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Section 4. Mathematical Modeling 

Abstract: The main goal of this paper is to present the implementation of the Sammon algorithm 

developed for finding N points in a lower m-dimensional subspace, where the original points are from 

a high n-dimensional space. This mapping is done so interpoints Euclidian distances in m-space 

correspond to the distances measured in the n-dimensional space. This method known as non-linear 

projection method or multidimensional scaling (MDS) aims to preserve the global properties of points. 

The method is based on the idea of transforming the original, n-dimensional input space into a 

reduced, m-dimensional one, where m<n, and it may be used to clustering hyperspectral data. The 

Principal Component Analysis (PCA) may be applied as a pre-processing procedure for starting, in 

order to obtain the N points in the lower subspace. The algorithm was tested on hyperspectral data 

with spectra of various lengths. Depending of the size of the input data (number of points), the number 

of learning iterations and computational facilities available, Sammon mapping might be 

computationally expensive. 

Key Words: hyperspectral data, Sammon mapping method, Euclidian distances, non-linear mapping 

techniques 

1. INTRODUCTION 

Hyperspectral sensors used in Hyperspectral Imagery collect information of earth surfaces as 

a set of images that correspond to the same spatial scene, but are acquired at many different 

spectral bands with high resolution. These images contain abundant spatial, spectral, and 

radiometric information, which makes earth observation and information acquisition much 

more efficient for real life applications. Hyperspectral data have details and accuracy 

allowing the investigation of phenomena and concepts that greatly extend the scope of 

traditional remote sensing [2]. In terms of spectral properties, the high resolution has the 

capability of uncovering unknown sources, which cannot be identified by visual inspection. 
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The spectral signature leads to a better separation between physical materials and objects [1]. 

This is based on the fact that in the hyperspectral image, reflectance information depends 

only of the materials spectral responses in the scene. 

A mixed pixel is either linear or nonlinear combination of pure pixels signatures 

weighted by the correspondent abundance fraction. Many techniques of unmixing in 

hyperspectral image analysis are based on geometric approach where each pixel is seen as a 

spectral vector of p (number of spectral bands). Under the linear model we assume that the 

number of substances and their spectra are known, but in reality they are not and, then, 

hyperspectral unmixing falls into the blindly classes. When the mixture between materials is 

macroscopic, the linear mixing model of spectra is generally admitted because this model 

assumes no interaction between materials [4, 7]. 

Although the techniques of classical spectroscopy can be used in hyperspectral remote 

sensing to examine, for example, atmospheric gases, hyperspectral remote sensing examines 

very detailed spectra for images of the earth’s surface and matches them to spectra of known 

features [2]. The large dimensionality of a hyperspectral dataset often requires data 

transformation which can effectively reduce dimension of data sets with minimum loss of 

information [3, 5, 6, 10]. These are intended to find the minimum number of parameters 

required to represent the observed properties of the data [9]. Several methods have been 

implemented for determining the dimension of signal subspace that is done by the smallest 

number of parameters needed to contain all of the variability in the data [8, 11]. This means a 

dimensionality reduction. The entire subject is based around the idea that we have this big 

set of data, and we want to analyses that set in terms of the relationships between the 

individual points in that data set. Hyperspectral images are characterized by a high number 

of bands, which are highly correlated for neighboring bands. Sammon mapping is one of the 

first and most popular nonlinear dimensionality reduction techniques [16, 18]. Also it has 

been widely applied to the visualization of the high dimensional data. The Sammon mapping 

is based on the idea of transforming the original, n-dimensional input space into a reduced, 

m-dimensional one, where m<n. It is also known as non-linear projection method or 

multidimensional scaling (MDS) method. Through this mapping function we give the 

minimum embedding dimension from the hyperspectral data. It may be applied as a pre-

processing procedure, and its resulting components may be used as inputs to clustering and 

supervised classification models. Sammon method places data items in an abstract space 

with a chosen number of dimensions in such a way that the distances between the positions 

reflect the differences (dissimilarities) between the data items. 

A hyperspectral image can be illustrated as an image cube with the two dimensions of 

the cub face representing the spatial information and the third dimension representing the 

spectral information. The information available in a hyperspectral image (cube) is organized 

in a tridimensional matrix (each plane is an image corresponding to one wavelength band) 

denoted by HS3D(h,w,p). We use here this notation to show that the tridimensional matrix 

represents a hyperspectral image, h and w are the height and width of image, respectively. In 

this matrix the item pkwjhixijk ,,1;,,1;,,1,    is the pixel value from i row, j 

column and k spectral band. The pixels  ijpijijij xxxX ,,, 21   in an image can be 

considered as vectors in pR  space. 

From the point of view of subsequent calculations we abandon the idea that the three-

dimensional matrix represents the image; it is considered now that it is just a three-

dimensional matrix that will be recognized in a bidimensional matrix, HS2D(h*w,p), by the 

rule: first column of the bidimensional matrix includes all the columns of HS3D, placed 
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successively, where, p=1; second column will contain all columns of the HS3D matrix, 

placed successively, where p=2, and so on. For each image pixel, the spectral bands can then 

be written as vectors. So, the item ],*)1([2),,(3 kihjdhskjidhs  . We note further 

pnwhm  ,*  and HS2D=X. Note .,,2,1;,,2,1);,( njmijiXX    

Using the statistical language, we consider the vectors pixels of a hyperspectral image as 

observations and their components as variable associated features. 

