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Abstract: In the dynamic and quasi-static statements, the issue of non-stationary deformation and 
stability of the solid propellant rocket engine (SPRE) was approximately solved. It is modeled by a thin, 
smooth cylindrical shell, inside of which, on a part of its length, there is an elastic base corresponding 
to a gradually burning powder charge. A pressure wave is moving along the outer surface of the body, 
simulated by the running load. The deformed state of the shell is considered axisymmetric and is 
determined on the basis of the moment theory of the shells. For diverse variants of mounting the ends 
of the shell in a closed form, expressions were obtained for the critical velocity of the load. Examples 
were considered. 

Key Words: cylindrical shell, elastic foundation, Winkler hypothesis, moving load, dynamic and 
quasistatic equationtion of the issue, critical speeds. 

1. INTRODUCTION 

The solid propellant rocket motor (SPRE) is structurally a thin cylindrical shell into which the 
powder charge is placed. When the engine runs, the powder burns out, creating an overpressure 
inside the shell that acts on the walls of the engine. At the same time, the zone of elevated 
pressure increases all the time as the charge burns out [1], [2], [3]. A pressure wave acts on 
the outer surface of the shell, simulated in the calculations by an axisymmetric moving radial 
load. Under its action, the shell may lose stability, but the inner pressure has a supporting effect 
on it. The proposed work is dedicated to the determination of the critical velocity of the moving 
load, taking into account the supporting action of the pressure of powder gases [4]. 

2. METHODOLOGY 
The solution of the issue is based on the use of the partial differential equation of the moment 
axisymmetric deformation of a cylindrical shell when using the apparatus on general functions 
necessary to determine the boundaries of the charge burning zone. As a result, the resolving 
equation contains discontinuous coefficients. We considered two solutions to the issue. In both 
cases, the solution uses the Bubnov method, which reduces the issue either to a system of 
differential equations in ordinary derivatives (dynamic problem statement) or to a system of 
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linear algebraic equations (quasistatic problem statement). The resulting systems are solved 
either numerically or analytically. An approximate equation for the minimum critical velocity 
of the load is obtained in a closed form for different variants of fastening the ends of the shell. 

3. RESULTS AND DISCUSSIONS 
Let’s consider a thin circular cylindrical shell, inside of which a part of its length is elastic 
base which is being destroyed at a constant speed 𝑉𝑉0 The inner pressure of intensity p acts on 
the free part of the shell .On the outer surface of the cylinder with a constant velocity V, a 
pressure wave is moving, simulated when solving a task by infinite linear radial load of 
intensity q [5], [6]. A similar problem, but taking into account temperature deformation, occurs 
when calculating the durability of the shell of a solid-propellant rocket engine [7], [8], [9], 
[10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], 
[27], [28], in which the role of an elastic base is played by a powder stick, and the inner 
pressure corresponds to the pressure of burnt powder gases. The time of complete destruction 
of the elastic base is 𝑡𝑡0 = 𝐿𝐿 𝑉𝑉0⁄  . Figure 1 shows the state of the structure at an arbitrary time 
t (0 < 𝑡𝑡 < 𝑡𝑡0). The part of the base that has been preserved by this time is shaded. 

 
Fig. 1 – Cylindrical shell under the influence of applied loads 

Under the action of the considered loads, the shell undergoes axisymmetric deformation. 
The main purpose of the work is to determine the critical speed of the moving load at which 
the loss of stability of the shell occurs. 

3.1 Dynamic equation of the problem 

In this equationtion of the issue, the deflection of the shell w depends on both the longitudinal 
coordinate x and the time t. During time t, the pressure wave element will travel a distance 
along the cylinder 𝑥𝑥 = 𝑉𝑉𝑉𝑉 then the speed and acceleration of the radial displacements of the 
walls of the shell w will be full derivatives and can be determined by the relations 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑉𝑉 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

,       𝑑𝑑
2𝑤𝑤
𝑑𝑑𝑡𝑡2

= 𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 2𝑉𝑉 𝜕𝜕2𝑤𝑤
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑉𝑉2 𝜕𝜕
2𝑤𝑤
𝜕𝜕𝑥𝑥2

 (1) 

