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Abstract: The stability analysis of an aircraft configuration is studied using a new system stability
method called the weight function method. This new method finds a number of weight functions that
are equal to the number of first-order differential equations. This method is applied for longitudinal
and lateral motions on a delta-wing aircrafi, the X-31, designed to break the 'stall barrier".
Aerodynamic coefficients and stability derivatives obtained using the Digital DATCOM code have
been validated with the experimental Low-Speed Wind tunnel data obtained using the German—Dutch
Wind Tunnel (DNW-NWB). Root Locus Method is used to validate the method proposed in this paper.

Key Words: aerodynamics, DATCOM, flight dynamics, root locus, stability derivatives, wind tunnel

1. INTRODUCTION

Modern fighter aircraft are designed with an unstable configuration or a marginal stability,
and control laws are needed to stabilise the aircraft. A new method for systems stability
analysis, called the Weight Function Method, is used to analyse the longitudinal and lateral
motions of the X-31.

The X-31 aircraft was designed to achieve its best performance, flexibility and
effectiveness in air combat, due to its canard configuration that provided a better longitudinal
manoeuvrability.

Its aerodynamics contains degrees of non linearity’s that are representative for a modern
fighter aircraft, that was designed to investigate its behaviour at high angles of attack (-5 to
56 degrees).

The mathematical model uses aerodynamic data obtained from wind tunnel tests and the
results provided by Digital DATCOM code, for subsonic speeds.

Digital DATCOM code [1], known also as DATCOM-+, is the first implementation of
the DATCOM procedures in an automatic calculations code. The software is a directly
executable portable application.

Input data, consisting of geometric and aerodynamic parameters of the aircraft, and
flight conditions, are introduced through a text file called "aircraft name.dcm" whose format
is specific to the software.

The DATCOM-+ program calculates the static stability, the high lift and control, and the
dynamic derivative characteristics.

This program applies to aircraft flying in the subsonic, transonic and supersonic
regimes, more precisely to traditional wing—body—tail and canard— equipped aircraft.

The computer program offers a trim option that computes control deflections and
aerodynamic data needed to trim the aircraft in the subsonic Mach regimes.
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2. WEIGHT FUNCTION METHOD DESCRIPTION

In most practical problems, differential equations that model the behaviour of a dynamical
system often depend on more than one parameter. The Lyapunov stability criterion is based
on finding a Lyapunov function. It is not simple and is not always guaranteed to find a
Lyapunov function. The Lyapunov method is very useful, however, when the linearization
around the point of equilibrium leads to a matrix of evolution with eigenvalues having zero
real parts [2].

The Weight Function Method (WFM) replaces the classical Lyapunov function finding
problem with a method that finds a number of weight functions equal to the number of the
first order differential equations modelling the system [2, 3]. The difference between the two
methods is that the Lyapunov method finds all functions simultaneously, while the weight
functions method finds one function at a time, with their total number equal to the number of
the first order differential equations. For this reason WFM is found to be more efficient than
the Lyapunov method.

For a better understanding of this method, its basic principle is defined in the next
system of equations (1). The coefficients ay;, by, ci;, di;, i = 1+4 contain the stability
derivatives terms. The x;, x,, x3, x4 represent the unknowns of the system of equations:

fi=anx +anx, +asx; + ayx,

Sy =byx + by xy + b3 xy + by xy 0

fi=euxtapxtosx oy

Jo=dyx +dyx, +dsx+dyx,

4
The total weight function W = Z w, x;, f, 1s defined, in which w, w,, ws and wy are
k=1
the weight functions whose sign should be negative to ensure the aircraft stability. In the
aircraft model, the sign of the total function W given by eq. (2) should be negative to ensure
the aircraft stability.

W =wxi(ax + a,X, + a3 + a4x) + WXy (b X + byxy + bisxy + byxy) + 2
+ Wy X3 (0 X + 0 Xy + X3+ X)) + wyx, (dy Xy + dpx, + diyxg + diyxy)
In our paper, three of the four functions w;. w;, w, and w; will be positively defined
based on the sign of the coefficients a,;, by;, ¢1;, dy; with i = 1+4. The last one will be constant
and imposed by the author, w4 > 0. If the positive weight functions will be well defined, then
the sign of total function W will be analyzed in order to identify the stability or instability
areas of the system.

3. APLICATION ON X-31 AIRCRAFT

The X-31 aircraft was designed to break the "stall barrier", allowing the aircraft to remain
under control at very high angles of attack. The X-31 aircraft employs thrust vectoring
paddles which are placed in the jet exhaust, allowing its aerodynamic surfaces to maintain
their control at very high angles.

