
PIO I-II tendencies. Part 2. Improving the pilot modeling 

Adrian TOADER*, Ioan URSU* 

*Corresponding author 
INCAS - National Institute for Aerospace Research “Elie Carafoli” 

220, Iuliu Maniu Bdlv, Bucharest 061126, Romania  
iursu@incas.ro 

Abstract: The study is conceived in two parts and aims to get some contributions to the problem of 
PIO aircraft susceptibility analysis. Part I, previously published in this journal, highlighted the main 
steps of deriving a complex model of human pilot. The current Part II of the paper considers a proper 
procedure of the human pilot mathematical model synthesis in order to analyze PIO II type 
susceptibility of a VTOL-type aircraft, related to the presence of position and rate-limited actuator. 
The mathematical tools are those of semi global stability theory developed in recent works. 
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1. INTRODUCTION 

“Pilot-Induced-Oscillation” (PIO) is a phenomenon usually due to adverse aircraft-pilot 
coupling during some tasks in which “tight closed loop control of the aircraft is required 
from the pilot, with the aircraft not responding to the pilot commands as expected by the 
pilot himself” [1]. Predicting PIO is difficult and becomes even more difficult with the 
development of new technologies such as the active control and fly-by-wire flight control 
systems. According to common references (see, for example, [2]), PIOs are categorized 
depending essentially on the degree of nonlinearity in the event.  

Undoubtedly, to have at hand a mathematical model of pilot behavior is very important 
for deriving a PIO prognostic theory. Part I of the present study [3] highlighted the main 
steps of designing a complex model – Modified Optimal Control Model (MOCM) – for the 
human pilot based on the work [4]. The numerical  validation of this model was performed in 
the concrete case of a hovering VTOL-type aircraft analyzed in the classical reports [5]-[8] 
from the viewpoint of the robust stability analysis criterion for PIO I prediction [9]. 

A recent paper of the authors [10] has investigated the susceptibility of the tandem pilot-
aircraft system to PIO generated by the actuator rate saturation. The classical Popov and 
circle criteria [11] didn’t work as applied to this model, given the conservativeness of the 
criteria, which provide only the sufficient stability conditions. The question has been 
surpassed by appealing to a weaker circle criterion [12].  

The present Part II of our study on PIO phenomenon enlarges the interest to the 
consideration of whole realistic case of both position and rate-limited actuator saturations. 
The mathematical tools will be those of semi global stability theory developed and applied in 
recent works [13]-[16]. Unfortunately, the MOCM mathematical model is not suitable given 
the constraints of the semi global stabilization theory. To face it out, we applied once again 
the conjecture of the mathematical models flexibility [17]: instead of MOCM of human pilot 
[3], the Hess-LQG (HLQG) based pilot model (see also [4]), will be used. This is compatible 
with the mechanism of the semi global stabilization theory. This topic of research started 
from the seminal paper [14], where it was established that a linear system subject to actuator 
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position saturation can be globally asymptotically stabilized – by nonlinear feedback – if and 
only if the system in the absence of the saturation is asymptotically null controllable with 
bounded controls. The notion “asymptotically null controllable with bounded controls” is 
equivalent [18] to the usual notion of linear stabilizability plus the added condition that all 
the open-loop poles be in the closed-left plane. A related result is that, in general, linear 
feedback cannot achieve global asymptotic stabilization [19]. Thus, given this negative 
result, the notion of “semi global stabilization theory for systems subject to input saturation” 
is introduced in [14]. 

The remainder of the paper is organized as follows. Firstly, in Section 2, a proper model 
of the human pilot is presented, nearly following [4]. Then, in Section 3, the semi global 
stabilization theory is suited in order to study the prevention of aircraft PIO II tendencies in 
the presence of the realistic position and rate actuator saturations. In Section 4, some 
numerical simulations are presented. A conclusive Section 5 underlines the interest of our 
approach in the prominence of PIOs.   

2. DESCRIPTION OF THE HESS’S LQG PILOT MODEL SYNTHESIS 

The aircraft dynamics is written in the form of well known invariant linear system, see [3] 

, :o y yx Ax B Ew y Cx D v y v            (1) 

There are some usual pilot models: the  HLQG model, LQG model, optimal control model 
(OCM) and the modified optimal control model [4]. From technical – methodological – 
reasons, the HLQG model will be herein considered. This was initially a structural model 
[20], composed of two blocks: the central nervous block and the neuromuscular block (Fig. 
1).  Both are of delay type: first is modeled by the transfer function 
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(  is the delay,  is the pilot’s delayed control input,  is the pilot’s commanded control) 

and the second is modeled by the lag block 
pu cu
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Both the blocks are placed in Fig. 1 at the pilot’s output and methodologically will be 
considered as part of the plant dynamics. The two blocks, in state space form, are given by  
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or, in matrix form 

