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Section 3 – Modelling of structural problems in aerospace airframes 

Abstract: This paper deals with structural static or stability analysis of straight beams, when the 

bending-torsion coupling is considered. A practical case is the lateral buckling analysis of high cross-

section beams which involves the coupled bending deflection and twist. Simple rectangular cross-

section or thin walled open profile symmetric cross-section beams can buckle laterally when they are 

subjected to bending with respect to the stiffer plane. Bending-torsion coupling occurs also for some 

composite beams. The presented approximate integral method uses flexibility influence functions 

(Green functions) and a matrix formulation, leading to an eigenvalue problem in the case of stability 

analysis. The formulation can be also used for static or dynamic analysis. Some numerical examples 

are presented in comparison with the results of other methods. 

Key Words: Straight Beams, Green Functions, Coupling, Lateral- Torsional Buckling

1. INTRODUCTION

Beams are used as structural members in many engineering domains. They can be parts of 

complex mechanical structures. The tendency to reduce the structural weight led to the use of 

slender beams in civil metallic structures, machine structures and especially in aeronautics. 

The need for a careful structural analysis including static, dynamic and stability calculations 

also led to the use of various numerical methods, among which the FEM, implemented in 

different computer codes, has been imposed. Besides this, other methods have also been 

developed. They are used to solve more or less complex particular calculation situations. The 

flexibility influence functions (Green’s functions) and their use in the structural and 

aeroelastic analysis of fixed aircraft wings were presented in several books as [1-3]. Some 

extensions for the vibration analysis of rotating beams and blades and for stability analysis of 

beams were reviewed in [4]. Concerning the particular aspect of the bending-torsion 

coupling, the vibration analysis of several blade configurations were presented in [5, 6]. The 

structural bending-torsion coupling, in the case of the static response of a composite beam 

was also analyzed by using Green’s functions in [7]. The subject of using Green’s functions 

in structural analysis still remains a topical one. Recent references as [8, 9] demonstrate this 
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idea. In this work, several bending-torsion coupling cases for beam structural analysis are 

presented. Then the practical application of the lateral buckling analysis of high cross-section 

beams will be detailed. It involves an interesting coupling case between bending deflection 

and twist. For example simple rectangular cross-section beams can buckle laterally when 

they are subjected to bending with respect to the stiffer plane. The two coupled equations 

governing the bending and torsion behavior of the beam are put in integral form, finally 

obtaining an eigenvalue problem allowing calculating the critical bending moment. Two 

simple examples are also discussed in comparison with analytical results. 

2. BENDING-TORSION COUPLING TERMS 

A first example of the bending-torsion coupling is the case of the free harmonic vibration 

analysis of a rotating (angular velocity Ω) and untwisted blade (Fig. 1). The differential 

equations describing the flapwise bending (deflection w) and torsion behavior (angle ϕ) of 

such a blade are obtained in [5] taking only the linear terms of the more general equations 

from [10]: 
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where: 
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2    (3) 

is the tension force in a section due to the rotation. The main notations in above equations 

are: E, Young modulus of elasticity, G shear modulus, Iy moment of inertia of the cross-

section, J torsional stiffness constant, e1 root blade offset and e the distance between mass 

center and elastic center of the blade cross-section. The distributed mass is m(x), ω is the 

natural circular frequency of the vibration, while km1 and km2 are mass radii of gyration of 

cross-sectional mass about major and minor neutral axis and km is the polar radius of 

gyration of cross-sectional mass about elastic axis: 

2
2

2
1

2
mmm kkk  . (4) 

The previous equations (1) and (2) are coupled due to the offset e between the elastic 

center and mass center of the blade cross-section (Fig. 1). 

 

Fig. 1 – Rotating isotropic blade with bending-torsion coupling 

Another case is the structural coupling which can be obtained in the case of a composite 

box beam with constant cross-section shape (Fig. 2). In [7] the vibration characteristics for 

rotating and nonrotating beams have been analyzed. The corresponding flap-torsion 

equations in the non-rotating case are those obtained also in [11]: 
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'''2  KmwwEI IV
y , (5) 

0'"" 22  mmkKwGJ , (6) 

where K is the bending-torsion or pitch-flap coupling stiffness depending on materials 

employed, lamination angles and stacking sequences of the walls of the box-beam. Another 

bending-torsion coupling case will be analyzed in section 3. 