In the equation for accelerations, the second term corresponds to Coriolis acceleration and 
is usually neglected in solving practical issues. Pressure on the shell in the zone of the elastic 
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base determined by the coordinate 𝑉𝑉0𝑡𝑡 ≤ 𝑥𝑥 ≤ 𝐿𝐿 we find on the basis of the Winkler hypothesis, 
considering it to be dependent on the deflection of the shell w and the stiffness coefficient of 
the base b. The scope of this load is set using the Heaviside function 𝐻𝐻(𝑥𝑥 − 𝑉𝑉0𝑡𝑡). The zone of 
action of the inner pressure p is determined using the difference of the Heaviside functions 
given at the points x = 0 and 𝑥𝑥 = 𝑉𝑉0𝑡𝑡. In view of the preceding, the axisymmetric deformation 
of a cylindrical shell is investigated on the basis of the general theory of shells. In this case, 
the resolving equation of the problem takes the form 

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝑞𝑞
𝑔𝑔𝑔𝑔

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑡𝑡2

+ 𝑤𝑤 �4𝛽𝛽4 + 𝑏𝑏
𝐷𝐷
𝐻𝐻(𝑥𝑥 − 𝑉𝑉0𝑡𝑡)� + 𝑞𝑞

𝑔𝑔𝑔𝑔
𝑉𝑉2 𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2

=  

𝑝𝑝
𝐷𝐷

(𝐻𝐻(𝑥𝑥 − 0) − 𝐻𝐻(𝑥𝑥 − 𝑉𝑉0𝑡𝑡))  
(2) 

where 𝐷𝐷 = 𝐸𝐸ℎ3/12(1 − 𝜇𝜇2), 𝛽𝛽4 = 3(1 −𝑚𝑚𝑚𝑚2)/𝑅𝑅2ℎ2, R and h are the radius and thickness of 
the shell, E and m – modulus of elasticity and Poisson’s ratio of its material, respectively. 
Equation (2) is a partial differential equation containing discontinuous coefficients with 
Heaviside functions defining the boundary of the zone of the elastic base. In addition, it 
contains as a parameter the movement velocity of the external load V. This equation is solved 
approximately by the Bubnov method, according to which we represent the shell deflections 
as an expansion 

𝑤𝑤 = �𝑤𝑤𝑖𝑖(𝑡𝑡)𝜑𝜑𝑖𝑖(𝑥𝑥),
𝑁𝑁

𝑖𝑖=1

 (3) 

where 𝑤𝑤𝑖𝑖(𝑡𝑡)– unknown functions of time (generalized coordinates), 𝜑𝜑𝑖𝑖(𝑥𝑥)– given coordinate 
functions satisfying the boundary conditions at the ends of the shell. Applying the procedure 
of the Bubnov method to equation (2), we reduce the problem to a coupled system of second-
order differential equations, but in ordinary derivatives. In the matrix entry form, it has the 
form 

𝑀𝑀𝑊̈𝑊 + 𝐾𝐾𝐾𝐾 = 𝐶𝐶, (4) 

Matrices of masses M, rigidity K and vectors W and C included in (4) are 

𝑀𝑀 = �𝑚𝑚𝑖𝑖𝑖𝑖�,  𝐾𝐾 = �𝑘𝑘𝑖𝑖𝑖𝑖�,  𝑊̈𝑊 = �𝑤̈𝑤𝑗𝑗�,  𝑊𝑊 = �𝑤𝑤𝑗𝑗�,  𝐶𝐶 = �𝑐𝑐𝑗𝑗� (5) 

Hereinafter, points above the function w denote its derivatives with respect to time. The 
dimension of the matrices and vectors is determined by the number of members of the series 
stored in the expansion (3), and their elements are equal. 

𝑘𝑘𝑖𝑖𝑖𝑖 = ��𝜑𝜑𝑖𝑖𝐼𝐼𝑉𝑉𝜑𝜑𝑗𝑗𝑑𝑑𝑑𝑑 + 4𝛽𝛽4 �𝜑𝜑𝑖𝑖

𝐿𝐿

0

𝐿𝐿

0

𝜑𝜑𝑗𝑗𝑑𝑑𝑑𝑑 +
𝑏𝑏
𝐷𝐷
�𝐻𝐻(𝑥𝑥 − 𝑉𝑉0𝑡𝑡)
𝐿𝐿

0

𝜑𝜑𝑖𝑖𝜑𝜑𝑗𝑗𝑑𝑑𝑑𝑑 +
𝑞𝑞𝑉𝑉2

𝑔𝑔𝑔𝑔
�𝜑𝜑𝑖𝑖′′
𝐿𝐿

0

𝜑𝜑𝑗𝑗𝑑𝑑𝑑𝑑� 

𝑚𝑚𝑖𝑖𝑖𝑖 = 𝑞𝑞
𝑔𝑔𝑔𝑔 ∫ 𝜙𝜙𝑖𝑖𝜙𝜙𝑗𝑗𝑑𝑑𝑑𝑑
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0     𝑐𝑐𝑗𝑗 = 𝑝𝑝

𝐷𝐷 ∫ �𝐻𝐻(𝑥𝑥 − 0)𝐻𝐻(𝑧𝑧 − 𝑉𝑉0𝑡𝑡)𝜙𝜙𝑗𝑗𝑑𝑑𝑑𝑑�
𝐿𝐿
0   

 

(6) 

Coefficient 𝑘𝑘𝑖𝑖𝑖𝑖 as the parameter contains the square of the speed of the load 𝑉𝑉2. The 
solution of the system of differential equations (4) under the given initial conditions is 
performed only numerically. 

