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Abstract: The stability analysis of an aircraft configuration is studied using a new system stability 
method called the weight function method. This new method finds a number of weight functions that 
are equal to the number of first-order differential equations. This method is applied for longitudinal 
and lateral motions on a delta-wing aircraft, the X-31, designed to break the "stall barrier". 
Aerodynamic coefficients and stability derivatives obtained using the Digital DATCOM code have 
been validated with the experimental Low-Speed Wind tunnel data obtained using the German–Dutch 
Wind Tunnel (DNW–NWB). Root Locus Method is used to validate the method proposed in this paper. 
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1. INTRODUCTION 

Modern fighter aircraft are designed with an unstable configuration or a marginal stability, 
and control laws are needed to stabilise the aircraft. A new method for systems stability 
analysis, called the Weight Function Method, is used to analyse the longitudinal and lateral 
motions of the X-31. 

The X-31 aircraft was designed to achieve its best performance, flexibility and 
effectiveness in air combat, due to its canard configuration that provided a better longitudinal 
manoeuvrability. 

Its aerodynamics contains degrees of non linearity’s that are representative for a modern 
fighter aircraft, that was designed to investigate its behaviour at high angles of attack (-5 to 
56 degrees). 

The mathematical model uses aerodynamic data obtained from wind tunnel tests and the 
results provided by Digital DATCOM code, for subsonic speeds.  

Digital DATCOM code [1], known also as DATCOM+, is the first implementation of 
the DATCOM procedures in an automatic calculations code. The software is a directly 
executable portable application. 

Input data, consisting of geometric and aerodynamic parameters of the aircraft, and 
flight conditions, are introduced through a text file called "aircraft_name.dcm" whose format 
is specific to the software.  

The DATCOM+ program calculates the static stability, the high lift and control, and the 
dynamic derivative characteristics. 

This program applies to aircraft flying in the subsonic, transonic and supersonic 
regimes, more precisely to traditional wing–body–tail and canard– equipped aircraft. 

The computer program offers a trim option that computes control deflections and 
aerodynamic data needed to trim the aircraft in the subsonic Mach regimes. 
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2. WEIGHT FUNCTION METHOD DESCRIPTION 

In most practical problems, differential equations that model the behaviour of a dynamical 
system often depend on more than one parameter. The Lyapunov stability criterion is based 
on finding a Lyapunov function. It is not simple and is not always guaranteed to find a 
Lyapunov function. The Lyapunov method is very useful, however, when the linearization 
around the point of equilibrium leads to a matrix of evolution with eigenvalues having zero 
real parts [2]. 

The Weight Function Method (WFM) replaces the classical Lyapunov function finding 
problem with a method that finds a number of weight functions equal to the number of the 
first order differential equations modelling the system [2, 3]. The difference between the two 
methods is that the Lyapunov method finds all functions simultaneously, while the weight 
functions method finds one function at a time, with their total number equal to the number of 
the first order differential equations. For this reason WFM is found to be more efficient than 
the Lyapunov method. 

For a better understanding of this method, its basic principle is defined in the next 
system of equations (1). The coefficients a1i, b1i, c1i, d1i, i = 1÷4 contain the stability 
derivatives terms. The x1, x2, x3, x4 represent the unknowns of the system of equations: 
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The total weight function  is defined, in which w1, w2, w3 and w4 are 

the weight functions whose sign should be negative to ensure the aircraft stability. In the 
aircraft model, the sign of the total function W given by eq. (2) should be negative to ensure 
the aircraft stability. 
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In our paper, three of the four functions wi: w1, w2 and w3 will be positively defined 
based on the sign of the coefficients a1i, b1i, c1i, d1i with i = 1÷4. The last one will be constant 
and imposed by the author, w4 > 0. If the positive weight functions will be well defined, then 
the sign of total function W will be analyzed in order to identify the stability or instability 
areas of the system. 

3. APLICATION ON X-31 AIRCRAFT 

The X–31 aircraft was designed to break the "stall barrier", allowing the aircraft to remain 
under control at very high angles of attack. The X–31 aircraft employs thrust vectoring 
paddles which are placed in the jet exhaust, allowing its aerodynamic surfaces to maintain 
their control at very high angles. 