 

Fig. 2 – Rotating composite box beam 

3. INTEGRAL FORM OF THE BENDING AND TORSION EQUATIONS 

The bending behavior of a straight beam, having the length L and loaded transversally by the 

distributed force py(x), can be described by a differential equation: 

  )('''')( xpvxEI yz  . (7) 

It can take the integral form, [2]: 

 
L

yv dpxGxv
0

)(),()( . (8) 

The previous equation is based on the Green’s function Gv(x,ξ) representing the bending 

deflection v(x,ξ) at distance x due to a unit force applied at ξ (Fig. 3). Similar results can be 

obtained in the case of the bending in the xz plane, where the  equation is: 

  )('''')( xpwxEI zy   (9) 

and the corresponding integral form becomes: 

 
L

zw dpxGxw
0

)(),()( . (10) 

In this case, the Green’s function Gw(x,ξ) represents the bending deflections w(x,ξ) at 

distance x due to a unit force applied at distance ξ. 

The differential equation governing the Saint Venant torsional behavior of a beam, 

having the length L and loaded by the distributed torsion moment mt(x), is: 

  0)('')(  xmxGJ t . (11) 

It can be written in the integral form: 

 
L

tt dmxGx
0

)(),()(  (12) 
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using the Green’s function Gt(x,ξ) representing the twist deflection angles  (x,ξ) at distance 

x due to a unit torsion moment applied at distance ξ (Fig.3).  

 

Fig. 3 – Physical significance of Green’s functions  

The integrals involved in such type of approach can be approximated by a summation 

using n collocation points ξi with fi = f(ξi): 
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Wfdf  
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where Wi represents the weighting numbers corresponding to Simpson’s method of 

integration adopted here. 

For example, the equations (8),(10) and (12) give the possibility to obtain the static 

bending and torsion deflections for known distributed forces py(x) or pz(x) and distributed 

torsion moment mt(x). 

These three relations can be written in matrix form: 

                 ttzwyv mWGpWGwpWGv  ;; . (14) 

In the previous equations one can remark the following (n,n) matrices: 

[Gv] is a matrix containing the measured or calculated influence coefficients Gv(ξi,ξj), 

[Gw] is a matrix containing the measured or calculated influence coefficients Gw(ξi,ξj), 

[Gt] is a matrix containing the measured or calculated influence coefficients Gt(ξi,ξj), 

[W] is a weighting matrix depending on the integration method (Simpson, here). 

Other terms are column vectors containing the corresponding values of the beam 

deflections in the n considered collocation points. 

4. LATERAL STABILITY ANALYSIS OF A BEAM 

A simply supported beam having a rectangular cross section (bxh) with b << h, loaded with 

the constant bending moment My = M (axial force N = 0 and bending moment  Mz = 0) can be 

seen as an example . In this case the beam is much stiffer in xz bending plane and weaker in 

the lateral xy bending plane. The notations are those from Fig. 4. For a small torsion 

deflection ϕ of the beam cross-section, one can obtain the component Mz = -Msinϕ = -Mϕ of 

the bending moment acting in the weaker bending plane, where the minimum moment of 

inertia is Iz and a torsion moment component Mx = Mα, with 'v . The corresponding 

bending behavior equations is: 

 MMM
dx

vd
EI yzz 2

2

. (15) 

The torsion equation is in this case: 

0"")("  MvGJxmGJ t . (16) 
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These two equations are coupled as ϕ is involved in the first equation (15) and the lateral 

bending deflection v is involved in the torsion equation (16). 

