Transonic Airfoil Flow Simulation.
Part II: Inviscid-Viscous Coupling Scheme

Alexandru DUMITRACHE*, Horia DUMITRESCU*, Florin FRUNZULICĂ*,**, Vladimir CARDOȘ*

*Corresponding author
*Institute of Mathematical Statistics and Applied Mathematics
Calea 13 Septembrie no. 13, 050711 Bucharest, Romania
alex_dumitrache@yahoo.com
**Department of Aerospace Engineering, University “POLITEHNICA” of Bucharest, 1 Gh.Polizu Street, Romania,
DOI: 10.13111/2066-8201.2010.2.3.3

Abstract: A calculation method for the subsonic and transonic viscous flow over airfoil using the displacement surface concept is described. This modelling technique uses a finite volume method for the time-dependent Euler equations and laminar and turbulent boundary-layer integral methods. In additional special models for transition, laminar or turbulent separation bubbles and trailing edge treatment have been selected. However, the flow is limited to small parts of trailing edge-type separation. Comparisons with experimental data and other methods are shown.

Key Words: transonic viscous flow, Euler equation, boundary layer.

1. INTRODUCTION

The current development of design algorithm for transonic airfoils follows two approaches. One approach is based on the solution of Navier-Stokes equation with structured and unstructured grids [1-4]. The second approach is one based on the interactive boundary layer theory and will form the basis for this work. This approach involves interaction between inviscid and boundary layer equations. For transonic flows, the inviscid flows is computed by a nonlinear potential method or by an Euler method and the viscous flow is computed by a boundary layer integral method [5-9]. This approach, though not as general as the Navier-Stokes approach, provides a good compromise between the efficiency and accuracy required in a design process.

The present approach consists of the iterative application of an unsteady finite-volume Euler method and a boundary layer part with semi-empirical models for separated regions using the displacement thickness concept. The inviscid flow method is discussed first, followed a description of the integral boundary-layer methods. The methods used to couple the viscid-inviscid solutions is described, followed by computed results for supercritical flows over some airfoils for which experimental surface pressure and boundary-layer data are available.

2. BOUNDARY-LAYER METHOD

Viscous flow is simulated by coupling the inviscid code to a set of boundary-layer methods. The different boundary-layer methods as well as the iteration scheme are based on the reference [15]. In the present paper we will only sketch the basic ideas.
Laminar boundary-layer method. A two-dimensional compressible laminar boundary-layer integral method is used. This integral method uses for the evaluation of the integral thickness one parameter velocity profiles based on the Falkner-Skan solution of the boundary-layer equations. Compressibility effects are taking into account by means of the Stewartson-Illingworth transformation.

From the momentum equation and the moment of momentum equation with \((\xi, \eta)\) thin shear layer coordinates we finally get the following system of equations:

\[
\frac{d\theta}{d\xi} + \left(2 + H - \frac{M_e^2}{2}\right) \frac{U_e}{dU_e} = \frac{C_f}{2}
\]

\[
\theta \frac{dH_{32}}{d\xi} + \left[2H^* + H_{32}(1-H)\right] \frac{U_e}{dU_e} = 2C_D - \frac{H_{32}}{2}
\]

where

\[
\delta_i = \int_0^{\eta_i} \left[1 - \left(\frac{\rho U}{\rho_e U_e}\right)\right] d\eta
\]

\[
\theta = \int_0^{\eta_0} \left(\frac{\rho U}{\rho_e U_e}\right)\left[1 - \left(\frac{U}{U_e}\right)\right] d\eta
\]

\[
\delta_3 = \int_0^{\eta} \left(\frac{\rho U}{\rho_e U_e}\right)\left[1 - \left(\frac{U^2}{U_e^2}\right)\right] d\eta
\]

\[
\delta^* = \delta_i - \delta_{i,i} = \int_0^{\eta_i} \left(\frac{U}{U_e}\right)\left[1 - \left(\frac{\rho}{\rho_e}\right)\right] d\eta
\]

\[
H = \frac{\delta}{\theta} , H_{32} = \frac{\delta_3}{\theta} , H^* = \frac{\delta^*}{\theta}
\]

with \(U_e\) - velocity at edge of boundary layer, \(\delta_i\) - displacement thickness, \(\theta\) - momentum thickness, \(\delta_3\) - energy thickness, \(\delta^*\) - density thickness and \(H\) - shape parameter, \(H_{32}\) - shape parameter for energy distribution, \(C_{f,i}\) - incompressible skin friction coefficient, \(C_D\) - drag coefficient

