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Section 3 – Modelling of structural problems in aerospace airframes 

Abstract: This paper presents a short review of numerical methods used for lateral vibration analysis 
in the case of straight Euler and Timoshenko beams. A particular integral method is described with 
more details. This approximate integral method is based on the use of flexibility influence functions 
(Green’s functions). It leads to a matrix formulation and to an eigenvalue problem for vibration 
analysis. The presented approach is able to estimate separately the shear effects and the rotary inertia 
effects and also the combined effects. Simple numerical examples are also presented for comparisons 
with analytical and finite elements results. The results show good agreement. 
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1. INTRODUCTION 

The dynamic analysis of beam-like structures is a usual issue in many engineering areas. In 
particular, the calculation of the natural frequencies pays an important role in the design of 
different beam members. At present, a large number of numerical methods are available for 
this type of analysis. For many practical purposes the Euler-Bernoulli beam model, 
established in the 18th century, is used. This model is presented in more details in books like 
[1, 2]. In this case the depth of the beam is considered small and the mass is concentrated at 
its neutral axis. For short beams or deep cross section beams, the Timoshenko beam model, 
which includes the shear effects, is more adequate. Rotary inertia effects, introduced first by 
Lord Rayleigh in 1877, can also be taken into account in vibration analysis. For example, the 
Timoshenko beam model is described in works [3, 4]. All these books present different 
analytical or numerical methods used to solve the differential equations corresponding to 
transverse vibration of different configurations of such a beams. A lot of papers from 
literature also address this subject. An old classic method, the Myklestad method, which is a 
development of the Holzer method (used for torsion vibration), is described in [5] for the 
case of bending vibration analysis. The classic Rayleigh, Rayleigh-Ritz, Galerkin and 
collocation methods, all these considered as integral methods, are described in [6]. The 
Rayleigh method is used for the fundamental frequency estimation for both discrete and 
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continuous systems (beams included). The Rayleigh-Ritz method (assumed modes method) 
is an extension of Rayleigh method. It is used for example in [7], while Galerkin’s method is 
employed in [8]. The differential equations involved in vibration analysis were solved using 
a combination of Runge-Kutta and Regula-Falsi methods in the reference [9]. A new 
method, the so-called cell discretization method (CDM) is described in [10]. In paper [11], 
Wentzel, Kramers and Brillouin (WKB) expansion series is applied to find solutions for 
transverse vibration of beams. The equations involved for vibration of Euler beams can be 
also solved by Differential Transform Method (DTM), a transformation technique based on 
Taylor expansion series [12]. Other analytical approximate techniques, namely ADM 
(Adomian Decomposition Method), VIP (Variational Iteration Method) and HPM 
(Homotopy Perturbation Method) were described and employed in [13]. There are also some 
semi-analytical methods for vibration analysis of rotating beams as those presented in [14]. 
A lot of finite element formulations are available for vibration analysis of Timoshenko 
beams as for example [15-17] or [18] for Euler rotating beams vibration analysis. The use of 
Green’s functions, for analysis of beam-like structures of interest for aeronautics, is 
presented in some books and papers as [19-21]. Concerning the Green functions approach 
for vibration analysis of beams, one can list here papers like [22-24]. 
In this work, the free vibration analysis of beams for both Euler and Timoshenko models is 
addressed based on the more general integral formulation described in [21] and using the 
Green’s functions, as influence coefficients which have been determined in [20]. To 
illustrate the presented approach, rectangular uniform and non-uniform cross-section beams 
are analyzed in terms of natural frequencies calculations. Several examples are discussed in 
order to compare the obtained results with analytical results and other results from literature. 

2. TIMOSHENKO VERSUS EULER BEAMS 
According to the Timoshenko beam theory, when displaces laterally, the total rotation of the 
cross-section of a beam has two terms: 

γθ +=
dx
dv

 (1) 

with θ the bending rotation and γ a rotation due to shear (Fig. 1). 