For its control, the aircraft has a canard, a vertical tail with a conventional rudder, and
wing Leading—Edge and Trailing—Edge flaps.
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The main part of the X—31 aircraft model is a wing—fuselage section with eight servo—
motors for changing the canard angles (-70° < 6, < 20°), the wing Leading-Edge inner/outer
flaps (=70° < 9,z < 0°) /(—40° < 6,5, < 0° ), the wing Trailing-Edge flaps (-30° < 57z < 30%)
and the rudder (-30° < 6, < 30°) angles [3].

The X-31 aircraft is capable of flying at high angles of attack [-5° to 56"] and at sideslip
angles [-20° to 20°].

The aircraft geometrical data are: reference wing area of 0.3984 m?, MAC of 0.51818 m,
reference wing span of 1.0 m. In addition, its mass is 120 kg at Mach number of 0.18 and sea
level. The variations of aerodynamic coefficients with angle of attack used in this analysis
have been estimated using the Digital DATCOM code [4, 5].

3.1 Aircraft longitudinal motion analysis

If a longitudinal state vector x = [u/V aq0]" =[x, x, x, x,]" is defined along with a
single control term J (elevator), then the aircraft’s linearized longitudinal dynamics becomes

[6]

XxX=A X+B, 0O (3)

long long

where A is the system matrix and B is the control matrix.

The two pairs of complex conjugate roots of the linearized longitudinal dynamics
correspond to short—period (fast mode) and phugoid (slow mode).

The non dimensional longitudinal equations of motion (1) are written, with x; = u/V, x, =
o, x3 = g and x,,= 6 as follows

fiz=a,W/V)+a,a+a,0+d S
fi=a,w/V)+a,a+a,q+a,0+d, 5

4
f3=a8(u/V)+a9a+aloq+d35 @)
Jo=aq
where the coefficients a; to a;; are determined with eqs (5)
X VZ, z V+Z
=X, a,="%,a,=- gcos®0,a4= Jas = —%— a, = L,
Vv V- -7, V-2Z,
g : ZM, zZM
a, = — sin®,, ag =| VM, + @2 | 5
7 V—Zd 0 8 ( [ V—ZdJ ()
V+Z X Z .M.
ag =M, +M;——"|a =1d ==*.d, d3: Mg+ 94
V-2, 14 V-2,

The term (u/V) is then replaced with # . By taking into account eqs (4) and (5) and
knowing the term a; = 0 (because 8 = 0), the final total weight function W becomes:

— — 772 2 2 ot
W = Zwkxkfk = (wlalu +wyasa’ + wya,q )+ om(wla2 + w2a4)+

= (6)

aq(w2a6 + w3a9)+ 17(W3a8q + w1a3n9)+ w,a,,90 + §(W1d11,7 +w,d,a + w3d3q)
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In order to analyse the sign of the total weight function W, it is needed to analyse the
signs of all terms a;, i = 1+11 and d}, j = 1+3.

For this reason, the graphs of the variations of coefficients a; to a;; and d; to d; with
angle of attack are shown in Figure 1, where it can be seen that the coefficients
a, <0, a,<0, a, >0, a, >0as well as other coefficients have fluctuant behaviour.

All three terms d; have a oscillating behaviour.
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Figure 1 Coefficients a; and d; variation with the angle of attack

The weight functions are chosen considering the signs of the coefficients a;, d; and the

tested cases for the pitch angles 8 = [-20 to 20]° and pitch rates g = [-10 to 10]%s.
The aim of the WFM is to find 3 positive weighting functions w, w, and w; presented in

Figure 2, based on the coefficients variations presented in Figure 1.
For the flight case configuration presented in this paper, it is considered that the canard

angle J. = 0° and the flap angle 6 = 5°.
The positive weight functions are defined as:

w, =il(a,ii+ a,a + a,0 + d,5)

w, =a2(a,ii+ a;a + agq + d,5) e
wy =q*(agii+ aga + a,yq + d;6)

wy = 1,100

and the corresponding final form of the total weight function W is given by eq. (8).
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4
W= Zwkxkfk = WAT +wofy + wifoq + w,f,0 = 0 (a, i + a,a + a;0 + d,5)
k=1

®)

+ a0l + asa + a0 + d, ) + ¢Plaghh + aga + ayq + ds5) + w,qbay,
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Figure 2 Weight functions chosen for longitudinal dynamics
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Figure 3 Stability analyses with the weight functions method for different values of constant w, as a function of
angle of attack

Two positives values for w, are chosen: 1 and 100. It can be observed in Figure 3 that the
shape of the stability curve does not change with the values of pitch angle & and pitch rate g,
probably because the terms multiplying the pitch angle are small and constant (a3 = 0.1601
and a;; = 1) as seen also on Figure 1; for this reason, their contributions are quite
insignificant in comparison with the rest of the coefficients. Under these circumstances, for
any considered range of pitch rates ¢ and pitch angles & the system remains always stable.

