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Section 1. Basic Methods in Fluid Mechanics 

Abstract: This paper reviews some existing studies and numerical methods used for flow induced 
transverse vibrations analysis of flexible pipes. An integral method, based on the use of Green’s 
functions, already used for different straight beam dynamic analysis is adapted for the proposed subject. 
This approximate method leads to a matrix formulation and to an eigenvalue problem for free vibration 
analysis. The presented approach is able to estimate also the critical fluid velocities. Effects of boundary 
conditions and of elastic foundation characteristics, Coriolis terms and of other parameters on dynamic 
behavior of a pipe, can be included. Some numerical examples are also presented for comparisons with 
results obtained by FEM or with other data from literature. They show good agreement. 

Key Words: Pipeline, Fluid-Structure Interaction, Winkler Foundation, Green’s Functions, FEM, 
Vibrations, Stability 

1. INTRODUCTION 

Vibrations of piping systems are studied in many engineering fields. The steady flow at high 
velocities in thin walled pipes can produces vibrations with large amplitudes and instabilities. 
One of the first studies of flow induced vibrations started from a case of trans-Arabian pipeline 
[1]. In 1952 Housner [2] derived the corresponding equations of motion and predicted the 
instability according to the boundary conditions. Simply supported and cantilever pipes have 
been considered. Starting with the work [3], Paidoussis has extensively studied different 
aspects of flow induced pipeline instabilities. These has been presented in review [4] and in 
his book [5]. Another book also reviewing this type of studies is presented by Blevins [6]. 
From numerical point of view, as one can speak about a distributed parameter system, the 
classic Rayleigh-Ritz and Galerkin methods can be employed for such analysis. Studies as [7], 
[8] are based on the use of finite element method, while [9] applied the spectral element 
method. The equations involved for vibration analysis of pipelines can be also solved by 
Differential Transformation Method (DTM), as it is demonstrated in [10], while [11] uses a 
formulation based on absolute nodal coordinates (ANCF). The use of Green’s functions for 
the study of different slender beam structures is presented in references as [12-14]. 
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Such a method is employed for example in [15] for transverse (bending) vibration analysis of 
Euler-Bernoulli and Timoshenko beams. 
In this paper, the pipes conveying fluid induced vibrations are analyzed by employing the 
integral formulation described in [13, 14] and using the Green’s functions, determined in [13], 
for the case of the cantilevered beam. 
The presented approach is a matrix one leading to eigenvalues and eigenvectors problem 
making possible the critical fluid velocity determination. A results comparison with available 
data from literature is then discussed. 

2. PROBLEM FORMULATION 
The analyzed cantilever pipeline configuration is presented in Fig. 1. The pipe is considered a 
uniform Euler beam and the fluid has a plug flow with constant velocity U. The corresponding 
equation of motion for bending vibration analysis are of the form, [5], [8]: 

4 2 2 2
2

4 2 22 ( ) 0w w w wEI MU MU m M Kw
x x x t t

∂ ∂ ∂ ∂
+ + + + + =

∂ ∂ ∂ ∂ ∂
. (1) 

 
Fig. 1 – Fluid conveying cantilever pipe configuration 

The employed notations in (1) are: E is Young modulus of elasticity of pipe material; I is 
moment of inertia of the cross-section; m is the mass of unit length for the pipe (m = ρA, with 
ρ the mass density of the pipe material and A the cross-section area), M is the mass of unit 
length for the fluid (M = ρf Af, with ρf the mass density of the fluid and Af the cross-section 
area corresponding to the fluid) and t is the time. 
As the presence of a foundation can stabilize the motion [7], the last term represents the 
Winkler foundation reaction proportional to the bending deflection w, where K is the 
distributed soil stiffness constant. The following nondimensional parameters are also used: 

.;;
4
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KLk

m
M

EI
MULu ==β=  (2) 

In (2) the first parameter u is a flow velocity parameter, the second parameter β measures the 
ratio between the mass of the fluid and mass of the pipe and k is the Winkler foundation 
coefficient. 

3. INTEGRAL FORM OF THE EQUATIONS 
One starts from the differential equation governing the bending behavior of a straight beam, 
loaded by the distributed force p(x): 

2 2

2 2 ( )d d wEI p x
dx dx

 
= 

 
, (3) 

which can take the integral form, [13, 14]: 
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where the Green function for the clamped-free beam is, [13]: 
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It represents the bending deflection w(x,ξ) at distance x due to a unity force applied at distance 
ξ (Fig. 2). For uniform clamped-free beam, relation (5) takes the form obtained also in [16]. 