 
Fig. 1 – Elements of cross-section rotation for Timoshenko beams  

The shear force in y direction and the bending moment (with respect to z axis) are for a 
uniform beam: 







 −= θ

dx
dvkAGQ  (2) 

and respectively: 
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dx
dEIM θ

= . (3) 

In the case of harmonic vibration modes the distributed inertial forces and inertial moments 
(rotary inertia) are considered in the next two equations: 

02 =+ vA
dx
dQ ωρ  (4) 

and respectively, 

QI
dx

dM
−=+ θωρ 2 . (5) 

In the equations above the notations are the followings: E Young modulus of elasticity, 
G shear modulus, k shear coefficient of the cross-section, I moment of inertia of the cross-
section, ρ the mass density of the material, A the cross-section area and ω is the natural 
circular frequency (or radians frequency) of vibration. Substituting (2) and (3) in (4) and (5), 
one can obtain the following two coupled equations: 

vA
dx
d

dx
vdkAG 2
2

2

ωρθ
−=








− , (6) 

02
2

2

=+





 −+ θωρθθ I

dx
dvkAG

dx
dEI . (7) 

In the case of Euler beams γ = 0, θ = dv/dx and neglecting the rotary inertia, from the 
equations (3), (4) and (5) one obtains a single relation: 

vA
dx

vdEI 2
4

4

ωρ= . (8) 

It has analytical solutions allowing to determine the natural circular frequencies ωi from the 
simple formula: 

( ) 4
2

AL
EILii ρ

αω = , (9) 

with βi = αiL depending on the boundary conditions. 
For example, in the particular case of the cantilever (clamped-free beam) these values are 
given by [2]: 

.
2

12;996.10;855.7;694.4;875.1 4321 πααααα −
=====

iLLLLL i  (10) 

In the finite element method, in order to obtain the stiffness matrix and mass matrix for 
a beam element having the length l, one can start from the expressions of the strain energy U 
and kinetic energy T respectively, as in [4]: 

 ∫∫ 





 −+






=

ll
dx

dx
dvGkAdx

dx
dEIU

0

2

0

2

2
1

2
1 θθ

, (11) 
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∫∫ +=
ll

dxIdxvAT
0

2

0

2

2
1

2
1 θρρ  . (12) 

The second term in U takes into account the shear effects and the second term in T represents 
the rotary inertia effects. The Euler-Bernoulli beam elements consider only the first terms in 
these last two expressions. 

3. INTEGRAL FORM OF THE BEAM EQUATIONS 
Another idea in the Timoshenko beam approach is to consider the total lateral deflection of 
the beam v as having two terms, vb due to bending and vs, due to shear effects: 

sb vvv +=  (13) 

According to (1) one have also: θ = dvb/dx and γ = dvs/dx. The shearing behavior of a straight 
non-uniform beam, having the length L and loaded transversally by the distributed force p(x), 
can be described by a differential equation: 

)(xp
dx
dvkAG

dx
d s −=






 , (14) 

and based on the Green’s functions approach takes the integral form: 

.)(),()(
0∫ ξξξ=
L

ss dpxGxv  (15) 

In the case of the clamped-free beam, the Green’s function values can be calculated as [20]: 

( ) ( )
( )

∫=
ξ

ξ
ξξ

,min

0
1

1,
x

s GkA
dxG . (16) 

The differential equation governing the Saint Venant torsional behavior of a non-
uniform beam, having the torsion constant J, the length L and loaded by the distributed 
torsion moment mt(x), is: 

0)( =+





 xm

dx
dGJ

dx
d

t
φ

. (17) 

It is similar with (14) and can be written in the integral form: 

∫=
L

tt dmxGx
0

)(),()( ξξξφ . (18) 

For the clamped-free beam case, the Green’s function values are given by, [20]: 

( ) ( )
( )

∫=
ξ

ξ
ξξ

,min

0
1

1,
x

t GJ
dxG , (19) 

representing the twist deflection angles φ (x,ξ) at distance x due to a unit torsion moment 
applied at distance ξ (Fig. 2-left). Replacing GJ in (19) with EI, a Green’s function Gθ 
representing the bending slope θ(x,ξ) is obtained (see also Fig. 2-middle). When no shear 
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effects are taken into account, v = vb and the differential equation governing the bending 
behavior of a beam, having the moment of inertia I, the length L and loaded by the 
distributed force p(x), is: 

)(2

2

2

2

xp
dx

vdEI
dx
d

=







. (20) 

which can take the integral form: 

∫ ξξξ=
L

v dpxGxv
0

)(),()( . (21) 

The Green’s function is in this case for the clamped-free beam, [20]: 

( ) ( )( )
( )

( )
1

,min

0
1

11, ξ
ξ

ξξξξ
ξ

d
EI

xxG
x

v ∫
−−

= . (22) 

It represents the lateral deflection v(x,ξ) at distance x due to a force of unity applied at 
distance ξ (Fig. 2-right). For uniform clamped-free beam, relation (22) reduces to the 
expression for the Green’s function obtained in [25]. 

