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Abstract: The problem of dynamic deformation of a plate with a two-layer composite shell with a heat-
shattering coating collapsing in time under the action of a running load is solved approximately. The 
problem is solved in a dynamic formulation, considering that the deformed state of the shell depends 
both on the spatial coordinates and on time. The problem is reduced to solving two differential equations 
of the shell in partial derivatives with respect to deflections and the stress function. These equations 
contain discontinuous ratios for unknowns, which are associated with the dynamic destruction of the 
heat-shielding coating. According to the Bubnov method, the problem is also reduced to a system of 
differential equations, but already in ordinary derivatives. The solution of these equations is obtained 
in closed form. In addition, the natural vibration frequencies of the structure and the critical velocities 
of the load are found depending on the degree of damage to the protective layer. Formulas for 
oscillation frequencies and critical speeds are obtained in closed form. 

Key Words: two-layer composite shell, running load, collapsing heat-shielding coating, dynamic 
deformation, natural vibration frequencies, critical speeds of movement 

1. INTRODUCTION 
Structural elements of space vehicle (SC) during operation are subjected to the action of a 
moving load and experience significant aerodynamic heating. To combat it, the surface of the 
space vehicle is covered with a composite protective layer, which for various reasons can be 
destroyed during operation. In the destruction zone, large thermal deformations occur, leading 
to the destruction of the bearing shell. That is what caused the death of the space vehicle US 
“Columbia”. In the proposed work, only one of the facets of this most complex scientific and 
technical problem is investigated – the determination of the dynamic behavior and the intrinsic 
characteristics of the aircraft skin element under the action of a pressure wave. All of the above 
leads to the need to study non-stationary deformation of the casing of the space vehicle with a 
dynamically collapsing protective layer under the action of a moving load, as well as to find 
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its own dynamic characteristics of the system. A review of works on the effect of such loads 
on the elements of thin-walled structures is given, for example, in [1], [2], [3], [4], [5], [6], [7], 
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], 
[26], [27], [28], [29], [30], [31], [32]. 

2. METHODOLOGY 
The solution of the problem under consideration is based on the use of the equations of 
acclivous shell in a mixed form with an additional inertial layer that simulates a heat-shielding 
coating and the use of generalized functions. The resolving system of partial differential 
equations according to the Bubnov method can be reduced to a system of differential 
equations, but already in ordinary derivatives. Under certain conditions, this system splits into 
separate equations. motions of a damaged structure, for which, in turn, solutions are obtained 
in closed form. The lower part of the spectrum of the natural oscillations of the structure is 
found in accordance with the ideas of Euler, and the critical velocities of the movement of the 
load are found on the basis of the dynamic stability criterion. In accordance with it, the critical 
state of the shell corresponds to the equality to zero of one of the natural frequencies of its 
oscillations. 

3. RESULTS AND DISCUSSIONS 
Let’s consider a thin rectangular cylindrical composite shell, rectangular in plan, consisting of 
two layers referred to the curvilinear orthogonal coordinate system Oxyz (Fig. 1). 

 
Fig. 1 – Acclivous shell with partially destroyed heat-resistant coating under the action of a moving load 

Its inner layer is carrying and provides strength, and the outer – heat-shielding coating. 
An infinite uniformly distributed normal load of intensity p simulating a pressure wave moves 
along the shell in the direction of the x axis with constant velocity V. In fig. 1, it is 
conventionally depicted as running forces applied along the line parallel to the y axis. Under 
the action of this load, the heat-shielding layer is being destroyed. The front of its destruction 
is also parallel to the y- axis and with the speed 𝑉𝑉0 shifts in the x direction. The entire protective 
layer will be destroyed in time 𝑡𝑡1 = 𝑙𝑙 𝑉𝑉0⁄ . The surviving part of the coating in Figure 1 is 
shaded. The linear masses of both layers are commensurable, and the stiffness characteristics 
of the coating are small compared to the corresponding characteristics of the carrier layer. As 
a consequence, we consider the entire structure as an original two-layer composite shell, the 
outer coating of which is treated as an inertial layer, changing only the dynamic properties of 



19 Dynamics of shell with destructive heat-protective coating under running load 
 

INCAS BULLETIN, Volume 11, Special Issue/ 2019 

the system as a whole. The solution of the problem is divided into two stages, at the first of 
which with 𝑡𝑡 < 𝑡𝑡1 there is a destruction of the protective layer, and at the second at 𝑡𝑡 > 𝑡𝑡1 it 
is already completely destroyed. 