Elimining v(x) between the two equations, one can obtain the well known second order 

differential equation Prandtl-Michell: 

  
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This equation can be solved for different particular cases. In the case of a constant 

bending moment My(x) = M, it becomes: 

0
2
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d
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For this equation, one can look for a solution of the form: 


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L

x
ax sin)( 0 , (19) 

which respects the boundary conditions for the torsion angle ϕ at the two simply supported 

ends (ϕ = 0). Replacing (19) in (18) one obtains: 

 

Fig. 4 – Lateral buckling for a simply-supported rectangular cross-section beam 
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From the above relation, the critical(buckling) moment obtained also in [12] is: 

zcr EIGJ
L

M 


 . (21) 

In order to use the formulation described in the previous section, the  equation 

governing the bending displacements (15) can be written as: 

   ''''''  MvxEIz . (22) 

The matrix form of this equation is: 

          12 GMDWGMv v . (23) 

where [D2] is a differentiating matrix based on central difference operator. 

The more general form of the torsion equation (16) is: 
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  0"'')(  MvxGJ  (24) 

and in matrix form: 

         vGMvDWGM t 22  . (25) 

Elimining {v} in the equations (23) and (25) one can obtain: 

         12
2

2 GGMvGM . (26) 

It represents an eigenvalue problem: 

       02
1  IMA , (27) 

where [A1] = inv ([G2] [G1]) and [ I ] is a unity matrix having also the dimension n×n. The 

eigenvalues i of the matrix [A1] give the square of the critical moments. The value of 

interest is the minimum buckling moment, obtained from the first (minimum) eigenvalue: 

1crM . (28) 

One can also eliminate {ϕ} in equations (23) and (25) and the result is: 

        vGGMGMv 21
2

1  . (29) 

This is also an eigenvalue problem of the form: 
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where [A2] = [G1][G2] and [ I ] a unity n×n dimension matrix.The eigenvalues i of the 

matrix [A2] give the inverse of square of the critical moments. The value of interest is the 

minimum buckling moment, which in this case is obtained starting from the last (maximum) 

eigenvalue: 

ncrM  /1 . (31) 

The first numerical example is the case of  a uniform simply-supported beam for which 

the critical buckling moment is given by relation (21). In order to test the presented matrix 

formulation one can take unitary values for the beam characteristics: length L =1, stiffness 

EIz = 1 and GJ = 1. Table 1 shows the convergence of the results obtained with relations (28) 

or (31), when one increases the number of collocation points. The convergence is relative 

slow due to the differentiating process using the matrix [D2]. These results can be improved 

using collocation functions in order to better represent the vectors containing the values {v} 

and {ϕ} as shown in [4]. The bending displacement v and  the torsion angle ϕ are written as: 
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
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where fk(x) are p known functions and Cvk, Cϕk are constant coefficients. For the n collocation 

points, one obtains relations of the form: 
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where [F], [F1], [F2] are matrices of dimension (n, p) containing the values kf , '
kf , ''

kf  in the 

collocation points. 

Equation (23) for bending becomes: 

          CFWGMCFv vv 2 , (34) 

and equation (25) for torsion becomes: 

         vt CFWGMCF 2  . (35) 

Multiplying the last two equations at left with the transpose of the matrix [F], one obtains: 

              CGMCFWGFMCA vv 32' , (36) 

            vvt CGMCFWGFMCA 42'  , (37) 

where: 

     ,' FFA   (38) 

is a (p, p) dimension matrix. Then, multiplying equations (36), (37) at left with the inverse of 

the matrix [A], one obtains: 

      


 CGAMCv 3

1
, (39) 

      .4

1

vCGAMC


   (40) 

Elimining {Cv} in equations (39) and (40) one can also obain: 
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By elimining {Cϕ} in equations (39) and (40), the result is: 

                 .6
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These are eigenvalues problems which can be written for example as: 
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M

ICGMI , (43) 

relations similar with (27), respectively (30). 

Table 2 presents the results when using a number of k = 1..p from the following 

collocation functions, compatible with the boundary conditions: 

    .sin;sin 00 






 








 


L

xk
x

L

xk
vxv kk  (44) 

The approach based on collocation functions utilizes for the bending deflection v and for 

the twisting angle ϕ the same from above functions. In this case for a given number of 

collocation points (n = 100) the results does  not depend on p, as for the first buckling mode 

the first functions for k = 1 from (44) are the exact ones. The precision is also increased 

because the numerical differentiation is no longer necessary. When the cross-section of the 
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beam is non-uniform, the collocation functions approach is useful as one can see from the 

next example. 