         
Fig. 2 – Physical significance of Green’s functions  

Using n collocation points ξi with fi = f (ξi) the value of an integral as those from 
relations (15), (18), (21) can be written as 

i

n

i
i

L
Wfdf ⋅= ∑∫

=1
0

)( ξξ , (23) 

with Wi weighting numbers corresponding to the method of integration. Relation (15) gives 
the deflections vs for known distributed force p(x), relation (18) gives the torsion deflection ϕ 
for applied distributed torsion moment mt(x) and relation (21) allows to obtain the bending 
deflection v when the distributed force p(x) is applied. These three relations take the 
followings matrix forms: 

{ } [ ][ ]{ } { } [ ][ ]{ } { } [ ][ ]{ }pWGvmWGpWGv vttss === ;; φ , (24) 

where one can notice the following (n, n) matrices: 
[Gs] is a matrix containing the calculated influence coefficients Gs(ξi,ξj) 
[Gt] is a matrix containing the calculated influence coefficients Gt(ξi,ξj) 
[Gv] is a matrix containing the calculated influence coefficients Gv (ξi,ξj) 
[W] is a weighting matrix depending on the integration method (Simpson, here). 
Other terms are column vectors containing the corresponding values (deflections and loads) 
in  n considered collocation points. The relation (6) has the form (14) with 
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vAxp 2)( ωρ= , (25) 

and relation (8) is of the form (20) with p(x) from above. The matrix forms for (6) and (8) 
are as follows: 

{ } [ ][ ]{ },2 vWGAv ss ωρ=  (26) 

{ } [ ][ ]{ }.2 vWGAv bb ωρ=  (27) 

In order to take into account the shear effects, the trick is to consider the distributed inertial 
forces in (25) as depending on total deflection v, and to obtain separately the components vs 
and vb by (26) and (27). Then, summing up these two relations, one obtain: 

{ } [ ] [ ][ ][ ]{ } [ ]{ }vAvWGGAv bs 1
22 ωωρ =+= . (28) 

The values of ω2 are eigenvalues of the matrix [A1]-1. Then the frequencies are f = ω/(2π). No 
rotary inertia effects are considered in such a formulation. Another idea is to eliminate dθ/dx 
between relations (6) and (7). In this manner one obtains: 

01 4
2

2
2

2
2

4

4

=+−





 ++ v

kG
IvA

dx
vd

kG
EI

dx
vdEI ωρωρωρ . (29) 

When the last term in the above equation is neglected, a truncated version( [26]) is obtained: 

vA
dx

vd
kG
EI

dx
vdEI 2

2

2
2

4

4

1 ωρωρ +





 +−= . (30) 

It is similar with (8) and its integral form is: 

{ } [ ][ ][ ]{ } [ ][ ]{ },1 2
2

2 vWGAvDWG
kG
EIv vv ωρωρ +






 +−=  (31) 

where the matrix [D2] is a differentiating matrix used to obtain values d2v/dx2. When the term 
E/(kG) is neglected, v = vb and (31) can be used to estimate only the rotary inertia effects. 
Otherwise, the use of the matrix [Gv] in (31) is another approximations as v is in fact the total 
lateral deflection. 