,d d d d c d u dx A x B u E v C x      (4´) 

The dynamics (1), (4´) are then concatenated as extended plant dynamics 

INCAS BULLETIN, Volume 3, Issue 1/ 2011 



111 PIO I-II tendencies. Part 2. Improving the pilot modeling 
 

 0 0

0 0
,d

c d
d d d d d u d

x A BC x E w x
u y C DC

x A x B E v x

             
                

             




 (5) 

or, in matrix form 

1 0, ,s s s s c s s s s s yx A x B u E w y C x y C x v       (5´) 

The approach of pilot modeling is based on the argument, experimentally proved, that 
the pilot behaves “optimally”, more exactly, in the terms of the LQG paradigm, aims to 
minimize the index 

  TTEp y c cJ y Q y u ru   (6) 

subject to pilot observations , with cost function weights  [4] and . oy 0yQ  0r 

The minimizing of the control law is obtained by the application of LQG solution 
techniques to the augmented system. This leads to the full-state feedback relation 

1 Tˆ ˆc p s su g x = r B K   sx  (7) 

where ˆsx  is the estimate of the state andsx K  is the unique positive definite solution of the 

matrix Ricatti equation 

T 10 s s s sA K + KA +Q KB r B K  T  (8) 

where T
s y sQ = C Q C . 

The current estimate of the state is given by a Kalman filter 

   ˆ ˆ ˆ ˆ ˆs s s s c o s s s s s s s c yx = A x + B u + F y y , x = A FC x + FC x + B u + Fv    , T 1
s yF = SC V   (9) 

The covariance matrix of the estimation error  is the unique positive definite solution 
of the matrix Ricatti equation 

S
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where the covariance matrix  is a diagonal of covariance matrices1W  1 diag , uW W V . 

Consequently, the state space representation of the closed-loop system is given by  
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The pilot’s dynamics is represented by 
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or, in matrix form  

p p p p p p px = A x + B y + E v , = C x  (12′) 
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Fig. 1  – Conceptual block diagram of the human pilot dynamic model 
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Fig. 2  – Block diagram of the realistic system with position and rate saturations  

The next step of the synthesis, represented by the explicit determination of the matrices 
in (11), (12), supposes an attentive procedure for the selection of the key parameters defined 
by the noise covariance W , V  and u y ,   , y , Q r  in order to obtain the signal noise ratios of   

2 0 003.
uuV d     an 2

y  0 01. , 
iyV ich correspond to normalized control noise and 

normalized observation noise ratios of −25 dB and −20 dB, respectively [5]. 
i

 wh

It is worthy to note that the covariance value  of the state vector in (11), given by the 
Lyapunov equation  

P

T T 0cl cl cl clA P PA E QE   ,  yV,WQ 1diag  (13) 

and the covariance of the vectorY y , given by the Lyapunov equation  TT
0 cu 
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T T
ycl cl vE YY C PC Q       (13′) 

will be used in the scheme of fitting the HLQG type pilot model. 

3. ADAPTING SEMIGLOBAL STABILIZATION THEORY FOR THE 
SYSTEM WITH BOTH POSITION AND RATE ACTUATOR SATURATIONS 

A typical block diagram for the study of category PIO I-II is shown in Fig. 2. Herein, two 
basic nonlinearities, usual in flight control, are involved: the position saturation, related to 
the control stick displacement limits (corresponding to flight control surface rotation limits) 
and the rate saturation, mainly related to flow rate limits of the hydraulic servo actuator). In 
figure, specifically to the auto-oscillation searching, 0r  is the null reference.  is the 

model of the pilot, 

 sK p

  is the control signal elaborated by the pilot and  sy  is the vector of 
displayed variables 

           1 1
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 rspp    is the effective control and  is the model of aircraft. sG p and  are the 

positions and the rate saturations functions of the actuator, respectively, see Fig. 2.  The 
angular frequency 

r

B  is in connection with the time constant of the actuator Be  1 , and 

 saturation is related to the flight control surface limits. Therefore, in the ideal case – 

without saturations – a state variable 

p

s  of the actuator has to be added to the aircraft 
mathematical model  

 BsBs
  (15) 

With saturations, the system (5´), thus without including the first order actuator equation 
(15), will be rewritten as follows: 

    1,s s s s p rs s rs r B rsx A x B E w            , 0 s s yy C x v   (16) 