If at some values of the velocity of motion of the load, the deflections of the shell begin 
to increase sharply, then this means that we are entering the near-resonant mode of motion. 
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Analytical equations for these critical velocities can be obtained only if one or two terms of 
the series are preserved in the decomposition (3). 

3.2 Quasistatic equation of the problem 

In this simpler version of the solution of the problem under consideration, we assume that the 
deflection of the shell w depends only on the longitudinal coordinate x. Then the inertial load 
on the cylinder with the ratio x = Vt is defined as 𝑞𝑞

𝑔𝑔
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑥𝑥2

, and the solving equation of the problem 
becomes simpler 

𝜕𝜕4𝑤𝑤
𝜕𝜕𝑥𝑥4

+ 𝑤𝑤 �4𝛽𝛽4 + 𝑏𝑏
𝐷𝐷
𝐻𝐻(𝑥𝑥 − 𝑉𝑉0𝑡𝑡)� + 𝑞𝑞

𝑔𝑔𝑔𝑔
𝑉𝑉2 𝜕𝜕

2𝑤𝑤
𝜕𝜕𝑥𝑥2

= 𝑝𝑝
𝐷𝐷

(𝐻𝐻(𝑥𝑥 − 0) − 𝐻𝐻(𝑥𝑥 − 𝑉𝑉0𝑡𝑡))  (7) 

It also has discontinuous coefficients at an unknown deflection w associated with the 
boundary of the zone of destruction of the elastic layer. To solve it, we also use the Bubnov 
method, according to which we represent the deflection of the shell w as an expansion 

𝑤𝑤 = �𝑤𝑤𝑖𝑖𝜑𝜑𝑖𝑖(𝑥𝑥),
𝑁𝑁

𝑖𝑖=1

 (8) 

where 𝑤𝑤𝑖𝑖 – unknown coefficients, and 𝜑𝜑𝑖𝑖(𝑥𝑥) – given coordinate functions satisfying the 
boundary conditions at the ends of the shell. Substituting the expansion (8) into equation (7) 
and applying to the latter the procedure of the Bubnov method, we obtain a connected system 
of N linear algebraic equations for the unknown coefficients 𝑤𝑤𝑖𝑖 (i = 1,2, ..N). In the matrix 
entry form, it has the form 

𝐾𝐾𝐾𝐾 = 𝐶𝐶, (9) 
The stiffness matrix K and vectors W and C included in (9) are 

𝐾𝐾 = �𝑘𝑘𝑖𝑖𝑖𝑖(𝑉𝑉)�, 𝑊𝑊 = �𝑤𝑤𝑗𝑗�, 𝐶𝐶 = �𝑐𝑐𝑗𝑗� (10) 

Their dimension is determined by the number of members of the series stored in the 
expansion (8), and the elements are determined by equations (6). Coefficient 𝑘𝑘𝑖𝑖𝑖𝑖(𝑉𝑉) as a 
parameter contains the speed of movement of the load. The solution of system (9) in high 
approximations is possible only numerically. If at some values of velocity V, the deflection of 
the shell begins to increase sharply, this also means that we are approaching near the resonant 
velocity. Equations in closed form for critical speeds 𝑉𝑉𝐾𝐾𝐾𝐾 can also be obtained only in one or 
two-term approximations. 

3.3 Example 

Practically important minimum critical speed corresponds, as a rule, to the simplest form of 
loss of shell stability. 