               
Fig. 2 – Green’s functions for cantilever beam  

The Green functions are computed by numerical integration using n sampling (collocation) 
points ξi with fi = f(ξi) with a relation of the form: 

0
1

( )
nL

i i
i

f d f W
=

ξ ξ = ⋅∑∫ , (6) 

where Wi  are weighting numbers. 
Relation (4) gives the deflections w(x) for known distributed force p(x). It can be written in 
matrix form: 

{ } [ ][ ]{ }ww G W p= , (7) 

where one can notice the following (n×n) matrices: 
[Gw] contains the calculated influence coefficients Gw(ξi, ξj); [W] is a weighting matrix 
depending on the integration method (Simpson, here). 

The last term in (7) is a column vector containing the distributed load values in the n 
chosen collocation points. 

The idea is to consider equation (1) of the form (3) with p(x) given by: 
2 2 2

2
2 2( ) 2 ( )w w wp x MU MU m M Kw

x x t t
∂ ∂ ∂

= − − − + −
∂ ∂ ∂ ∂

. (8) 

It can take the integral form: 

{ } [ ][ ][ ]{ } [ ][ ] { }
( )[ ][ ]{ } [ ][ ]{ }

2
2 12 [ ]
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w w
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 (9) 

The above matrix relation can be written in the standard form: 

[ ]{ } [ ]{ } [ ]{ } { }0n n nM w C w K w+ + =    (10) 

where one can highlight the (n×n) matrices namely mass matrix, an equivalent damping type 
matrix and stiffness matrix: 
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where [In] is the identity matrix of size n. In order to avoid the differentiation matrices [D1] 
and [D2] it is also possible to use for the bending deflection w(x) an expression based on 
collocation functions according to the boundary conditions (clamped-free beam here): 

( )
1

( ) ,
p

k k
k

w x C f x
=

= ∑  (12) 

where fk(x) are p known functions with Ck constant coefficients. In matrix form, in the case of 
the use of n collocation points, one can obtain the following three matrix relations: 

{ } [ ]{ } { } [ ]{ } { } [ ]{ }' "
1 2; ; ,w F C w F C w F C= = =  (13) 

where [F], [F1], [F2], are (n×p) size matrices containing the values of fk(x) in collocation points 
and their corresponding first and second derivatives, respectively. 
Using this formulation, relation (9) can be written as: 
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Multiplying (14) at left with the transpose of the matrix [F] and making the following 
notations: 
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the relation (14) becomes: 

[ ]{ } [ ]{ } { } ( )[ ]{ } [ ]{ }2
2 1 0 02 [ ] .FF C MU FF C MU FF C m M FF C K FF C= − − − + −   (16) 

Rearranging one can obtain a standard form: 

{ } { } { } { }0p p pM C C C K C     + + =     
  ,  (17) 

where one can highlight the mass matrix, damping type matrix and stiffness matrix having 
now the (p×p) size: 
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2
0 2
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,
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p
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   = + =   
  = + + 

 (18) 

The size of relation (17) is p < n, therefore this form will be used instead of (10). As it is 
concluded in [17], for the numerical calculations of the dynamic of rotor bearing systems 
(including the critical speeds estimation), it is convenient to write an equation like (17) in the 
state space form: 

[ ]{ } [ ]{ } { }0A q B q+ = , (19) 
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where the matrices and vector {q} having the size 2p are given by: 
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For (19) trying solutions of the form: 

{ } { }0
tq q eλ= , (21) 

one can obtain the following generalized eigenvalue problem: 

[ ] [ ]( ){ } { }0 0A B qλ + = , (22) 

which can take the standard form: 

[ ] [ ]( ){ } { }1
0 0A B q q−− = λ . (23) 

The eigenvalues of (23) are the eigenvalues of the following unsymmetrical real matrix: 

[ ]
1 1

M M
.

0

p p p p

p p

C K
D

I

− −        − −        =
        

 (24) 

As consequence, the eigenvalues which are functions of the fluid velocity U occur in complex 
conjugate pairs: 

*, 1,2,... .r r r r r ri i r pλ = α + ω λ = α − ω =   (25) 

The imaginary parts ωr represent the natural frequencies of bending vibrations taking into 
account the influence of the fluid and of its velocity. The real parts αr, when they are not zero 
values represent attenuation or growth constants. In this case, critical velocities Ucr are 
obtained when an imaginary part becomes positive. 

4. NUMERICAL EXAMPLES 
As a first example one considers an application described in [18]. The clamped-free stainless-
steel tube has L = 10 m, EI = 3056937 Nm2 and m = 24.498 kg/m. These data are taken in fact 
from [19] which is the first edition of the monograph [6]. The mass ratio β between 0.1 and 
1.2 has been employed (for β = 1.18 the pipe conveys water). For w(x) one can use the family 
of the mode shapes for transverse vibrations of uniform beams taken from [20], based on 
Krylov-Duncan functions: 

( ) ( )cos sin,
2 2

ch x x sh x xS x T x+ +
= =  (26) 

and 

( ) ( )cos sin, .
2 2

ch x x sh x xU x V x− −
= =  (27) 

In the case of  clamped-free beam, the collocation functions are of the form: 
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where βk are those given by: 

1 2 3 4
2 11.875; 4.694; 7.855; 10.996; 5.