The following family of controllers (see [15]; herein, the considered estimator is the 
Kalman estimator) solves the problem of semi global stabilization [14] as applied to the 
system (16), with the amendment of ensuring only locally stability, instead of asymptotically 
stability, taking into account the presence of the noises in system  
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thus with gains given by Riccati equations. For conformity, usual hypotheses must work: 1) 
the pair  ,s sA B  is stabilizable; 2) all eigenvalues of sA are located in the closed left half 

plane; 3) the pair  ,s sC A  is detectable. For the case 1  , the nominal case of the 

saturation corrections missing, the control (3), (2), (7) is recovered. 
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The solution (17) starts from the parameterization of the state weight matrix  by a 

single parameter 
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sK A K   , with   independent of  . In this 

context, the problem of semi global stabilization concerns the finding of a linear control law, 
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0x

, so that the closed-loop system satisfies the following criteria: a) 

the equilibrium point   is locally uniformly exponentially stable for any fixed ; 

b) for any arbitrary large, bounded and a priori given set of state initial conditions there 

exists an such that 

 0 1, 


 0 1* ,     is contained in the region of attraction for any fixed 

. 0 *,  

4. NUMERICAL SIMULATIONS 

Let’s now consider the case of human pilot performing the hovering control of a VTOL-type 
aircraft [5]-[8]. Briefly, the pilot’s task was to minimize longitudinal position errors while 
hovering in turbulent air. The approach in the cited references is that of ignoring in 
estimation/measurement of any information about control. In other words, the matrix D  (see 
below) is taken as a null matrix. Our approach will be different. The lesson derived from the 
controller (17), as a first step in the development of a more realistic model of the pilot, 
suggests the insertion of the control variable in the measurement equation (see the feedback 
component on ). Consequently, the aircraft model and the displayed outputs for the 

experiment deployment were easily modified by considering the 
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The notations concern: − longitudinal component of the gust velocity [m/s];  − 

velocity perturbation 

gu u

hx along the x axis [m/s];   − pitch attitude [rad];  − pitch rate, 

rad/s;  − control stick input [m]; 

 q

 s  − actuator state variable [m];  − speed stability 

parameter [rad/m/s];  − pitch rate damping [1/sec];  − control sensitivity 

[rad/sec2/m];  − longitudinal drag parameter [1/sec]; 

uM

qM M

uX g − gravitational constant, 9.81 

[m/s2]; − actuator time constant (0.05 sec); e ug
 − white noise filter pole [rad/s]. The index 

(6) will be so recalculated 

    
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yQ is in accordance with [5], but with a new tuning parameter uc
 . Other synthesis 

parameters are: = 1; r 0.1s   ; 0.15s   . 

Table 1 – Stability margins versus the relation of the constraints in normalized signals ratios 

2 2/ , /y y uV V u   , 0D   dB ◦ 

 20dB,  25dB (nominal) 5.77 27.6 
 15dB,  25dB  6.7 25.6 
 25dB,  25dB 6.76 22.4 
 20dB,  20dB 6.35 31.1 
 20dB,  30dB 5.52 25.7 

The scenario of numerical experiments supposed: 1) the determination of HLQG pilot 
model and comparison with the experiments in [5]-[7] in the “nominal” case ; 2) the 
validation of the models by nonlinear simulations (see Fig. 3); 3) the improvement of the 
pilot mathematical model and its validation with reference to Robust Stability Analysis 
criterion [21]; a possible approach consists in a voluntary modification of the constraints in 
normalized signals ratios, see Table 1; 4) another proposed procedure is related to the 
insertion of the pilot’s commanded control between the displayed variables ((20) and (6′)), 
see Table 2, Fig. 4. A future study concerns the influence of the two approaches on the limit 
cycles, see Figs. 5, 6. 

0D  

As concerning the nominal case, the validation of the dynamic pilot model (12) was 
performed by a simple optimization procedure, having as comparison terms the experimental 
results given in [5]-[8]. 

The graphs in Figs. 3, 4 show an acceptable fitness, at least in the interested domain of 
frequencies, of experimental results versus designed dynamic model. The experimental 
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results are expressed by means of two representative transfer functions Y  and  xY which 

realize a series loop composed by an inner  feedback loop and an outer  hx feedback loop. 

Thus, the machinery of dynamic pilot design is testified.  
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Fig. 3 – Comparison between experimental [5] and HLQG results, case   0D 
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Fig. 4 – Comparison between experimental [5] and HLQG results, case  0D 
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c) 

Fig. 4. Comparison between experimental and theoretical results 0D   case, r = 1 

Table 2. Stability margins (dB, ◦) versus the tuning parameter uc
  

 dB ° 
1.0uc  (Fig. 4a) 5.83 28.8 

1uc     (Fig. 4b) 5.77 30.2 

5uc    (Fig. 4c) 5.91 33.9 

5. CONCLUDING REMARK 

Actuator saturations could lead to instability of the closed loop system pilot-aircraft. The 
present paper continues recent works of the authors aiming to give a methodology to analyse 
and predict the emergence of PIO phenomenon. 
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