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Abstract: Using a non-Newtonian mathematical model for the blood flow and a generalized Maxwell 

model for the viscoelastic behavior of the large vessels – elaborated and presented already by us in 

previous papers [1], [2] we make some remarks on the wall shear stress (WSS) in the case of an 

artery whose vessel wall is replaced by a vascular prosthesis following a surgical intervention. 

Considering then a pseudoaneurysm which is located on both genuine blood vessel and prosthesis we 

analyze the distribution of wall shear stress and taking also into account the viscoplastic behavior of 

the prosthesis we try to determine the mechanical conditions which would lead to a possible “jerk” 

(“rupture”) of the vascular vessel in the presence of the pseudoaneurysm. 

Key Words: non-Newtonian blood flow; generalized Maxwell viscoelastic behavior; viscoplatic 

behavior of the PFTE prosthesis; pseudoaneurysm; wall shear stress; rupture risk 

1. INTRODUCTION 

The main goal of this research is to assess the risk of complication of a new aneurysm (the so 

called pseudoaneurysm) which could follow a prosthetic surgery of a damaged large blood 

vessel. We accept that a PFTE prosthesis has been used, and the surgical technique is 

illustrated in figure 1 [10]. 

Clinical practice shows that there is a trend for such reconstruction method of this new 

aneurysm – fact pointed out even by certain necroptic studies (figure 2 [4]). 

In what follows, we try to calculate the wall shear stress (WSS) at significant points of 

this new aneurysm. 

These values could be then compared with those of the corresponding forces (stress) 

(which joins the particles of the vessel walls) in view of the prediction of a possible “jerk” 

(rupture) of this new aneurysm. 
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Figure 1. Resection of the abdominal aortic aneurysm by a PFTE graft [10] 

It is important to remark that we will consider only prosthesis made by 

polytetrafluoroethylene (PFTE) – better known as Teflon [3], such a prosthesis observing an 

elasto-plastic behavior together with the viscous nature of the material. 

 

Figure 2. Persistent prosthesis pseudoaneurysm 

Fluoropolymers are a class of polymers defined by the presence of carbon and fluoride 

that have many unique mechanical and chemical properties. For example, most 

fluoropolymers have a lower friction coefficient than most other materials, and the chemical 

resistance and thermo-mechanical stability are better than most other polymeric materials. 
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PFTE – invented by Plucket of DuPont in 1938 [3], first in the fluoropolymer class, shows 

up to be one of the materials accepted by a human body which gives good results as 

prosthesis in vascular surgery. 

Essentially the model of mechanical behavior for such a PFTE prosthesis is built on the 

assumption that its deformation can be decomposed into two parts 
vpve  , 

where   is the total strain, ve  is the viscoelastic strain and vp  is the viscoplastic strain. 

This model agrees with an elasto-plastic and viscous contribution to stress. In fact the 

most suitable behavior law seems to be a modified Kelvin stress-strain relation with an 

added power-law viscous term, namely 
mn kC   , 

where   is the shear stress,   is the shear strain,   is the shear rate, k is the consistency 

index, n and m are power-law exponents. 

We remark also that the stress-stain behavior in the viscoplastic component (absent in 

the case of non-prosthesis blood vessel) could be represented by various hardening laws as 

Johnson-Cook, Khan-Huang, etc. [9]. At the same time in the early models, prior to 

pseudoaneurysm for instance, only the viscoelastic part of the stress-strain behavior was 

taken into consideration. Of course for large deformations, as the pseudoaneurysm implies, 

the plastic part of the stress-strain behavior should be taken into account [9]. 

2. CASE OF UNDEFORMED BLOOD VESSEL–PROSTHESIS JUNCTION 

This research analysis firstly a large blood vessel which has been surged with PFTE 

prosthesis. Our model is based on the non-Newtonian Cross law for the blood flow, i.e., 

ns
k 




1

*
0

)(1
)(


 ,   being the shear rate, s  the constant plasma viscosity, *

0  the 

viscosity coefficient at zero shear rate, k a time constant and n the index for a shear thinning 

behavior, while the wall vessel (genuine or prosthesis) are considered to observe a 

viscoelastic behavior of generalized Maxwell type. This approach has been already used by 

us in several papers [1], [2] and it seems to be in good agreement with the reality. That is 

why we will keep this mathematical model during this research too. 