Of greatest interest is the solution to the first part of the problem, so we’ll dwell on it. We 
solve the problem in a dynamic formulation, assuming the deformed state of the plate depends 
not only on the spatial coordinates x and y, but also on time t. The element of the moving load 
for a period of time t will pass the way 𝑥𝑥 = 𝑉𝑉𝑡𝑡 and the vertical acceleration it develops will be 
the full derivative 

𝑑𝑑2𝑤𝑤
𝑑𝑑𝑡𝑡2

=
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 2𝑉𝑉
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥𝜕𝜕𝑡𝑡

+ 𝑉𝑉2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

 (1) 

The second term in formula (1) contains a mixed derivative corresponding to Coriolis 
acceleration and is usually neglected in solving practical problems [1], [2], [3]. To describe 
the dynamic deformed state of the plate under consideration, we use the equations of the theory 
of acclivous shells in a mixed form with respect to the deflection of the shell w and the stress 
function F [4]. For the case in question, they take the form 

𝐷𝐷
ℎ
∇4𝑤𝑤 −

1
𝑅𝑅
𝜕𝜕2𝐹𝐹
𝜕𝜕𝑥𝑥2

+
𝑝𝑝
𝑔𝑔ℎ

𝑉𝑉2
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

+
𝑝𝑝
𝑔𝑔ℎ

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 𝑝𝑝 �1 +
𝑚𝑚1

𝑚𝑚
Ψ�

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

=
𝑝𝑝
ℎ

 (2) 

1
𝐸𝐸
∇4𝐹𝐹 +

1
𝑅𝑅
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

= 0 (3) 

Here 𝐷𝐷 = 𝐸𝐸ℎ3 12(1−𝑚𝑚2)⁄  cylindrical rigidity of the bearing plate, R and h are the 
radius and thickness of the bearing shell, E and m- modulus of elasticity and Poisson’s ratio of 
its material, m1 and m are the linear masses of the protective layer and the carrier shell, 
respectively, g is the gravitational acceleration. Rupture function Y defines the area of damage 
to the thermal protection and is found by the ratio 

Ψ = �0     𝑥𝑥 ∈ 𝐿𝐿
1     𝑥𝑥 ∉ 𝐿𝐿. (4) 

For an approximate solution of equations (2-3), we use the Bubnov method, in accordance 
with which we represent the deflection of the shell w and the stress function F in the form of 
expansions 

𝑤𝑤 = ��𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡)𝜑𝜑𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦)
𝐶𝐶

𝑚𝑚

𝐾𝐾

𝑚𝑚

, 𝐹𝐹 = ��𝐹𝐹𝑚𝑚𝑚𝑚(𝑡𝑡)𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥, 𝑦𝑦)
𝐶𝐶

𝑚𝑚

𝐾𝐾

𝑚𝑚

 (5) 

where 𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡) and 𝐹𝐹𝑚𝑚𝑚𝑚(𝑡𝑡) - unknown functions of time 𝜑𝜑𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦) and 𝜙𝜙𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦) - set 
coordinate functions. From equation (3) we express 𝐹𝐹𝑚𝑚𝑚𝑚(𝑡𝑡) through 𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡) and substitute 
this expression in equation (2). Applying to it also the procedure of the Bubnov method, we 
obtain the system 𝐾𝐾 × 𝐶𝐶 second order differential equations in ordinary derivatives with 
respect to 𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡). In the matrix form of the record, it has the form 

𝑀𝑀�̈�𝑊 + 𝐾𝐾𝑊𝑊 = 𝑃𝑃 (6) 

Here M and K are square matrices of mass and rigidity of the plate, respectively, W and P 
are columns of unknown functions and loads. The points above the desired functions W here 
and below denote their time derivatives. 
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𝐾𝐾 = �𝑘𝑘𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐 �, 𝑀𝑀 = �𝑚𝑚𝑚𝑚𝑚𝑚