For its control, the aircraft has a canard, a vertical tail with a conventional rudder, and 
wing Leading–Edge and Trailing–Edge flaps. 
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The main part of the X–31 aircraft model is a wing–fuselage section with eight servo–
motors for changing the canard angles (–700 ≤ δc ≤ 200), the wing Leading-Edge inner/outer 
flaps (–700 ≤ δLEi ≤ 00) /(–400 ≤ δLEo ≤ 00 ), the wing Trailing-Edge flaps (–300 ≤ δTE ≤ 300) 
and the rudder (–300 ≤ δr ≤ 300) angles [3]. 

The X–31 aircraft is capable of flying at high angles of attack [–50 to 560] and at sideslip 
angles [–200 to 200].  

The aircraft geometrical data are: reference wing area of 0.3984 m2, MAC of 0.51818 m, 
reference wing span of 1.0 m. In addition, its mass is 120 kg at Mach number of 0.18 and sea 
level. The variations of aerodynamic coefficients with angle of attack used in this analysis 
have been estimated using the Digital DATCOM code [4, 5].  

3.1 Aircraft longitudinal motion analysis 

If a longitudinal state vector    TT xxxxqVu 4321/  x  is defined along with a 
single control term δ (elevator), then the aircraft’s linearized longitudinal dynamics becomes 
[6] 

longlong BxAx   (3) 

where A is the system matrix and B is the control matrix. 
The two pairs of complex conjugate roots of the linearized longitudinal dynamics 

correspond to short–period (fast mode) and phugoid (slow mode).  
The non dimensional longitudinal equations of motion (1) are written, with x1 = u/V, x2 = 

α, x3 = q and x4,= θ as follows 
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where the coefficients a1 to a11 are determined with eqs (5) 
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The term (u/V) is then replaced with . By taking into account eqs (4) and (5) and 
knowing the term a7 = 0 (because θ = 0), the final total weight function W becomes: 

u

   

     qdwdwudwqawawqawuawawq

awawuqawawuawfxwW
k

kkk

33221111431839362

4221
2

103
2

52
2

11

4

1
~~

~~



 







 (6) 

INCAS BULLETIN, Volume 3, Issue 4/ 2011 



Nicoleta ANTON and Ruxandra Mihaela BOTEZ 6 
 

In order to analyse the sign of the total weight function W, it is needed to analyse the 
signs of all terms ai, i = 1÷11 and dj, j = 1÷3. 

For this reason, the graphs of the variations of coefficients a1 to a11 and d1 to d3 with 
angle of attack are shown in Figure 1, where it can be seen that the coefficients 

as well as other coefficients have fluctuant behaviour. 1 3 6 110, 0, 0, 0a a a a   
All three terms dj have a oscillating behaviour.  

 
Figure 1 Coefficients ai and dj variation with the angle of attack 

The weight functions are chosen considering the signs of the coefficients ai, dj and the 
tested cases for the pitch angles θ = [–20 to 20]0 and pitch rates q = [–10 to 10]0/s. 

The aim of the WFM is to find 3 positive weighting functions w1, w2 and w3 presented in 
Figure 2, based on the coefficients variations presented in Figure 1. 

For the flight case configuration presented in this paper, it is considered that the canard 
angle δc = 00 and the flap angle δ = 50. 

The positive weight functions are defined as: 
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and the corresponding final form of the total weight function W is given by eq. (8). 
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Figure 2 Weight functions chosen for longitudinal dynamics  

 
a) 

 
b) 

c) d) 
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e) f) 
Figure 3 Stability analyses with the weight functions method for different values of constant w4 as a function of 

angle of attack  

Two positives values for w4 are chosen: 1 and 100. It can be observed in Figure 3 that the 
shape of the stability curve does not change with the values of pitch angle θ and pitch rate q, 
probably because the terms multiplying the pitch angle are small and constant (a3 = 0.1601 
and a11 = 1) as seen also on Figure 1; for this reason, their contributions are quite 
insignificant in comparison with the rest of the coefficients. Under these circumstances, for 
any considered range of pitch rates q and pitch angles   the system remains always stable. 