We will focus on the wall shear stress (WSS) which is at the origin of an irreversible 

deformation or even at the “jerk” (rupture) of the involved wall. This possible destructive 

deformation – which could lead to a fatal stroke, may have the origin at an over blood 

pressure due to the internal physical pressure and to the pressure due to the viscosity forces. 

For the sake of simplicity we accepted during all this research an axial-symmetric 

configuration, Oz being the axis of symmetry. 

By assessing of the WSS along the coupled blood vessel and the graft (prosthesis) we 

anticipate the state of health of the successful surged patient. More precisely for a specific 

case illustrated in figure 3 we have the evolution of WSS (presented in figure 4). Here the 

total length of the arterial segment is 1cm (from which the length of the genuine vessel is 

0.6cm and the length of the prosthesis is 0.4cm, see figure 3), the internal diameter of the 

blood vessel is 7mm and the thickness of the vessel wall is 0.8mm. The mass density of the 

blood has been fixed at =1060kg /m3. 

The mesh generated for both the fluid and solid domain consists of 901 triangular 

elements and 21366 degrees of freedom. 
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Figure 3. Axial-symmetric geometry for an artery with PFTE prosthesis 

To calculate the wall shear stress we use 

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WSS )( , where u and v are the 

velocity components of the blood in the r and z directions respectively [8]. 

 
Figure 4. Variation of the WSS through 1 second (from 6 to 7 seconds) 
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We can remark that these values of the WSS got in our numerical approach are in accord 

with those presented in the work of Papaioannou & Stefanos [7]. This validates the accuracy 

of the use of the Cross type non-Newtonian model for the blood flow together with the 

viscoelastic behavior of the vessel walls and prosthesis. 

In fact we intend to compare the WSS evaluated on the boundary of the vessel with the 

internal forces assessed on the same boundary. These last forces are connected with the 

stress vector T


 from the Maxwell model which governs now the behavior of the involved 

wall. The expression for the stress vector is nT


T , where T is the stress tensor in the 

Maxwell model while n


 is the normal unit vector at the considered point. 

The components of the stress tensor T, using the general Maxwell model for 

viscoelasticity are ijijij pIsT  , where ijs  are the components of the stress deviator 

))((2
4

1

00 Ies 



m

mmqG , e being the rate of strain deviator ( Iεεe )(3/1 Tr ), ε  

being the rate of strain tensor, 0G  is the shear modulus, 00G  is the long term shear 

modulus, 



4

1m

mmqA , m ( 4,3,2,1,0m ) being coefficients of the relative rigidity of the 

wall and mq  are parameters attached to the extension of the wall, ( 1
4

0


m

mq ). According to 

our references the components of the (generalized) Maxwell stress vector are [2] 
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This vector T


 will be projected on the unit tangent vector t


 of the considered 

boundary. When the WSS evaluated on the boundary of our pseudoaneurysm overpasses the 

internal cohesion forces (calculated by tT

 ) then a possible “jerk” could take place and 

serious health complication (a stroke, for instance) becomes possible. Accepting that the 

equation of the vessel wall (with pseudoaneurysm) – in the Cartesian coordinate system of 
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the radial axis r and the axis of symmetry z, from the plane const , is )(rzz   and the 

expression for the stress vector is nT


T  (T being the stress tensor in the Maxwell model 

while n


 is the outward unit vector at the considered point), following the steps of our 

previous paper [2], we get that the “rupture” condition becomes 

.
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Here s  and *
0  are viscosity coefficients of the blood, k a time constant, n the index for a 

shear thinning behavior while p is the pressure [2]. 

3. CASE OF A PSEUDOANEURYSM ON BLOOD VESSEL–PROSTHESIS 

JUNCTION 

The practice shows that there is a trend of a post-surgical reconstruction of a new aneurysm 

– called also a “pseudoaneurysm”. This could be either a consequence of an endoleak in the 

proximity of the prosthesis (device related issues) or of the existence of a hole/tear of the 

blood vessel or of the prosthesis itself. The graft embolization and the formation of the blood 

clots that block the flow of the blood can also determine such a pseudoaneurysm. Of course 

all these assumptions must be associated with some high blood pressure. 