2. MAPPING MULTIDIMENSIONAL DATA TO A LOWER DIMENSION 

Using the statistical language, we consider the vectors pixels of a hyperspectral image as 

observations and their components as variable associated features. In this context, Principal 

component analysis (PCA) is a statistical procedure that uses an orthogonal transformation 

to convert a set of observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables called principal components. The number of the principal 

components is less than or equal to the number of original variables because PCA constructs 

a low-dimensional representation of the data that describes as much of the variance in the 

data as possible. This is done by finding a linear basis of reduced dimensionality for the data, 

where the variance of data is maximal [13]. Therefore PCA is a powerful tool capable of 

reducing dimensions and revealing relationships among data items. It is intimately related to 

the mathematical technique of singular value decomposition (SVD). Hyperspectral data are 

well suited for analyse using SVD and PCA [12]. The authors generally not to use PCA as a 

pre-processing step for clustering algorithms. 

The Singular Value Decomposition requires that the full set of data be available during 

processing, that can involve a significant storage cost. Technically, a principal component 

can be defined as a linear combination of optimally-weighted observed variables. “Optimally 

weighted” refers to the fact that the observed variables are weighted in such a way that the 

resulting components account for a maximal amount of variance in the data set. The main 

feature of the PCA method is that the k component will be correlated with at least some of 

the observed variables and will be uncorrelated with all of the preceding components. PCA 

maximize the variance in each successive hyperspectral band. Therefore, only the first few 

components are retained, interpreted, and used in subsequent analyses. PCA is similar in 

many respects to exploratory factor analysis. 

Summarizing, the goal of the PCA method is to transform a/an X data of dimension p to 

an/ a new data Y of smaller dimension s<p. PCA is normally conducted in a sequence of 

steps. In our implementation of the PCA method, we use the covariance method because it is 

better to use the singular value decomposition and go through the steps: 

1. calculate the mean value along each dimension 



m

i

njjiX
m

j
1

,,2,1),,(
1

)(   

2. calculate deviations from the mean value TUXX  , where U is an mX1 

vector, miiU ,,2,1,1)(  . It results ),( nmX . Each row of X is an 

observation, and each of its columns is a variable. 

3. find the covariance matrix ),( nnC  of X. In general, the covariance of two random 

vectors YX , is their tendency to vary together. It can be explicitly written as: 







N

i

ii

N

yyxx
YXCov

1

)()(
),(  where N is the vector’s dimension, 

http://en.wikipedia.org/wiki/Orthogonal_transformation
http://en.wikipedia.org/wiki/Correlation_and_dependence
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).(),( YmeanyXmeanx  In some cases it is preferred to use the correlation 

matrix instead of the covariance matrix. 

4. decompose the covariance matrix to find its eigenvectors. Compute the matrix V of 

eigenvectors which diagonalizes the covariance/ correlation matrix DCVV 1  

where ),( nnD  is the diagonal matrix of eigenvalues of C. TVDVC  ; IVV T  . 

5. ijiD ),(  for ji   and 0),( jiD  for ji  ; 

6. calculate niig
n

j

j ,,2,1,)(
1




 

7. sort the columns of the eigenvector matrix V and eigenvalues in decreasing order 

and, 

8. retain only s eigenvalues, s<n; ,,,, 21 s  so that ,
)(

)(
theta

pg

sg
 where 

9.0theta . 

9. choose the subspace dimension s and construct the matrix sX  from X : 

10. VXX s  . Finaly, TXX  . 

The first principal component is the eigenvector corresponding to the largest value λ. 

This vector is the direction along which the data have the most variance. The second 

principal component is the second eigenvector. Its direction is orthogonal to the first 

component. Because it is orthogonal to the first eigenvector, their projections will be 

uncorrelated. In fact, projections onto all the principal components are uncorrelated with 

each other. The eigenvalues will give the total variance described by each component. The 

variance of the projections onto the first s principal components is then 



s

i

i

1

. 

3. SAMMON ALGORITHM 

Consider the original bidimensional matrix njmijiXX ,,2,1;,,2,1);,(       as a 

set of points in nR  space. Suppose each row .,,2,1, miX i   of X is a point in the nR  

space and corresponding to these we define also m points in a sR (s-space) designated 

.,,2,1, miYi   Seek to identify the geometric relationships among subsets of the data 

vectors in the both space. Sammon projection or Sammon mapping is a procedure that maps 

a high-dimensional space to a space of lower dimensionality in such a way as to preserve the 

structure of inter-point distances on each space [16, 17, 18]. The distance-preserving aspect 

can be of importance when one wants to use classifiers sensitive to these distances, such as 

the nearest-neighbor classifiers. If we denote ijd  as the interpoint distances from iX  to jX  

measured in the n-dimensional space and *
ijd  the interpoint distances from iY  to jY  

measured in the s-dimensional space, the Sammon mapping goal is to minimize an error 

function: 







ij

ijij

ji

ij d

dd

d
E

2* )(1
. This function is often referred to as Sammon stress or 

Sammon error and it is minimized by a gradient descent technique that adjusts the position of 

the points in the space. 

http://en.wikipedia.org/wiki/Eigenvector
http://en.wikipedia.org/wiki/Diagonalizable_matrix
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1. calculate Euclidian distance from each point iX  to each point jX . 

  mjmixxjiDd
n

k

jkikij ,,2,1;,,2,1,),(
1

2
  



. 