3.2 Aircraft lateral analysis motion

Next, the non-dimensional lateral—directional equations of motion are given in eq. (9).

B=cf+cp+cd+cer+bo
p=csf+cgp+cr+bo

9
F=cf+cgp+cyr+ b0 ©)
ézcllp
where
Y Y Y -V Y,
B P r )
¢ =—+—,c, =—,c, = =¢c0s0®,,c, = b = <
1T T8 0:C4 7 Ty
IXZ I)CZ IXZ
¢ =G| Ly + Ny ¢ =Gl L, +N, ,c; =Gl L + N, ,
I)C IX ]X
1 1 1 (10)
b, =G| Ly + N; — g =Gl Ny + Ly aic ¢ =G| N, +L, =
Ix IZ IZ
I)CZ ])CZ
o =G N,+L,[ by =G N5+L5]—,011=1

The weighting function W can be thus written under the following form, where x; =
(sideslip rate), x, = p (roll rate), x; = r (yaw rate), x4, = ¢ (bank angle), xs = J:
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4
W=Zwkxkfk=wlﬂ(clﬂ+czp+c4r+c3¢+§b])+ an
k=1

Wyp(cgp + s +cr + b)) + wyr(cgr + g S +cop + 0by) + wyc po

All possible positive and negative values of sideslip rate, roll rate, yaw rate and bank
angle were considered. To analyse the sign of the weight function W, the sign of terms c;, i =
1=11and b;, j = 1+3 where analyzed. In Figure 4, it can be observed that b,, b,, b3 <0, ¢, ¢,
¢y, ¢s, ¢9 < 0 and c¢3, ¢ > 0, while a non linear behaviour can be seen for the other four
coefficients cg, ¢7, cg and c;o presented.

In equation (11), the parenthesis which multiplies the first term is
negative (¢, f + c,p + ¢, + ¢3¢ + b). For positive values of f, this term is always
negative. We know that ¢; < 0, and for this reason the first weighting function w; = ¢,/
Equation (11) becomes:

2
W = %ﬁ(elﬂ +eptregr+ted+0b)+wplcgp +esff+c,r+0b)+ (12)

wyr (cor + g B+ cop + 0 by) + wycy pP
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Figure 4 The ¢; and b; coefficients’ variation with the angle of attack

The parenthesis which multiplies wyp is also negative(c,p + ¢ 8+ c,;r +0b,) < 0.

Based on its sign the second function w, are defined as w, = p*(csp + ¢s 8 + ¢;7 + 5b,)*.
The total function /¥ is now given by eq. (13).
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2
w :%ﬂ(clﬂ+czp+c4r+c3¢+5b1)+p2(06p+csﬂ+c7r+5b2)2 X 13)

plegp +csB+cr +0b) +wyr(cor +cgf+cop +0by) + wye, pd

At this point it is possible to define w; or w4 as a positive constant. Because ¢;; > 0, it
was chosen w, =c,, p¢ . The final form of function W is given by eq. (14).

2
W=%(Clﬂ+czp+c4r+c3¢$+§b1)+p3(c6p+cs,8+c7r+5bz)3 +

+wyr(cygF + g S+ cop + b)) + (¢, ph)* = (14)
2
=c¢ +(,p+er+ed+ 5b1)%+0121p2¢2 +pi(egp+esf+cer+6b,) +

+ wyr(cor + g +cogp +0by)

Two of the weighting functions chosen have a constant variation with angle of attack
(w1 and wy); w, is variable and the last one is defined as w3 = 1 and 100.

It was considered that the roll rate p = [-6 to 6]"/s, the yaw rate r = [-2 to 2]%/s, the
sideslip rate # = [~10 to 10]” and the bank angle ¢ = [-30 to 30]".
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Figure 5 Weight functions chosen for the lateral dynamics
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Figure 6 Lateral-Directional stability analysis with the weight functions method for different values of constant w;
as a function of angle of attack

For the lateral motion, the weight functions are overlapped only if p, », § and ¢ are zero;

that means the value chosen for the weight function w; have no influence on the total weight

function W. The system is stable for roll, spiral and Dutch roll modes as the total weight

function W is negative as shown in Figure 6 for extreme values chosen for p, », § and ¢.

