 
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The parametric equations of the free lines are 
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Fig. 3 Non-symmetric jet 

In figure 3 we present the free lines for a non-symmetrical jet with rectilinear walls. We 
have considered 1/ 0Vh , 3/1 , 4/0 .    
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