In a more general case, for the non-uniform beams the equations (6) and (7) become: 

vA
dx
dvkAG

dx
d 2ωρθ −=














 − , (32) 

02 =+





 −+






 θωρθθ I

dx
dvkAG

dx
dEI

dx
d

. (33) 

where, 

.;; θθ −==+=
dx
dv

dx
dv

dx
dvvvv sb

sb
 

(34) 

The matrix form for (32) is similar with (26) but the mass distribution is considered in the 
diagonal matrix [ρA] containing the values m(x) = ρA(x) in the collocation points: 
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{ } [ ][ ][ ] { } { }( ).2
bsss vvAWGv += ρω  (35) 

For (33) another idea is to consider this equation of the form (17) and to obtain the bending 
slope θ using [Gθ], a Green’s function similar with (19) but with EI instead GJ. For a given 
number n of  collocation points, the obtained integral form is: 

{ } [ ][ ][ ][ ]{ } [ ][ ][ ]{ }θρωθ θθ IWGvDkAGWG s
2

1 += , (36) 

where the matrix [D1] is a differentiating matrix used to obtain values dvs/dx. The same 
differentiating matrix, based on central differences is used to replace in (36): 

{ } [ ]{ }bvD1=θ . (37) 

Then multiplying (36) with the inverse of [D1] one obtains: 

{ } [ ] [ ][ ][ ][ ]{ } [ ] [ ][ ][ ][ ]{ }bsb vDIWGDvDkAGWGDv 1
1

1
2

1
1

1 ρω θθ
−− += . (38) 

In the above matrix relation, for the non-uniform beam, the diagonal matrices [kAG] and [ρI] 
contain the corresponding values in the collocation points. Then, making the following 
notations: 

[ ] [ ][ ][ ] [ ] [ ] [ ][ ][ ][ ] [ ] [ ] [ ][ ][ ][ ]1
1

131
1

121 ;; DIWGDGDkAGWGDGAWGG s ρρ θθ
−− === , (39) 

the coupled relations (35) and (38) are written as: 

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }
















=









b

s

b

s

v
v

GG
GG

v
v

3
2

2

1
2

1
2

ω
ωω

. (40) 

It has the form: 

{ } [ ] [ ][ ]{ }zBAz 22
2 += ω , (41) 

where {z}=[{vs} {vb}]T and [A2], [B2] are (2n, 2n) dimensional matrices. Relation (41) can be 
written in the form: 

[ ] [ ][ ]{ } { }.02
2

3 =− zIA nω  (42) 

with [I2n] the 2n dimensional unity matrix and 

[ ] [ ] [ ] [ ][ ]22
1

23 BIAA n −= − . (43) 

In this manner one can obtain the values of ω2 as eigenvalues of matrix [A3]. The 
corresponding natural frequencies are then obtained with f = ω/(2π). 

4. NUMERICAL EXAMPLES 
As numerical application one consider two examples of cantilever beams having 
rectangular cross section (bxh) and the length L = 1m. The material characteristics are the 
following: E = 2.1e11 Pa, G = 8.1e10 Pa, ρ = 7860 kg/m3. The first case is for a slender 
beam with b = 0.02 m, h = 1.5b = 0.03 m and the second case is for a stocky beam with b = 
0.02 m, h = 4b = 0.08 m (Fig. 3). These examples was analyzed also in [27]. 
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Fig. 3 – Clamped-free beam with rectangular cross-section 

Table 1 shows the results comparison for the slender clamped-free beam obtained with 
relations (27, (28), (31) or (42). 

The shear coefficient of the cross-section was taken k = 5/6 and  the number of 
collocation points was considered n = 100. 

Table 1 – Results for the slender beam in terms of ω 

 
 
ω 

Analytic 
(9) 

Euler beam 

n = 100 
(27)  
Euler 
beam 

n = 100 
(31) 

with rotary 
inertia 

n = 100 
(28) 

with shear 
effects 

n = 100 
(31) 

reduced 
model 

n = 100 
(42) 

complete 
model 

ω1 157.37 157.39 157.39 157.30 157.31 157.26 
ω2 986.31 986.35 985.86 982.64 982.16 981.07 
ω3 2761.9 2761.8 2757.1 2737.2 2732.6 2727.5 
ω4 5412.5 5412.1 5392.2 5323.9 5305.2 5290.6 
ω5 8946.3 8946.5 8889.9 8717.1 8663.9 8634.3 

 

Table 2 plots the same results in the case of the stocky clamped-free beam, obtained 
with the same number of collocation points n = 100. 

It can be seen that the influence of shear effects are bigger than those given by rotary 
inertia. 