2. Use the Singular Value Decomposition (SVD) of X matrix. SVD decomposes a 

matrix into a set of rotation and scale matrices, which is used in computing the rank 

of matrix. The general form of SVD decomposition is: 
TUSVX   where mxnRX   with nm  , mxmRU  , nxnRV  , mxnRS . U and V are 

orthogonal and called the left singular vector and the right singular vector, 

respectively. The S matrix is called the singular value and its elements are only 

nonzero on the diagonal. From the SVD calculation, the PCA output is calculated by 

outer product of the columns of U with the singular values diag(S). 

3. estimate the mapping dimension as s<n 

4. calculate a matrix Y=U*S so that the dimension of Y is mXs. 

Another option to build the matrix Y is the random mode. 

5. calculate Euclidian distance from each point iY  to each point jY , 

6.   mjmiyyjiDd
s

k

jkikij ,,2,1;,,2,1,),(
1

2**   


. 

7. calculate the Sammon stress function 
 






ji ij

ijij

ji

ij d

dd

d
E

2* )(1
 and minimize it. 

The minimization of the error E is an optimization problem with discrete variables and 

can be performed by gradient descent f , and by evaluate Hessians f2 , usually involving 

iterative methods. The number of iterations needs to be experimentally determined and 

convergent solutions are not always guaranteed. It may be transcribed into a step-by-step 

format for easy implementation into a computer. The iterative process can be written in the 

component form as: 







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
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where t is the iteration step and α is a nonnegative constant so called “magic-factor” that is 

founded experimentally as 4.03.0   and it represents the step size for gradient search in 

the direction of 
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 (3) 

http://en.wikipedia.org/wiki/Gradient_descent
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Note: From the fact that D is a symmetrical matrix  

mjmiijDjiDijDjiD ,,2,1;,,2,1);,(),(),,(),( **    and 

;,,2,1;0),(;0),( * miiiDiiD   

To avoid dividing by zero, the computer program use only upper diagonal distances matrices. 
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Depending of the size of the input data (number of points), the number of iterations and 

computational facilities available, Sammon's mapping might be computationally expensive. 

4. COMPUTER PROGRAMS AND DATA FILES 

The nonlinear mapping algorithm was tested and /evaluated on several artificially generated 

data set [14]. For starters the s-space is 2-and 3-dimensional spaces since the resultant data 

was evaluated by human observation. The source code of the computer programs were 

written in Matlab R2013a. To demonstrate the applicability of the software tools developed 

we present some results using images scenes acquired by Airborne Visible IR Imaging 

Spectrometer (AVIRIS) using 224 channels ranging from 0.4 to 2.5μm with spatial and 

spectral resolutions of approximately 20m and 10nm, respectively: the Purdue Indiana Indian 

Pine test site, covering an area of mixed agriculture and forestry, in a North-western Indiana 

image scene. In this case the hyperspectral data is a tridimensional matrix hs3d 

(145,145,200), therefore hs2d (145*145,200). The covariance matrix is C (200,200). When 

we choose 85.0theta  the number of the principal components is 20. 

 
Fig. 1 Results obtained after the PCA  
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For better handling the Sammon application we build a graphical user interface (GUI). It  

allows the user to choose different options on the number of the principal components, on 

the initialization method of Y matrix (PCA or random mode), or relative to the display mode 

of results [15]. 

Also, the user can specify the number of iterations and cumulative error of distances 

between points. GUI enables repeated applications and comparisons of the results to specify 

the best number of classification clusters. 

This GUI is written on Matlab environment. It is created using the “guide” tool which 

allows a programmer to places components on it. 

Also, it creates a working program including skeleton functions that the programmer can 

modify to implement the behavior of the application. 
 

 

Fig. 2 Graphical User Interface for Sammon method (Eigen values after Sammon) 
 

http://en.wikipedia.org/wiki/User_(computing)
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Fig. 3 Graphical User interface for Sammon method (an image after Sammon) 

Table 1. The cumulative error of distances between points. 

Iteration Error Iteration Error 

1 0.4987781290 100 0.1781135170 

10 0.4399404276 150 0.1080544463 

50 0.2364040024 199 0.0006019682 

5. CONCLUSION 

Using Sammon mapping on complex hyperspectral data, the user can explore the distribution 

of the objects, discover groupings of similar objects and detect outliers. More, the user can 

examine clusters produced by any clustering method and investigate the sensitivity of the 

clustering results to the parameters. For example the k-means procedure divides the set of 

observations into a user-specified number of subsets such that the dissimilarities within the 

subsets are minimized and the dissimilarities between the subsets are maximized. 
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