To determine when and how a junction genuine vessel-prosthesis may lead to a 

pseudoaneurysm, we must investigate first the conditions for starting a plastical deformation. 

A yield strength or yield point of a material is defined in material science as the stress at 

which a material begins to deform plastically. Prior to the yield point the material will 

deform elastically and will return to its original shape when the applied stress is removed. 

Once the yield point is passed, some fraction of the deformation will be permanent and non-

reversible [11]. Knowledge of the yield point is vital when designing a component since it 

generally represents an upper limit to the load that can be applied. It is also important for the 

control of many materials for avoiding catastrophic or ultimate failure. 

A yield criterion is a hypothesis concerning the limit of elasticity under any combination 

of stresses. For an isotropic material as PFTE is, denoting by 1 , 2  and 3  the three 

principal stress directions we have: 

http://en.wikipedia.org/wiki/Materials_science
http://en.wikipedia.org/wiki/Stress_(physics)
http://en.wikipedia.org/wiki/Plasticity_(physics)
http://en.wikipedia.org/wiki/Elasticity_(physics)
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Maximum Principal Stress Theory (W.J.M Rankine) states that yield occurs when the 

largest principal stress exceeds the uniaxial tensile yield strength, i.e., y1 , y  being 

the critical yield stress. 

Maximum Principal Strain Theory (St.Venant) which in terms of the principal 

stresses is determined by the condition y )( 321 , i.e., yield occurs when the 

maximum principal strain reaches the strain corresponding to the yield point during a simple 

tensile test. 

Maximum Shear Stress Theory (Tresca yield criterion) assumes that yield occurs 

when the shear stress   exceeds the shear yield strength y , which usually satisfies the 

condition y



2

31 . 

The stress at which yield occurs is dependent on both the rate of deformation (strain 

rate) and the temperature at which the deformation occurs. Early work by Alder and Philips 

in 1954 found that the relationship between yield stress and strain rate (at constant 

temperature) was described by a power law relationship of the form m
y C )(  , where C is 

a constant and m is the strain rate sensitivity (m can be found from a log-log plot of yield 

stress at a fixed plastic strain versus the strain rate, namely 





ln

)(ln
m ). In continuum 

mechanics a quantity called von Mises stress is commonly used. If J2 is the second deviatoric 

stress invariant (of the stress deviator tensor )()(3/1 ij
dev Str  Iσσσ  of the stress tensor 

)( ijσ  – denoted also by T )( ijT ), we can write 

 2
13

2
32

2
212 )()()(

1

2

1



 jiijSSJ  

and the von Mises stress is 

 2

13

2

32

2

212 )()()(
2

1
3   Jv . 

The von Mises yield criterion suggests that the yielding of materials begins when the 

second deviatoric stress invariant J2 reaches a critical value. In other words a material is said 

to start yielding when its von Mises stress reaches a critical value known as the yield 

strength, y . 

Mathematically the von Mises yield criterion is expressed as 2
2 kJ  , where k is the 

yield stress of the material in pure shear (when 02112   while the other components 

0ij ). It can be shown that 
3

y
k


 . Combining the above equations, the von Mises 

criterion can be expressed as 2
2

2 33 kJv  , or substituting J2 with terms of the Cauchy 

stress components 

 )(6)()()(
2

1 2
12

2
31

2
23

2
1133

2
3322

2
2211

2 v . 

In the case of a pure shear stress, when 
3

12

y
k


 , the von Mises yield criterion, 

expressed in principal stresses is 

http://en.wikipedia.org/wiki/Strain_(materials_science)
http://en.wikipedia.org/wiki/Yield_(engineering)
http://en.wikipedia.org/wiki/Cauchy_stress_tensor#Stress_deviator_tensor
http://en.wikipedia.org/wiki/Yield_strength
http://en.wikipedia.org/wiki/Yield_strength
http://en.wikipedia.org/wiki/Yield_(engineering)


Balazs ALBERT, Vitalie VACARAS, Titus PETRILA 10 
 

INCAS BULLETIN, Volume 8, Issue 2/ 2016 

2
12

2
13

2
32

2
21 6)()()(   [11]. 