To close the integral boundary-layer equations (1) and (2), the following functional dependencies are assumed:

\[
H_{32} = \begin{cases}
1.515 + 0.076 \left(\frac{4 - H_i}{H_i}\right)^2, & H_i < 4 \\
1.515 + 0.040 \left(\frac{H_i - 4}{H_i}\right)^2, & H_i > 4
\end{cases}
\]

\[
\Re \frac{C_f}{2} = \begin{cases}
-0.067 + 0.01977 \left(\frac{7.4 - H_i}{H_i - 1}\right), & H_i < 7.4 \\
-0.067 + 0.022 \left(1 - \frac{1.4}{H_i - 6}\right), & H_i > 7.4
\end{cases}
\]
Transonic Airfoil Flow Simulation. Part II: Inviscid-Viscous Coupling Scheme

\[
\begin{align*}
\text{Re}_\theta \frac{2 C_D}{H_{32}} &= \begin{cases}
0.207 + 0.00205 (4 - H_i)^{5.5}, & H_i < 4 \\
0.207 - 0.003 \left(\frac{H_i - 4}{1 + 0.02 (H_i - 4)^2} \right), & H_i > 4
\end{cases}
\end{align*}
\] (5)

\[
H^* = \frac{\gamma - 1}{2} M_c^2 H_{32}, \quad H_i = \frac{H - \frac{\gamma - 1}{2} M_c^2}{1 + \frac{\gamma - 1}{2} M_c^2}
\] (6)

Here \(H_i \) is the incompressible shape parameter of the velocity profile, \(\text{Re}_\theta \)-Reynolds number based on momentum thickness.

Transition, laminar separation and re-attachment criteria. The transition from laminar to turbulent boundary layer is a very complex phenomenon depending on several parameters. However, in the present method we only take care of pressure gradient, local Mach number and Reynolds number. Michel’s empirical correlation modified by Smith-Gamberoni and Cebeci-Smith [11] is used:

\[
\text{Re}_{\theta,ls} = 1.174 \text{Re}_{\xi,ls}^{0.46} \cdot 2 \cdot 10^5 < \text{Re}_{\xi,ls} < 2 \cdot 10^7
\] (7)

Alternatively, transition can be specified by input. Laminar operation is assumed if \(C_f = 0 \) during the laminar boundary-layer computation. The Goradia-Lyman’s [12] criterion is then used to determine if either laminar stall or short bubble type separation is apparent:

\[
-0.002 \text{Re}_\theta \cdot 1 < \frac{dM_c}{d (\xi / c)}
\] (8)

where \(M_c \) - Mach number at the edge of boundary layer.

For short and long bubbles Horton’s [13] correlations is used for the separation bubble length \(l_{sp} \):

\[
l_{sp} = \frac{5 \cdot 10^4 \theta_s}{\text{Re}_{\theta,s}}
\] (9)

Inside the bubble \(U_c^3 \theta \) is assumed to be constant, leading to the reattachment momentum thickness:

\[
\theta_R = \frac{\theta_s U_{c,s}^3}{U_{c,R}^3}
\] (10)

The model is available if bubble burst is indicated. After reattachment, the computation starts with the calculation of the turbulent boundary layer setting the shape parameter \(H \) to a value of 1.55.

Turbulent boundary layer. The turbulent boundary-layer method used for attached flow is essentially the lag-entrainment integral method of Horton [14], with suitable modifications for compressibility. It consists of the simultaneous integration of the momentum integral and entrainment equations together with a third empirical differential equation, which takes into account the effect upon the entrainment rate of the upstream history of the turbulence:
\[\frac{d}{d\xi} \left(\rho_e U_e^2 \theta \right) = \rho_e U_e^2 \left(\frac{C_f}{2} - \delta_i dU_e \right) \]
(11)

\[\frac{d}{d\xi} \left[\rho_e U_e (\delta - \delta_i) \right] = \rho_e U_e C_E \]
(12)

\[\frac{dC_E}{d\xi} = \frac{0.014}{\theta} \left(C_{E,eq} - C_E \right) \]
(13)

The empirical shape parameter and entrainment relations used are based on those of Horton [15]:

\[H_i = \begin{cases}
0.88 + \left(\frac{0.591}{H_i - 3.607} \right)^{0.4}, & H_i \geq 1.68 \\
0.88 + \left(\frac{0.92326}{H_i - 3.244} \right)^{1/1.85}, & H_i < 1.68
\end{cases} \]
(14)

where \(H_i = (\delta - \delta_i)/\theta \) is Head’s shape parameter and

\[H_i = \frac{0.057 C_f}{H_i - 3.0 C_{f,i}} \]
(15)

In order to prevent the failure of the calculation due to the inability of standard boundary-layer methods to compute boundary-layer parameters beyond separation, a constant value of the entrainment coefficient \(C_{E,eq} \) that corresponds to a shape parameter \(H_{i,s} = 4 \) is used.

The length scale \(\theta \) in Eq. (13) is set equal to the value of \(\theta \) at separation shear layer. The momentum equation is removed and \(\theta \) and \(\delta_i \) are calculated from the computed values of \((\delta - \delta_i) \). Skin function \(C_f \) is calculated from a compressible form of the Ludwieg-Tillman relation:

\[C_f = \left(\frac{C_{f,i}}{C_{f,i}} \right) \frac{0.246}{\left(1 + 0.13 M_e^2 \right) \text{Re}_\theta^{0.268} 10^{-0.678 H_i}} \]
(16)

where

\[\text{Re}_\theta = \frac{\rho_e U_e \theta}{\mu_e}, \quad \frac{C_f}{C_{f,i}} = \left(1 + 0.130 M_e^2 \right)^{-1} \]
(17)

The casual reattachment is simulated by evaluating \(dH_i / d\xi \) at each step in the separated flow from the shape parameter equation (Eq.(6)), and allowing \(H_i \) to become less than \(H_{i,s} \) once the derivative becomes negative. But, in general, the application of the above numerical method is limited to flows where the turbulent boundary layer is attached over the airfoil surface except for small portions.
2.1 INVISCID-VISCOUS COUPLING SCHEME

A cyclic iterative procedure between the inviscid flow method and the boundary-layer part is used to finally provide the convergent viscous solution.