3.2 Aircraft lateral analysis motion 

Next, the non-dimensional lateral–directional equations of motion are given in eq. (9). 
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The weighting function W can be thus written under the following form, where x1 = β 
(sideslip rate), x2 = p (roll rate), x3 = r (yaw rate), x4 =   (bank angle), x5 = δ:  
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All possible positive and negative values of sideslip rate, roll rate, yaw rate and bank 
angle were considered. To analyse the sign of the weight function W, the sign of terms ci, i = 
1÷11and bj, j = 1÷3 where analyzed. In Figure 4, it can be observed that b1, b2, b3 < 0, c1, c2, 
c4, c5, c9 < 0 and c3, c11 > 0, while a non linear behaviour can be seen for the other four 
coefficients c6, c7, c8 and c10 presented.  

In equation (11), the parenthesis which multiplies the first term is 
negative )( 13421 bcrcpcc   . For positive values of β, this term is always 
negative. We know that c1 < 0, and for this reason the first weighting function w1 = c1

2/β2. 
Equation (11) becomes: 
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Figure 4 The ci and bj coefficients’ variation with the angle of attack  

The parenthesis which multiplies w2p is also negative 0)( 2756  brccpc  . 

Based on its sign the second function w2 are defined as . 2
2756

2 )( brccpcp  2w 
The total function W is now given by eq. (13). 
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At this point it is possible to define w3 or w4 as a positive constant. Because c11 > 0, it 
was chosen pcw 114  . The final form of function W is given by eq. (14).  
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Two of the weighting functions chosen have a constant variation with angle of attack 
(w1 and w4); w2 is variable and the last one is defined as w3 = 1 and 100. 

It was considered that the roll rate p = [–6 to 6]0/s, the yaw rate r = [–2 to 2]0/s, the 
sideslip rate β = [–10 to 10]0 and the bank angle  = [–30 to 30]0.  

 
Figure 5 Weight functions chosen for the lateral dynamics  

 
a) 

 
b) 
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c) 

 
d) 

Figure 6 Lateral-Directional stability analysis with the weight functions method for different values of constant w3 
as a function of angle of attack  

For the lateral motion, the weight functions are overlapped only if p, r, β and φ are zero; 
that means the value chosen for the weight function w3 have no influence on the total weight 
function W. The system is stable for roll, spiral and Dutch roll modes as the total weight 
function W is negative as shown in Figure 6 for extreme values chosen for p, r,   and  . 
For the studied case, the X-31 aircraft is stable for any type of motion within limits for p, r, 
 ,    (short-period, phugoid, roll, Dutch roll and spiral modes). 

4. ROOT LOCUS MAP 

The five modes of motion for the X-31 aircraft are: the short period and the long period for 
longitudinal motion of the aircraft and the roll, Dutch roll and spiral for lateral motion. The 
natural frequency (ωn) and the damping ratio (ζ) are defined for each mode from the values 
of the eigenvalues. For the longitudinal stability analysis, two modes are studied: the short 
period and the phugoid. The short term pitch is a second order response. The phugoid mode 
is the long–term motion of an aircraft after a disturbance.  

The matrices of equation (3) are given in the next equation (15), as described in [6]: 
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The roots of the characteristic equation det (λ I – Along) = 0 gave these eigenvalues λ1 to λ4.  
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For both longitudinal modes, the natural frequency ωn and damping ratio ζ are estimated 

directly from the characteristic equation 0 longAI , as function of the longitudinal 

eigenvalues (eq. (16)); the eigenvalues λ1,2 correspond to short-period and λ3,4 to phugoid 
modes. 
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A representation of the eigenvalues obtained for the longitudinal motion of an X-31 
aircraft is shown in Figure 7. All real parts of eigenvalues are negative, which means that the 
X-31 aircraft is stable in its longitudinal motion. 

 
Figure 7 Root locus map longitudinal motion of the X-31 aircraft 

The matrices of the aircraft lateral model are next defined in eq. (17), based on [6]. 
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Three modes are considered in the aircraft lateral motion modelling: 
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 Spiral mode representing, a convergent or a divergent motion;  
 Roll mode representing a fast convergent motion, and  
 Dutch roll mode representing a light damped oscillatory motion with a low 

frequency. 
These modes are significant factors mainly in the uniform cruise flight. For the lateral 

aircraft motion modelling, two real roots correspond to roll and spiral modes, and a pair of 
complex roots correspond to Dutch roll mode obtained from the characteristic equation 

0 latAI . The rolling motion is generally very much damped and reaches the steady 

state in a very short time. An unstable spiral mode results into a turning flight path. The 
Dutch roll is a nuisance mode that appears in the basic roll response to lateral control and can 
induce non–controlled and non–desired motions in roll and yaw modes. These motions can 
significantly influence the ability of the pilot to control the lateral–directional motions with 
precision. The eigenvalues for all three motions described above for X-31 aircraft are 
represented in Figure 8: blue for Dutch Roll, red for spiral and green for roll mode.  