In what follows we will calculate the wall shear stress (WSS) in the significant points of 

this new aneurysm (pseudoaneurysm). As the pseudoaneurysm could affect also the 

prosthesis zone we must take in consideration the special behavior of teflon material which 

has been now deformed irreversible, i.e., the viscoplastic component of the stress-strain 

dependence. This becomes dominant in opposition with the case when the pseudoaneurysm 

is absent and when the viscoelastic feature represents the most important part of the 

prosthesis behavior. 

These values of WSS will be then compared with those which are considered “normal” 

(determined in the first part of the paper, i.e., without pseudoaneurysm) in view of an attempt 

of prediction of a possible “jerk” from the wall of the aneurysm due to a high value of the 

WSS. Such “critical” values for such a “jerk” (rupture) have been already got, by continuum 

mechanics considerations, in our previous work devoted to AAA (Abdominal Aortic 

Aneurysm) [2]. 

We will use the configuration presented in figure 5. The total length of the arterial 

segment is 1cm. The internal diameter of the undeformed blood vessel is 7mm, meanwhile 

the diameter of the deformed vessel at the middle of the pseudoaneurysm is 14mm and the 

thickness of the vessel wall is 0.8mm as in the previous case. The mesh generated for both 

the fluid and solid domain in the case of the artery with pseudoaneurysm consists of 1060 

triangular elements and 19346 degrees of freedom. 

 
Figure 5. Axial-symmetric geometry for an artery with prosthetic pseudoaneurysm 
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Again we intend to compare the WSS evaluated on the boundary of the pseudoaneurysm 

with the shear stress assessed on the same boundary. For practical reasons we will use for 

WSS an appropriate interpolation (for instance a cubic spline as we have already considered 

for the AAA case [2]) together with the subprogram obtained with COMSOL 4.3 package. 

For the affected prosthesis zone we must take into account also the specific behavior of 

the prosthesis material which now has been plastic deformed and the corresponding stress T 

should be determined (now T is not of Maxwell type anymore). 

For getting an evaluation of the viscoplastic behavior of our PFTE prosthesis we will 

use a curve which expresses stress versus strain in tension and compression (ASTM D695). 

This curve (figure 5 of the reference paper [3]) shows that the stress (expressed in MPa) 

takes the (approximate) values -25, -17, 0, 10, 13 corresponding to the strain values 

(respectively) -0.2, -0.1, 0, 0.1, 0.3 in both situations of compression and tension, at 230C. 

Using this data 25)2.0(1  TT , 17)1.0(2  TT , 0)0(3  TT , 

10)1.0(4  TT , 13)2.0(5  TT , accepting that )()( 2  CT  we will construct the 

corresponding cubic spline interpolation )()( 2  CS . This type of approximation made by 

cubic function “preserves” the shape of the exact )(T  and it will be the function we may 

deal with for assessing the behavior of the PFTE prosthesis. 

Precisely, denoting by )('' ii SM  , 5,4,3,2,1i , the spline interpolation function (if 

1 iiih ) joined to the “i” subinterval, is given by [5] 

i

iiii

i

iiii

i

iiii
i

h

hM
T

h

hM
T

h

MM
S 1

22
11

3
1

3
1

666

)()(
)(  

























5,4,3,2i . 

Concerning the constants iM  they can be obtained by solving the following algebraic 

linear system [5]. 
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iiiiiii dMcMaMb   11 , 5,4,3,2,1i  

66656 dMaMb  , 

where 060  MM , 
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
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i
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h
b , ii bc  1 , 


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




 
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

 i
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i
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1

1

1

1

6
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5,4,3,2,1i ; 

16 b , 10 c , 












 0

1

01

1

0 '
6

T
h

TT

h
d , 









 


6

56
6

6

6 '
6

h

TT
T

h
d , 2ia , 5,4,3,2,1i . 

Here we accept that 350 T , 236 T  and 1061  hh . The additional constants 

60 MM   which would vanish (a hypothesis acceptable due to the trend of the dependence 

curve which changes its concavity at “far field”) have been introduced to assure the 

uniqueness of this spline interpolation )(S . 