2i
i i−

β = β = β = β = β = π ≥  (29) 

The presented method was used with n = 200 sampling (collocation) points and p = 10 
collocation functions. For a given value of the mass parameter β the speed parameter u was 
changed until a real part of an eigenvalue becomes positive which is the indication of the 
instability. The eigenvalues were obtained using relations (23) and (24). Figure 3 presents the 
graphic of the critical flow speed parameter. The curve is practically the same as those obtained 
in [18]. 

 
Fig. 3 – Critical flow speed parameter versus the mass ratio parameter  

In order to check the results, the natural frequencies of bending vibrations for the L = 10 m 
pipe filled with non-flowing fluid (water with ρf = 1000 kg/m3) were also computed with the 
presented formulation and using the finite element code ANSYS with several different models 
(according to [22], [23]). In order to obtain the stiffness data of the pipe and the parameter β 
= 1.18, the following values have been also considered: Di = 191.85 mm (internal diameter), 
De = 201.94 mm (external diameter), ρ = 7850 kg/m3 (mass density of the pipe material) and 
E = 202 GPa (Young’s modulus). The first three natural frequencies in [Hz] were listed in the 
table below. They are in good agreement from engineering point of view. 

Table 1 – Results comparison for the clamped-free pipe filled with water  

Method Frequency [Hz] 
f1 f2 f3 

n = 200, p = 10 relations (23), (24) 1.3388 8.3902 23.492 
ANSYS, Beam 188, 1000 elements 1.3379 8.3542 23.260 
ANSYS, Pipe 288, 1000 elements 1.3388 8.3459 23.228 

Another set of values is also taken from [18]. These are L = 10 m, EI = 265432 Nm2 and m = 
9.15 kg/m. The mass ratio β was taken between 0.1 and 1 (for β = 0.86 the pipe conveys water). 
For this case two constant, non-zero values of K, distributed soil stiffness coefficient were also 
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employed: K1 = 5000 N/m2 and K2= 10000 N/m2. The results are shown in figure 4. Figure 5 
presents the corresponding critical flow speeds. Increasing the soil stiffness constant, the 
critical flow speeds (flutter speeds) are also increasing. 
 

 
Fig. 4 – Critical flow speed parameter for three different K values 

 
Fig. 5 – Critical flow speed versus the mass ratio parameter 

The results obtained in figures 4 and 5 reproduced with good agreement the results presented 
in figure 1 in [18] and figure 3 in [21], respectively. The marked points in figures 3 and 5 
correspond to pipe conveying water. The support of the pipe described by the Winkler model 
can pay a benefic role by increasing the critical speeds. 

5. CONCLUSIONS 
This work addresses the critical flow speed calculation for the case of a clamped-free pipe 
conveying fluid and supported by a constant stiffness elastic foundation. There are a lot of 
numerical methods used for this purpose, starting from classic Rayleigh-Ritz and Galerkin 
methods up to FEM and recent method as DTM and ANCF. The approach described in the 
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present paper is an integral method based on the use of Green’s functions. This method, also 
used for aeroelastic analysis of clamped-free wing ([13]), is adapted here for this type of 
calculations. It takes a matrix form using integration and differentiation matrices. In order to 
avoid the differentiation matrices and to reduce the dimension of the eigenvalue problem one 
can also use collocation functions according to the actual clamped-free boundary conditions. 
Due to the presence of the Coriolis term in the solved differential equation, it is convenient to 
write the equation in state space form. In this manner the final form of the eigenvalue problem 
is two times bigger. For instance, in the presented examples n = 200 sampling points and p = 
10 collocation functions were used, so the dimension of the eigenvalue problem was finally 
reduced from 2n to 2p. The comparison was performed with results obtained by Galerkin 
method. Good agreement was achieved for two pipe conveying fluid configurations analyzed 
in [18] and [21]. For the first one, the natural frequencies were also computed by FEM using 
the FE code ANSYS, in the case of the pipe filled with non-flowing water. For the second 
configuration, two cases of the pipe restrained by constant stiffness elastic foundation have 
been also analyzed obtaining a good agreement. It was the main purpose of the presented paper 
to check the validity of the presented simple integral approach, used to obtain the critical 
values of fluid speed. Further developments of the presented method can include the study of 
pipes having other boundary conditions, the analyze of other stiffness foundation 
configurations and the inclusion of different new features as foundation external damping, 
gravity effects etc. 
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