The impact is also larger for the stocky (deep) beam. The natural frequencies are smaller 
in the case of Timoshenko beam with respect to Euler beam, the differences increasing for 
higher natural modes. 

Table 2 – Results for the deep beam in terms of ω 

 
 
ω 

Analytic 
(9) 

Euler beam 
 

n = 100 
(27) 
Euler 
beam 

n = 100 
(31) 

with rotary 
inertia 

n = 100 
(28) 

with shear 
effects 

n = 100 
(31) 

reduced 
model 

n = 100 
(42) 

complete 
model 

ω1 419.66 419.7 419.8 418.1 420.1 417.55 
ω2 2630.17 2630.27 2620.99 2562.15 2592.65 2540.8 
ω3 7365.29 7364.84 7276.52 6933.56 7020.6 6813.8 
ω4 14433.3 14432.1 14067.5 12975.9 13087.4 12626.7 
ω5 23856.8 23857.3 22842.5 20324.1 20356.6 19605.6 

In order to check our results obtained for Timoshenko beam (with the complete model), 
two finite element models were built in ANSYS APDL for the clamped-free deep beam case. 

The modeling and calculations are performed using the experience from [28] and the FE 
code ANSYS [29]. 

One of them is a beam model and the other is a solid model (Fig. 4). Table 3 shows 
good agreement of results concerning the natural frequencies for the first 5 vibration natural 
modes. 
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Fig. 4 – Beam FE model and solid FE model for the clamped-free deep beam 

Table 3 – Results comparison with FEM for the deep beam in terms of ω 

Method ω1 ω2 ω3 ω4 ω5 
n = 100, relation (42) 417.55 2540.8 6813.8 12626.7 19605.6 
ANSYS, Beam 188, 

100 elements 417.6 2542.4 6822.3 12652.4 19661.3 

ANSYS, Solid 186, 
12800 elements 418.3 2547.6 6840.5 12697.6 19751.2 

These results can be also obtained using collocation functions in order to represent 
better the vectors containing the values {θ}= {dvb/dx}  as presented in [21]. The bending and 
shear displacements {vb} and {vs} are written as: 

( ) ( )∑∑
==

⋅=⋅=
p

k
sksks

p

k
bkbkb xfCxvxfCxv

11
)(;)( , (44) 

where fbk(x), fsk(x) are p known functions and Cbk, Csk are constant coefficients. For the n 
collocation points, one obtains relations of the form: 

{ } [ ]{ } { } { } [ ]{ } { } [ ]{ }
{ } [ ]{ } { } [ ]{ },;

;;;

1
'

2
''

1
'

ssssss

bbbbbbbbb

CFvCFv
CFvCFvCFv

==

==== θ
 (45) 

where [Fb], [Fb1], [Fb2], [Fs], [Fs1] are matrices of dimension (n, p) containing the 
values bkf , '

bkf , ''
bkf , skf , '

skf , in the collocation points. 
The equation (35) becomes: 

[ ]{ } [ ][ ][ ] [ ]{ } [ ]{ }( )bbsssss CFCFAWGCF += ρω 2 . (46) 

Multiplying  at left with the transpose of the matrix [Fs], one obtains: 

[ ]{ } [ ] [ ][ ][ ] [ ]{ } [ ]{ }( )bbsss
t

sss CFCFAWGFCA += ρω 2 , (47) 

where: 

[ ] [ ] [ ],s
t

ss FFA =  (48) 

is a (p, p) dimension matrix. Then, multiplying the equation (47) at left with the inverse of 
the matrix [As], we have: 
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{ } [ ] [ ] [ ][ ][ ] [ ]{ } [ ]{ }( )bbsss
t

sss CFCFAWGFAC += − ρω 12 . (49) 

The equation (36) becomes: 

[ ]{ } [ ][ ][ ][ ]{ } [ ][ ][ ][ ]{ }bbssbb CFIWGCFkAGWGCF 1
2

11 ρω θθ += . (50) 

Multiplying  at left with the transpose of the matrix [Fb1], one obtains: 

[ ]{ } [ ] [ ][ ][ ][ ]{ } [ ] [ ][ ][ ][ ]{ }bb
t

bss
t

bbb CFIWGFCFkAGWGFCA 11
2

111 ρω θθ += , (51) 

where: 