𝑐𝑐𝑐𝑐 �,       𝑊𝑊 = {𝑤𝑤𝑐𝑐𝑐𝑐(𝑡𝑡)},       𝑃𝑃 = {𝑝𝑝𝑐𝑐𝑐𝑐} (7) 

The elements of the matrices K, M and the vector P have the form 

𝑘𝑘𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐 =

𝐷𝐷
ℎ
� 𝛻𝛻4𝜑𝜑𝑚𝑚𝑚𝑚 ⋅ 𝜑𝜑𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 +

𝑝𝑝
𝑔𝑔ℎ

� 𝜑𝜑𝑚𝑚𝑚𝑚
″ 𝜑𝜑𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 +

𝐸𝐸
𝑅𝑅
∫ 𝜑𝜑𝑚𝑚𝑚𝑚

″ 𝜙𝜙𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑 ⋅ ∫ 𝜙𝜙𝑚𝑚𝑚𝑚
″ 𝜑𝜑𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

∫ 𝛻𝛻4𝜙𝜙𝑚𝑚𝑚𝑚 ⋅ 𝜙𝜙𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆𝑆𝑆
 (8) 

𝑚𝑚𝑚𝑚𝑚𝑚
𝑐𝑐𝑐𝑐 = �

𝑝𝑝
𝑔𝑔ℎ

+ 𝜌𝜌 �1 +
𝑚𝑚1

𝑚𝑚
Ψ���𝜑𝜑𝑚𝑚𝑚𝑚 ⋅ 𝜑𝜑𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑

𝑆𝑆
;  𝑝𝑝𝑐𝑐𝑐𝑐 =

𝑝𝑝
ℎ
�𝜑𝜑𝑐𝑐𝑐𝑐𝑑𝑑𝑑𝑑
𝑆𝑆

 (9) 

Hereinafter, the strokes above the approximating functions denote their derivatives with 
respect to the x coordinate. In equation (6) as a parameter includes the speed of movement of 
the load. Under given initial conditions, this system can only be solved numerically. If at some 
values of the velocity V, the deflection of the shell begins to increase indefinitely, then this 
means that we are approaching its critical value, at which the loss of stability of the shell 
occurs. 

If we additionally assume that the elastic and inertial interaction between different 
oscillation modes are small, then system (6) splits into separate unrelated equations for each 
pair of m and n values. 

�̈�𝑤𝑚𝑚𝑚𝑚 − 𝜔𝜔𝑚𝑚𝑚𝑚
2 𝑤𝑤𝑚𝑚𝑚𝑚 =

𝑝𝑝𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚  (𝑚𝑚 =  1,2, . . . .𝐾𝐾,𝑛𝑛 =  1,2, . . . .𝐶𝐶 ), (10) 

where 𝑤𝑤𝑚𝑚𝑚𝑚
2 = 𝑘𝑘𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚(𝑉𝑉) 𝑚𝑚𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚⁄  - the square of the natural frequency of oscillation of the shell 

in shape 𝑚𝑚 × 𝑛𝑛 Ratios 𝑘𝑘𝑚𝑚𝑚𝑚
𝑚𝑚𝑚𝑚(𝑉𝑉) and 𝑚𝑚𝑚𝑚𝑚𝑚

𝑚𝑚𝑚𝑚 are found by formulas (8-9) with m = c and n = l. 

𝜔𝜔𝑚𝑚𝑚𝑚
2 =

𝐷𝐷
ℎ ∫ 𝛻𝛻4𝜑𝜑𝑚𝑚𝑚𝑚

2 𝑑𝑑𝑑𝑑 + 𝑝𝑝
𝑔𝑔ℎ 𝑉𝑉

2 ∫ 𝜑𝜑𝑚𝑚𝑚𝑚
″ 𝜙𝜙𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 + 𝐸𝐸

𝑅𝑅2
∫ 𝜑𝜑𝑚𝑚𝑚𝑚

″ 𝜙𝜙𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 ⋅ ∫ 𝜙𝜙𝑚𝑚𝑚𝑚
″ 𝜑𝜑𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆

∫ 𝛻𝛻4𝜙𝜙𝑚𝑚𝑚𝑚 ⋅ 𝜙𝜙𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑆𝑆
𝑆𝑆𝑆𝑆

� 𝑝𝑝𝑔𝑔ℎ + 𝜌𝜌 �∫ 𝜑𝜑𝑚𝑚𝑚𝑚
2 𝑑𝑑𝑑𝑑𝑆𝑆 + 𝑚𝑚1

𝑚𝑚 ∫ 𝜑𝜑𝑚𝑚𝑚𝑚
2 Ψ𝑑𝑑𝑑𝑑𝑆𝑆 ��

 (11) 

In accordance with the dynamic stability criterion, the critical values of this velocity are 
in the form 𝑚𝑚 × 𝑛𝑛 are found from the condition 𝑤𝑤𝑚𝑚𝑚𝑚

2 = 0 

𝑉𝑉𝐾𝐾𝐾𝐾2 =

𝐷𝐷
ℎ ∫ 𝛻𝛻4𝜑𝜑𝑚𝑚𝑚𝑚

2 𝑑𝑑𝑑𝑑 + 𝐸𝐸
𝑅𝑅2

∫ 𝜑𝜑𝑚𝑚𝑚𝑚
″ 𝜙𝜙𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑 ⋅ ∫ 𝜙𝜙𝑚𝑚𝑚𝑚

″ 𝜑𝜑𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑆𝑆𝑆𝑆
∫ 𝛻𝛻4𝜙𝜙𝑚𝑚𝑚𝑚 ⋅ 𝜙𝜙𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑆𝑆

𝑆𝑆

𝑝𝑝
𝑔𝑔ℎ ∫ 𝜙𝜙𝑚𝑚𝑚𝑚

″ 𝜑𝜑𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑆𝑆

 (12) 

The deflections of the shell find the sum of the solutions of equations (10) of the form 

𝑤𝑤 = ��𝑤𝑤𝑚𝑚𝑚𝑚(𝑡𝑡)𝜑𝜑𝑚𝑚𝑚𝑚(𝑥𝑥,𝑦𝑦)
𝐶𝐶

𝑚𝑚

𝐾𝐾

𝑚𝑚

= ���
𝑝𝑝𝑚𝑚𝑚𝑚

𝑘𝑘𝑚𝑚𝑚𝑚
(1 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑚𝑚𝑚𝑚 𝑡𝑡) + 𝐶𝐶1𝑚𝑚𝑚𝑚 𝑐𝑐𝑠𝑠𝑛𝑛𝜔𝜔𝑚𝑚𝑚𝑚 𝑡𝑡 + 𝐶𝐶2𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔𝑚𝑚𝑚𝑚 𝑡𝑡)�𝜑𝜑𝑚𝑚𝑚𝑚

𝐶𝐶

𝑚𝑚

𝐾𝐾

𝑚𝑚

 

(13) 

Here are the ratios 𝑘𝑘𝑚𝑚𝑚𝑚 and 𝑝𝑝𝑚𝑚𝑚𝑚 found by the formulas (8-9), and 𝑤𝑤𝑚𝑚𝑚𝑚 - according to 
(11). Constants of integration 𝐶𝐶1𝑚𝑚𝑚𝑚 and 𝐶𝐶2𝑚𝑚𝑚𝑚 are found from the initial conditions at t = 0. 
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As examples, we consider an approximate definition in the single-part approximation of 
the natural frequencies of the oscillations of the shell and the critical velocities of the 
movement of the load and using formulas (11) and (12), respectively. The approximating 
functions in expansions (5) are taken as 

𝜑𝜑𝑚𝑚𝑚𝑚 = 𝜙𝜙𝑚𝑚𝑚𝑚 = 𝑐𝑐𝑠𝑠𝑛𝑛 𝜇𝜇𝑚𝑚𝑥𝑥 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝑚𝑚 𝑦𝑦 (14) 

where 𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚
𝑐𝑐

, 𝑙𝑙𝑚𝑚 = 𝑛𝑛𝑝𝑝/2𝑎𝑎. Then the squares of the natural frequencies and critical 
velocities can be found by the following formulas 