For the studied case, the X-31 aircraft is stable for any type of motion within limits for p, ,
p., ¢ (short-period, phugoid, roll, Dutch roll and spiral modes).

4. ROOT LOCUSMAP

The five modes of motion for the X-31 aircraft are: the short period and the long period for
longitudinal motion of the aircraft and the roll, Dutch roll and spiral for lateral motion. The
natural frequency (w,) and the damping ratio () are defined for each mode from the values
of the eigenvalues. For the longitudinal stability analysis, two modes are studied: the short
period and the phugoid. The short term pitch is a second order response. The phugoid mode
is the long—term motion of an aircraft after a disturbance.

The matrices of equation (3) are given in the next equation (15), as described in [6]:

X, X, 0 8]
V 14
VZu Za V+Zq 0
A,ong = V-2, V-2, V-2, ,
. . V+Z
VMu+%Ma+%M +M, 0
V-Z, V-Z, 4 P
0 0 1 0 |
) - . (15)
Xs
Au 4
Zs
x, || B, = V-z u, =AS
long — b long — T Ly > long — e
Aq Z:M,
A6 Y27,
L 0

The roots of the characteristic equation det (A | — Aj,,) = 0 gave these eigenvalues 4, to 4.
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For both longitudinal modes, the natural frequency w, and damping ratio { are estimated
directly from the characteristic equation ‘/11 -A

iong| = 0, as function of the longitudinal

eigenvalues (eq. (16)); the eigenvalues 4,, correspond to short-period and 43, to phugoid
modes.

cw, = ‘Re(ﬂfl,z)‘ cw, = ‘Re(ﬂ'&“)‘ (16)
o =l o2 =|ms.)

A representation of the eigenvalues obtained for the longitudinal motion of an X-31
aircraft is shown in Figure 7. All real parts of eigenvalues are negative, which means that the
X-31 aircraft is stable in its longitudinal motion.

8

6

4

Imaginary Axis
o

Short-peried mode roots (green) /

41 [

!
Phugoid mode ropts (red) |

8 1 i i 1 i i
34 2 0 8 B 4 2
Real Axis

(=]
N

Figure 7 Root locus map longitudinal motion of the X-31 aircraft
The matrices of the aircraft lateral model are next defined in eq. (17), based on [6].

Y, Y _
Ll £ Y. -V £ cos 6,

lat —

1
i 0 ] ) 0 0 | (17)
Y
V
v G| L; + N L
A +
Xlat Ap > Blat = ’ ° [X H ulat = A5a
r
Ixz
A¢ G(N(; + L(g J
0

Three modes are considered in the aircraft lateral motion modelling:
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13 Weight Functions Method application on a delta-wing X-31 configuration

e Spiral mode representing, a convergent or a divergent motion;
¢ Roll mode representing a fast convergent motion, and
e Dutch roll mode representing a light damped oscillatory motion with a low
frequency.
These modes are significant factors mainly in the uniform cruise flight. For the lateral
aircraft motion modelling, two real roots correspond to roll and spiral modes, and a pair of
complex roots correspond to Dutch roll mode obtained from the characteristic equation

|/11 — A,,| = 0. The rolling motion is generally very much damped and reaches the steady

state in a very short time. An unstable spiral mode results into a turning flight path. The
Dutch roll is a nuisance mode that appears in the basic roll response to lateral control and can
induce non—controlled and non—desired motions in roll and yaw modes. These motions can
significantly influence the ability of the pilot to control the lateral-directional motions with
precision. The eigenvalues for all three motions described above for X-31 aircraft are
represented in Figure 8: blue for Dutch Roll, red for spiral and green for roll mode.

15¢ T T T T

lat

101 , 1

/ 10

(o]

Dutch Roll mode roots (blue),

"""‘0000‘0"1—\?&&&0—?

\
'-.__Spila\ mode| roots (red)

Imaginary Axis
i=]

Roll mode roots (green}' )
N o

-10¢ 3\

I I I
-10 -8 -6 -4 -2 ] 2
Real Axis

Figure 8 Root locus map for lateral motion

Results obtained with the weight functions method shown in Figure 6, have proven that the
aircraft is stable in its lateral motion. Results presented with root locus map presented in
Figure 8 show that the X-31 aircraft has a stable lateral motion, because all eigenvalues
calculated with the root locus map are situated in the negative plane. The Handling Qualities
Method could be used in further studies to determine the aircraft stability ([7], [8] and [9]).