Table 1 – Results for the critical moment (collocation points) 

 n = 20 n = 60 n = 100 n = 150 n = 200 Exact (21) 

Mcr 3.2599 3.1764 3.1623 3.1507 3.1493  = 3.1415 

Table 2 – Results for the critical  moment (n =100 and p collocation functions) 

 p = 1 p=2 p = 4 p = 6 p = 10 Exact (21) 

Mcr 3.1412 3.1412 3.1412 3.1412 3.1412  = 3.1415 

Another example is the case of a linearly tapered beam having rectangular cross-section 

with b(x) = bo and: 











L

x
hxh o 1)(  (45) 

For these notations see also Fig. 5. In this case, for the simply-supported (pin-ended) 

beam, the critical bending moment obtained in [13] is: 

oocr EIGJ
L

M 





)1ln(
, (46) 

where  Io = Iz at x = 0 and Jo = J at x = 0. 

 

Fig. 5 – Lateral buckling for a simply-supported rectangular non-uniform cross-section beam 

As example, one can also take  the unit values for the beam characteristics: length L = 1 

and stiffness  EIo = 1 and GJo = 1. In this case, the bending and torsion stiffness have linear 

variations: 




















L

x
GJxGJ

L

x
EIxEI ooz 1)(;1)( . (47) 

Table 3 shows the convergence of the results obtained with relations (28) or (31), when 

the number of the collocation points is increased. 

Table 4 presents the results when using the p collocation functions and n collocation 

points. One can see that the increased number of the considered collocation functions can 

also improve the precision. 

Table 3 – Results for the critical moment (non-uniform beam, collocation points) 

Mcr n = 20 n = 60 n = 100 n = 150 n = 200 Exact (46) 

= 0.3 3.7587 3.6426 3.6219 3.6119 3.6069 3.5922 

= 0.5 4.0741 3.9352 3.9093 3.8959 3.8643 3.8740 

=1 4.8218 4.6222 4.5855 4.5676 4.5587 4.5324 
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Table 4 – Results for the critical moment (non-uniform beam, collocation functions and points: p, n) 

Mcr 
p = 1, 

n =100 

p = 2, 

n =100 

p = 10, 

n =100 

p = 10, 

n =150 

p = 10, 

n =200 
Exact (46) 

 = 0.3 3.6043 3.5943 3.5941 3.5936 3.5933 3.5922 

= 0.5 3.9036 3.8780 3.8775 3.8764 3.8759 3.8740 

 =1 4.6289 4.5444 4.5401 4.5375 4.5363 4.5324 

5. CONCLUSIONS 

This work presents several examples of structural analysis of beams having bending-torsion 

coupling. Generally, the coupling terms can be structural, inertial or aerodynamic ones. The 

case of the lateral buckling of beams having a stiff bending plane and a weak bending plane 

is then analyzed using an integral formulation (I.F.) based on the use of flexibility influence 

functions (Green’s functions). 

These functions are computed here for the simply supported beam in bending and for a 

fixed-fixed beam subjected to Saint-Venant torsion, using their physical significance of 

displacements(or rotation angles) in a collocation point of the beam due to a unit force(or 

unit moment) applied in another collocation point. 

For the numerical integration, integration (weighting) matrices based of Simpson’s 

method of integration are here employed. Differentiating matrices are also necessary in order 

to obtain the second derivatives of the beam deflections. The numerical differentiation is a 

source of errors and therefore, the use of collocation functions can lead to a better accuracy 

of calculations. It is of particular importance in the case of non-uniform cross-section beams. 

The simple examples presented here show good agreement from an engineering point of 

view, when compared with the analytical results concerning the critical bending moment 

calculation for lateral buckling. The presented approach is a simple matrix one, its accuracy 

depending on the number of the used collocation points and functions. 
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