𝜔𝜔𝑚𝑚𝑚𝑚
2 =

𝐷𝐷
ℎ (𝜇𝜇𝑚𝑚2 + 𝜆𝜆𝑚𝑚2)2 − 𝑝𝑝

𝑔𝑔ℎ 𝑉𝑉
2𝜇𝜇𝑚𝑚2 + 𝐸𝐸

𝑅𝑅2
𝜇𝜇𝑚𝑚4

(𝜇𝜇𝑚𝑚2 + 𝜆𝜆𝑚𝑚2)2
𝑝𝑝
𝑔𝑔ℎ + 𝑝𝑝 �1 + 𝑚𝑚1

𝑚𝑚  ∫  𝜑𝜑𝑚𝑚𝑚𝑚
2 Ψ𝑑𝑑𝑑𝑑𝑆𝑆 �

 (15) 

𝑉𝑉𝐾𝐾𝐾𝐾2 =
𝑔𝑔ℎ �𝐷𝐷ℎ (𝜇𝜇𝑚𝑚2 + 𝜆𝜆𝑚𝑚2)2 + 𝐸𝐸

𝑅𝑅2
𝜇𝜇𝑚𝑚4

(𝜇𝜇𝑚𝑚2 + 𝜆𝜆𝑚𝑚2)2�

𝑝𝑝𝜇𝜇𝑚𝑚2
 (16) 

Through 𝑉𝑉 = Ψ = 0 formula (15) completely coincides with the corresponding 
expression from the reference book [33]. From the point of view of practical applications, the 
main oscillation frequency is the most significant, which corresponds to the simplest shell 
oscillation mode, which is realized at m = n = 1 in approximation (14), and, consequently, the 
minimum critical speed. Let’s consider a shell characterized by the following dimensionless 
parameters: R/h = 100, l/R = 5, l/a = 4, 𝑚𝑚1/𝑚𝑚 = 1. Fig. 2 shows the dependence of the square 
of the dimensionless frequency of oscillations. 𝜔𝜔∗2 = 𝜔𝜔2𝜌𝜌𝑅𝑅2/𝐸𝐸 from the dimensionless length 
of the destroyed layer of thermal protection L/ l. Moreover, curve 1 corresponds to the case 
𝑉𝑉2 = 0 and curve 2 is obtained at a dimensionless rate of loading 𝑉𝑉2∗ = 0,1 × 𝑉𝑉𝐾𝐾𝐾𝐾2

∗  
�𝑉𝑉𝐾𝐾𝐾𝐾2

∗ = 𝑉𝑉𝐾𝐾𝐾𝐾2 𝑝𝑝/𝐸𝐸𝑔𝑔ℎ�. Calculations are carried out with conditionally accepted dimensionless 
load 𝑝𝑝∗ = 𝑝𝑝/𝑔𝑔ℎ𝑝𝑝 = 1. 

 
Fig. 2 – Dependence of the fundamental oscillation frequency of the shell on the size of the zone of destruction of 

the heat-shielding coating 

Figure 3 shows the dependence of the square of the dimensionless critical velocity 𝑉𝑉𝐾𝐾𝐾𝐾2
∗ =

𝑉𝑉𝐾𝐾𝐾𝐾2 𝑝𝑝/𝐸𝐸𝑔𝑔ℎ from the dimensionless length of the plate 𝑙𝑙/𝑅𝑅 while maintaining a constant ratio 
𝑙𝑙/𝑎𝑎=4. 
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Fig. 3 – Dependence of critical velocity on shell size 

4. CONCLUSIONS 
The article proposes an original approach to solving the problem of dynamic behavior and 
finding the own dynamic characteristics of space vehicle trim elements with a dynamically 
destroyed heat shield. The method of solving the problem is based on the harmonic 
combination of the Bubnov method. and dynamic stability criteria for thin-walled structures. 
Formulas for the natural frequencies of oscillations and critical velocities of the motion of the 
load were obtained in closed form. 
A number of parametric studies have been carried out, which allows to find the effect of 
various design parameters on the fundamental frequency of natural oscillations and critical 
velocities of the load of a discretely damaged shell. 
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