Concerning the error of the approximation it is of the same order as of certain powers of 

)(max 1 ii
i

h , the degree of accuracy increasing together with the regularity of )(T  

[6]. This approximation gives the dependence (law of behavior) between the magnitudes of 

stress versus the strain. Once )()(  ST  is got for the prosthesis material we can 

immediately compare its values with those of WSS on the boundary. 
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When WSS overpasses )(T ( )(S ) there is a possibility of a “jerk” (rupture) of the 

prosthesis. 

If we need a similar approximation for stress versus strain in shear we have to follow the 

same steps by using the curve of dependence illustrated in the figure 6 of the same reference 

[3]. In fact all the above considerations remain valid by replacing 0)0(1 shT , 7.3)4(2 shT , 

2.4)6(3 shT , 5)8(4 shT , 2.5)10(5 shT , 5.5)0(6 shT , with 060  MM  and the spline 

approximation )(shS  will be obtained by solving the equivalent similar algebraic system. 

For sake of simplicity, it is possible to build also a linear interpolation )(LS  for the 

behavior of the PFTE prosthesis. 

More precisely if we consider data 25)2.0(1 T , 17)1.0(2 T , 0)0(3 T , 

10)1.0(4 T , 13)3.0(5 T  completed with 35)2.10(0 T , 23)2.10(6 T  a linear 

interpolation leads to 
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),( j
j T  being a matching point, or in other words 


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
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j
L STS , 

with 
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j
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It is easy to check that j
jL TS  )( . 

We can now make precise the above interpolation by fixing our data as follows: 

350 T , 251 T , 172 T , 03 T , 104 T , 135 T , 236 T  while the 

corresponding   are -10.2; -0.2; -0.1; 0; 0.1; 0.3; 10.2. 

We remark that all the previous interpolation functions )(S , )(shS  and )(LS  could be 

inverted, i.e., we can also have )(S , )( shS  and )( LS  respectively. Of course this could be 

done in the case of )(S  for instance, by a similar spline interpolation approximation 

associated with the following data, i.e. 

4.0)35(0  , 2.0)25(1  , 1.0)17(2  , 0)0(3  , 1.0)10(4  , 3.0)13(5  , 

5.0)23(6  . 

Taking now into account the structure (geometry) of the considered pseudoaneurysm in 

the vicinity of the junction between the deformed genuine vessel and the deformed 
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prosthesis, we will be interested only in the points 3, 4, 5, 6 associated with nonnegative 

deformations. As the maximum value for   - which is also the maximum thickness of the 

pseudoaneurysm curve, is 16   we may state that the corresponding stress at this point 

should be (by using the linear interpolation) 

.7.20
2.102.0

2.101
23)1(

)1()1()1()1()1()1()1()1(

66

66554433221100









L

LLLLLLLL

ST

STSTSTSTSTSTSTS

 

This value of the stress will be compared with the value of the WSS evaluated at the 

same junction point for assessing the possibility of a “jerk” (“rupture”). If 

TWSS
junctionpo


int

, it is possible that a rupture accident shows up. 

4. CONCLUSIONS 

To compare the values of the shear stress with the values of the wall shear stress in several 

points of the vessel wall we use the values obtained by numerical calculations with 

COMSOL 4.3. 

The evolution of the WSS exerted by the blood versus the shear stress acting by the wall 

at the same points of the vessel wall is presented in figure 6. 

 

Figure 6. Variation of WSS versus shear stress at point P1 (see figure 5) 

Figure 6 shows that the values of the shear stress and the WSS are of the same order of 

magnitude at point P1. A possible “rupture” may appear if the absolute value of the WSS 

overpasses the absolute value of the shear stress. At the moment t = 6.6s, for instance, the 

absolute value of the WSS is 0.545 Pa, while the absolute value of the shear stress is  

0.230 Pa. So a possible “rupture” could take place in this point, at this moment. However, 
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most of the time the absolute value of the shear stress remains over of the absolute value of 

the WSS. 

This multidisciplinary research has been done by a group formed by physicians, 

mathematicians and specialists in continuum mechanics. 

Vitalie Vacaras was responsible with the medical investigations and interpretations. 

Balazs Albert has elaborated the continuum mechanics approach and also the mathematical 

calculations. 

Balazs Albert, on the one hand, and Vitalie Vacaras, on the other hand, contributed 

equally to the present paper. 

The whole research has been performed under the leadership of Professor Titus Petrila, 

the coordinator of the research group on blood flow modeling. 
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