Therefore, we solve the problem, for example, in the dynamic equationtion in the single-
term approximation at 𝑤𝑤 = 𝑤𝑤1(𝑡𝑡)𝜑𝜑1(𝑥𝑥). Then instead of the system of equations (4) we get 
only one equation of the form 

𝑤̈𝑤1 + 𝜔𝜔12𝑤𝑤1 = 𝑐𝑐1 𝑚𝑚11⁄  (11) 

where 𝜔𝜔12 = 𝑘𝑘11 𝑚𝑚11⁄  – is the square of the frequency of natural oscillations of the structure, 
its coefficients are calculated by the equations (6) with i = j = 1. The solution of equation (11) 
determining the shape of the curved surface of the shell is 
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𝑤𝑤1 = 𝐴𝐴 𝑠𝑠𝑠𝑠𝑠𝑠𝜔𝜔1𝑡𝑡 + 𝐵𝐵 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔1𝑡𝑡 +
𝑐𝑐1
𝑘𝑘11

 (12) 

The integration constants A and B included in this solution are from the initial conditions. 
Based on the dynamic stability criterion, the square of the critical velocity 𝑉𝑉𝐾𝐾𝐾𝐾2  at an 

arbitrary moment of time t can be found from the condition that the natural frequency of 
oscillation is zero 𝜔𝜔12 = 0 which is converted to form 𝑘𝑘11 = 0  

𝑉𝑉𝐾𝐾𝐾𝐾2 = −
𝑔𝑔𝑔𝑔

𝑞𝑞 ∫ 𝜑𝜑1′′𝜑𝜑1𝑑𝑑𝑑𝑑
𝐿𝐿
0

��𝜑𝜑1𝐼𝐼𝐼𝐼𝜑𝜑1𝑑𝑑𝑑𝑑
𝐿𝐿

0

+ 4𝛽𝛽4�𝜑𝜑12𝑑𝑑𝑑𝑑
𝐿𝐿

0

+
𝑏𝑏
𝐷𝐷
�𝐻𝐻(𝑥𝑥 − 𝑉𝑉0𝑡𝑡)𝜑𝜑12𝑑𝑑𝑑𝑑
𝐿𝐿

0

� (13) 

The minus sign in front of equation (14) is canceled as a result of specific calculations. 
Let’s suppose that both ends of the shell at x = 0 and x = L be freely supported. In this case, 
we accept 𝜑𝜑1 = sin (𝜋𝜋𝜋𝜋/𝐿𝐿). Then, on the basis of equation (13), we obtain the square of the 
critical velocity in the form 

𝑉𝑉𝐾𝐾𝐾𝐾2 =
2𝑔𝑔𝑔𝑔𝑔𝑔
𝑞𝑞𝜋𝜋2

�
𝜋𝜋4

2𝐿𝐿3
+ 2𝛽𝛽4𝐿𝐿 +

𝑏𝑏
𝐷𝐷 �

𝐿𝐿 − 𝑉𝑉0𝑡𝑡
2

+
𝐿𝐿

4𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠

2𝜋𝜋𝑉𝑉0𝑡𝑡
𝐿𝐿 �� (14) 

If we assume that the ends of the shell are rigidly clamped, then the approximating 
function can be taken in the form 𝜑𝜑1 = 1 − cos (2𝜋𝜋𝜋𝜋/𝐿𝐿). Then the square of the critical 
velocity is 

𝑉𝑉𝐾𝐾𝐾𝐾2 =
𝑔𝑔𝑔𝑔𝑔𝑔
𝑞𝑞2𝜋𝜋2

�
8𝜋𝜋4

𝐿𝐿3
+ 6𝛽𝛽4𝐿𝐿 +

𝑏𝑏
𝐷𝐷 �

3(𝐿𝐿 − 𝑉𝑉0𝑡𝑡)
2

−
𝐿𝐿

8𝜋𝜋
𝑠𝑠𝑠𝑠𝑠𝑠

2𝜋𝜋𝑉𝑉0𝑡𝑡
𝐿𝐿 �� (15) 

In both equations, the critical velocity nonlinearly depends on the magnitude of the 
destruction of the inner elastic layer, characterized by the parameter 𝑉𝑉0𝑡𝑡. In addition, equations 
(14) and (15) have the same structure and if we compare them by terms we will see that in the 
case of rigid pinching of the shell ends, the critical speed is higher than in the case of their free 
support. 

4. CONCLUSIONS 
The problem of dynamic deformation and stability of a cylindrical shell under the action of an 
axisymmetric linear load moving on its outer side is solved. The shell on the part of its length 
has an inner elastic base conforming to Winkler’s hypothesis. An inner pressure increases the 
critical loads on the part of the cylinder that is free from the elastic base. The problem is solved 
in both dynamic and quasistatic approximations. Equations were obtained for the minimum 
critical velocity of the moving load under various settings for fixing the ends of the shell. The 
supporting effect of inner pressure on critical loads was analyzed. It is shown that with free 
support of the ends of the shell, the loss of stability occurs at a lower speed of movement of 
the load than in the case of their rigid fixation. 
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