 
Figure 8 Root locus map for lateral motion 

Results obtained with the weight functions method shown in Figure 6, have proven that the 
aircraft is stable in its lateral motion. Results presented with root locus map presented in 
Figure 8 show that the X-31 aircraft has a stable lateral motion, because all eigenvalues 
calculated with the root locus map are situated in the negative plane. The Handling Qualities 
Method could be used in further studies to determine the aircraft stability ([7], [8] and [9]). 

5. CONCLUSIONS 

A stability analysis based on the null solutions stability studies for differential equation 
systems was presented in this paper. The main aim was to found the positive weight 
functions in order to analyze the X-31 aircraft stability. The aerodynamics coefficients and 
their stability derivatives were determined with Digital DATCOM code. Based on the 
aircraft’s aerodynamic model in the WFM, 3 functions were defined as function of stability 
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derivatives terms, and the last fourth function was considered positive and chosen to be 1 
and 100. The WFM was applied for longitudinal and lateral motions. A discussion of results 
was done for each case, and the stability was defined and is summarized in the previous 
sections. HQM was also applied to validate the aircraft stability results found with WFM. 

X-31 has a stable longitudinal and lateral dynamics. For the considered altitude and 
Mach number, the aircraft was found to be stable, regardless the angle of attack. Both modes 
tested here, the slow and the fast, did not induced any oscillations and/or instabilities.  
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NOMENCLATURE 

b wing span 
c  wing mean aerodynamic chord 
CD drag coefficient 
CDα drag due to the angle of attack derivative 
CDq drag due to the pitch rate derivative 
CL lift coefficient 
CLα lift due to the angle of attack derivative 
CLq lift due to the pitch rate derivative 

LC  lift due to the angle of attack rate derivative 

Cm pitching moment coefficient 
Cmα static longitudinal stability moment with respect to the angle of attack derivative 
Cmq pitching moment due to the pitch rate derivative 
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mC  pitching moment due to the angle of attack rate derivative 

Clp rolling moment due to the roll rate derivative 
Clr rolling moment due to the yaw rate derivative 
Clβ  rolling moment due to the sideslip angle derivative  

lC  rolling moment due to the sideslip angle rate derivative 

Cnp yawing moment due to the roll rate derivative 
Cnr yawing moment due to the yaw rate derivative 
Cnβ  yawing moment due to the sideslip angle derivative 
Cyp side force due to the roll rate derivative 
Cyr side force due to the yaw rate derivative 
Cyβ side force due to the sideslip angle derivative 
Ix, Iy, Iz moment of inertia about the X, Y and Z body axes, respectively 
Ixz product of inertia 

Lp rolling moment due to roll rate 
pl

x
p C

V

b

I

bSq
L 










2

~
 

Lr rolling moment due to yaw rate 
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Lβ rolling moment due to sideslip 
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C
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bSq
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Lδ roll control derivative 
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m aircraft mass  
M Mach number 

Mq pitching moment due to pitch rate 
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Mu pitching moment increment with increased speed 
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Mα pitching moment due to incidence 
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M  pitching moment due to rate of change of the incidence 
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Mδ pitching moment due to flap deflection 
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Np yawing moment due to roll rate 
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Nr yawing moment due to yaw rate 
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Nβ yawing moment due to sideslip 
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Nδ yawing moment due to flap deflection 
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p, q, r angular rates about the X, Y and Z body axes, respectively 
rqp  ,,  time rate of change of p, q, r 

q  dynamic pressure 

S wing area 
u axial velocity perturbation 
u  time rate of change of u 
V airspeed 
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Xδ drag due to flap deflection 
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Yp side force due to roll rate 
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Yr side force due to yaw rate 
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Yβ side force due to sideslip 
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Yδ side force control derivative 
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Z  lift due to the rate of change of incidence 
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  ,,  time rate of change of α, β, θ 

β sideslip angle 
on δ control deflecti

θ pitch angle 
  roll angle 

 