[ ] [ ] [ ],111 b
t

bb FFA =  (52) 

is a (p, p) dimension matrix. Then, multiplying the equation (51) at left with the inverse of 
the matrix [Ab], the result is: 

{ } [ ] [ ] [ ][ ][ ][ ]{ } [ ] [ ] [ ][ ][ ][ ]{ }bb
t

bbss
t

bbb CFIWGFACFkAGWGFAC 11
1

1
2

11
1

1 ρω θθ
−− += . (53) 

Working now with the coupled equations (49) and (53), these can take the following form: 

{ }
{ }

[ ] [ ]
[ ] [ ]

{ }
{ }
















=









b

s

b

s

C
C

GG
GG

C
C

7
2

6

5
2

4
2

ω
ωω

, (54) 

where the matrices [G4] to [G7] are products of several matrices obtained by terms 
identifications. 
The last equation has the form: 

{ } [ ] [ ][ ]{ }CBAC 44
2 += ω , (55) 

where {C}=[{Cs} {Cb}]T and [A4], [B4] are (2p, 2p) dimensional matrices. Relation (55) can 
be written as: 

[ ] [ ][ ]{ } { }02
2

5 =− CIA pω , (56) 

with [I2p] the 2p dimensional unity matrix and 

[ ] [ ] [ ] [ ][ ]42
1

45 BIAA p −= − . (57) 

In this manner one can obtain the values of ω2 as eigenvalues of matrix [A5]. The 
dimension of the eigenvalue problem is reduced at 2p instead 2n. For vb one can use the 
family of the mode shapes for transverse vibrations of uniform beams taken from [2], based 
on Krylov-Duncan functions: 

( ) ( )
2

sin,
2

cos xxshxTxxchxS +
=

+
= , (58) 

and: 

( ) ( ) .
2

sin,
2

cos xxshxVxxchxU −
=

−
=  (59) 
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In the case of  clamped-free beam the collocation functions are of the form:  

( ) 





⋅−






⋅=

L
xVS

L
xUTxf kkkkbk ββββ )()( , (60) 

where βk are those given by (10). 
For vs the family of mode shapes for longitudinal vibrations of uniform fixed-free beam 

have been used, [2]: 

( ) .
2

12sin 





 −

=
L
xkxfsk π  (61) 

The collocation functions can be used also for equation (27) which, for the case of non-
uniform beams becomes: 

[ ]{ } [ ][ ][ ][ ]{ }.2
bbbbb CFAWGCF ρω=  (62) 

Multiplying  at left with the transpose of the matrix [Fb], the result is: 

  [ ]{ } [ ] [ ][ ][ ][ ]{ }bbb
t

bbb CFAWGFCA ρω 2= , (63) 

where: 

[ ] [ ] [ ]b
t

bb FFA =  (64) 

is now a (p, p) dimension matrix. 
Equation (63) is then multiplied at left with the inverse of the matrix [Ab], obtaining: 

{ } [ ] [ ] [ ][ ][ ][ ]{ } [ ]{ }bbbb
t

bbb CGCFAWGFAC 212 ωρω == − . (65) 

The values of ω2 are eigenvalues of matrix [G]-1. It is used for the Euler beam case. For 
an estimation of the shear effects one can replace matrix [Gb] in the above relation with the 
sum [Gb]+[Gs]. 

Other approximate results are obtained starting from (31) which can be written as 
follows, if using collocation functions for the uniform beams: 

[ ]{ } [ ][ ][ ]{ } [ ][ ][ ]{ }.1 2
2

2
bbbbbbbb CFWGACFWG

kG
EICF ρω+






 +ρω−=  (66) 

Multiplying at left with the transpose of the matrix [Fb], and then with the inverse of the 
matrix [Ab], it becomes: 
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+






 +−= − ρρω  (67) 

When v = vb  and the term E/(kG) is neglected, the above relation can be used to include 
only the rotary inertia effects. 

Taking into account all terms, (67) provides an approximate solution for ω2 which are 
also the eigenvalues of the resulting matrix form (67). 