5. CONCLUSIONS

A stability analysis based on the null solutions stability studies for differential equation
systems was presented in this paper. The main aim was to found the positive weight
functions in order to analyze the X-31 aircraft stability. The aerodynamics coefficients and
their stability derivatives were determined with Digital DATCOM code. Based on the
aircraft’s aerodynamic model in the WFM, 3 functions were defined as function of stability
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derivatives terms, and the last fourth function was considered positive and chosen to be 1
and 100. The WFM was applied for longitudinal and lateral motions. A discussion of results
was done for each case, and the stability was defined and is summarized in the previous
sections. HQM was also applied to validate the aircraft stability results found with WFM.

X-31 has a stable longitudinal and lateral dynamics. For the considered altitude and
Mach number, the aircraft was found to be stable, regardless the angle of attack. Both modes
tested here, the slow and the fast, did not induced any oscillations and/or instabilities.
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NOMENCLATURE

b wing span
c wing mean aerodynamic chord
Cp drag coefficient
Cpa drag due to the angle of attack derivative
Cpq drag due to the pitch rate derivative
C lift coefficient
Cra lift due to the angle of attack derivative
Crq lift due to the pitch rate derivative
C,, lift due to the angle of attack rate derivative
Cn pitching moment coefficient
Cha static longitudinal stability moment with respect to the angle of attack derivative
Chg pitching moment due to the pitch rate derivative
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pitching moment due to the angle of attack rate derivative

rolling moment due to the roll rate derivative

rolling moment due to the yaw rate derivative

rolling moment due to the sideslip angle derivative
rolling moment due to the sideslip angle rate derivative

yawing moment due to the roll rate derivative

yawing moment due to the yaw rate derivative

yawing moment due to the sideslip angle derivative

side force due to the roll rate derivative

side force due to the yaw rate derivative

side force due to the sideslip angle derivative

moment of inertia about the X, Y and Z body axes, respectively
product of inertia

rolling moment due to roll rate Lp = qI_Sb(%j C,p

X

rolling moment due to yaw rate L, = q_Sb[%J G,
qSb
1

X

rolling moment due to sideslip L, = Cl,;
— qgSb
roll control derivative Ly = %Clﬁ
aircraft mass
Mach number
o . gSc ¢
pitching moment due to pitch rate M, = q°2¢ %Cmq
¥

qSc c

pitching moment increment with increased speed M, = iay

y
o o gSc ¢
pitching moment due to incidence M, = 92¢ ¢ '
I, 2y

pitching moment due to rate of change of the incidence M, = qlSc ;_chd
y

qSc c

ms

pitching moment due to flap deflection My =

yawing moment due to roll rate N, = qT%(%j Cnp

V4

I \2V

z

yawing moment due to yaw rate N, = ﬂ(ij G,

gSh
L "

z

yawing moment due to sideslip N, =
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. . qgSb
N yawing moment due to flap deflection N, = q[_ C,,
p, g, v  angular rates about the X, Y and Z body axes, respectively
p,q,7  time rate of change of p, ¢,
q., dynamic pressure
S wing area
u axial velocity perturbation
u time rate of change of u
vV airspeed
X, drag increment with increased speed X, = q§2C
m
_ 9 qS
X, drag due to incidence X, (CL -G, )
m a
. qS
X; drag due to flap deflection X; = —=—C),
m
. qgs( b
Y, side force due to roll rate Y, 7(;) Cyp
. b
Y. side force due to yaw rate ¥, = ﬂ ;J C,
. . qS
Yy side force due to sideslip ¥; = —C,
m B
. . qS
Ys side force control derivative ¥; = =—C,
m
lift due to pitch rate Z, = gs ¢
Zq 1 uc 1o pitch rate q——gﬁ L,
. . g qS
Z, lift due to speed increment Z, = ——2C,
m
. e qs
Z, lift due to incidence Z, = —— (CD + CLa)
m
. o qsS ¢
Z, lift due to the rate of change of incidence Z, = ———C,
m 2y
. . qS
Zs lift due to flap deflection Z; = —=— C;
o angle of attack
¢, 3,6 time rate of change of a, §, 6
i sideslip angle
) control deflection
% pitch angle
@ roll angle
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