Both regions are computed separately but sequentially until both are converged to solution with common boundary values. The following sequence is used:

1) Firstly, the inviscid solution is computed for the equivalent airfoil shape (initially, a flat plate distribution is used);

2) Then, after ten Euler cycles (until the lift coefficient do not vary significantly), the displacement thickness distribution is computed for the given pressure distribution by means of the viscous method previously described;

3) The under-relaxed displacement thickness is added to the physical shape and for this shape the inviscid flow field is computed again, using ten Euler cycles;

4) Then, new viscous quantities are computed and the whole cycle between viscous and inviscid computations is continued until either the convergence criterion is reached or the cycle is stopped by the user. The convergence criterion is based on the relative difference between the lift coefficients in two consecutive cycles; the calculation is stopped when this difference reaches a bound.

In the present method some empirical feature has been introduced to deal with the trailing edge region. Thus, it has been assumed that \(C_f \) is equal zero just at the trailing edge and the pressure distribution of the aft part of the airfoil are forced to satisfy this condition.

2.2 FORCE AND MOMENT CALCULATION

Lift and moment coefficients are computed by integrating the surface pressure and skin friction.

Concerning the drag, there are in principle two possible ways of estimating the overall drag of the airfoil, which may be termed near field and far field approaches. In the former, one calculates separately the skin friction drag \(C_{D,F} \) by the boundary-layer method and the pressure drag \(C_{D,P} \) by integrating the stream wise component of the surface pressure, and then the total drag is given by adding the two components:

\[
C_D = C_{D,F} + C_{D,P}
\]

(19)

In the later, the drag is obtained from the momentum thickness of the wake downstream of the airfoil computed using the approach of Squire and Yang [15] \(C_{D,W} = 2 \theta / \alpha \) and adding the losses through the shock \(C_{D,W} \), that is

\[
C_D = C_{D,F} + C_{D,W}
\]

(20)

For subcritical (or shock-free) flows it was found that both methods gave the same result, while in supercritical flows the integration of skin friction and pressure seems to underpredict the drag compared with the second approach (far field) and also with
measurements. In the present method, no computation through the wake is needed due to the special trailing edge treatment.

3. RESULTS AND DISCUSSION

Generally, the results presented here have been obtained using a computational “O” grid with 280x60 points. The solution was obtained with a residual of 10^{-6} in the inviscid part and a convergence criterion

$\text{Re} = 6.5 \cdot 10^6$, $\alpha_{\exp} = 2.3^\circ$: (a) experiment, (b) inviscid–viscous method and (c) inviscid solution (Euler) of $\Delta C_L \cong 0.1\%$ for the interacting cycle.
We start with some calculations for the RAE 2822 airfoil. A number of cases have been extensively tested. We have chosen the case: $M_\infty = 0.725$, $Re = 6.5 \cdot 10^6$, $\alpha_{exp} = 2.3^\circ$, transition point at 3%.

Figure 1 shows a comparison of the pressure coefficient distribution calculated without and with boundary layer and experiment. The overall agreement between theory and experiment is relatively good.

Figure 2 shows the displacement thickness distribution (i) and the skin function distribution (ii). It can note that the rapid growth of the boundary layer due to the pressure rise through the shock.

As a second example calculating are presented for the NACA 0012 airfoil. Flow condition are $M_\infty = 0.7$, $Re = 9 \cdot 10^6$ and transition at 5%. Calculations have been performed at several values of C_L corresponding with test cases [15]. Figure 3 gives the $C_L - \alpha$ and $C_L - C_D$, curves obtained in comparison with the experimental results. However, in the neighborhood of $\alpha = 4^\circ$ the calculations show numerical problems due to the amount of flow separation probably becomes too large. A good agreement is found.
An interactive method was presented for the viscous transonic flow analysis. It seems to be a good engineering tool for the analysis of airfoil in transonic flow due to its accuracy and fast resolution using a simple self-consistent formulation. Compared with other methods it seems to have the following advantages:

1. a sequentially Euler/integral boundary layer coupling technique;
2. a viscous model which includes the laminar boundary layer part and transition as well as separation models;
3. a fairly simple formulation to deal with the trailing edge which accounts in an accurate way for the effects of the wake.

Fig. 3 – $C_L - \alpha$ (a) and $C_L - C_D$ (b) curves compared with experiment for NACA0012 airfoil

4. CONCLUSIONS
REFERENCES