Table 4 presents the results for the deep beam using the approach with p = 10 
collocation functions and n = 100 collocation points. 
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Table 4 – Results for the deep beam in terms of ω using collocation functions 

 
 
ω 

Analytic 
(9) 

Euler 
beam 

p = 10 
(65) 
Euler 
beam 

p = 10 
(67) 

with rotary 
inertia 

p = 10 
(65) 

with shear 
effects 

p = 10 
(67) 

reduced 
model 

p = 10 
(56) 

complete 
model 

ω1 419.66 419.71 419.8 418.1 420.1 417.58 
ω2 2630.17 2630.27 2620.98 2562.17 2592.61 2541.9 
ω3 7365.29 7364.84 7276.29 6933.81 7019.76 6819.1 
ω4 14433.3 14432.1 14065.8 12979.1 13081.8 12645.5 
ω5 23856.8 23857.3 22835.4 20334.5 20337.1 19639.9 

 

The results are very close to those presented in Table 2 but now the dimensions of the 
eigenvalue problems were reduced from n to p or from 2n to 2p, respectively. 

Using collocation functions, the differentiation by using matrices [D1], [D2] is no more 
necessary.  

The next example concerns a non-uniform  cross-section beam. One considers a linear 
tapered cantilever beam having the dimensions according to [30]: length L = 0.5 m, h = 5 
mm, b1 = 75 mm, bn = 20 mm (see Fig. 5). 

The material is steel with E = 2.05e11Pa, ν = 0.3, ρ = 7850 kg/m3. Experimental and 
numerical results concerning the first 5 natural frequencies for transverse (bending) vibration 
in the xy plane, are available from [30]. 

 
Fig. 5 – Tapered Timoshenko beam according to [30] 

Table 5 shows a results comparison for this case including results from [30] and results 
obtained in ANSYS using SHELL 281 elements and SOLID 186 elements. The results 
obtained with the proposed approach use n = 100 collocation points and p = 10 collocation 
functions with k = 5/6. 

They are in good agreement with those obtained with FEM using ANSYS. The 
experimental values are slightly inferior as a rigid clamped end is difficult to obtain under 
laboratory conditions. 

     
Fig. 6 – Shell FE model and solid FE model for a tapered cantilever beam  
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Table 5 – Results for the tapered beam in terms of f = ω/(2π) [Hz] 

Method f1 f2 f3 f4 f5 

Experimental, [30] 21 114 294 565 923 
Numerical, [30] 23.4 114.4 296.4 566.7 925.9 
ANSYS, Elm. Solid 186 23.9 117.9 306.3 586.7 959.9 
ANSYS, Elm. Shell 281 23.9 117.9 306.2 586.4 959.4 
Present, relation (42) n = 100 23.9 117.7 305.5 584.2 953.9 
Present, rel.(56) n = 100, p = 10 23.7 116.5 302.3 578.8 945.5 

5. CONCLUSIONS 
This work addresses the natural frequencies calculation for transverse (bending) vibration of 
Euler and Timoshenko beams. A short review of a multitude of numerical methods used on 
this topic is presented. Then, an integral method based on the use of flexibility influence 
functions (Green’s functions) is described and adapted for this type of analyses. These 
functions are computed here for the clamped-free beam case with relations from [20], using 
their physical significance of influence coefficients (displacements or rotation angles). The 
method described is a simple matrix one, using for numerical integration, integration 
(weighting) matrices. Differentiating matrices are also necessary. However, the 
differentiating matrices can be avoided by using  collocation functions which meet the 
boundary conditions. The simple examples presented here show the viability of the proposed 
method, as good agreement of the obtained results with analytical or other numerical results 
can be seen. The presented approach is a simple integral one, easy to be used in matrix form. 
The good accuracy of the method from an engineering point of view depends on  the number 
of  collocation points and functions. 

In this type of approach, the boundary conditions are included in the formulation by 
using appropriate Green’s functions. The use of Timoshenko beam model is important in 
order to obtain accurate results, especially for high vibration modes, for short beams and for 
stocky (deep) beams. The beam equations are written usually in terms of total lateral 
deflection and bending slope. In the presented approach, the same equations are written in 
terms of components vb (due to bending) and vs (due to shearing) of the total lateral 
deflection v. It is an alternative way used also in other works dedicated to Timoshenko beam 
studies. 
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