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Abstract: The main goal of this paper is to present the implementation of an algorithm developed to 

calculate the Hurst exponent (H), applied here to characterize the pixel spectrum from hyperspectral 

image. Because a hyperspectral reflectance curve from each pixel may be regarded as a chaotic series 

that fact inspires us to treat a spectrum as a time series. Hyperspectral data are typical 

heteroscedastic variables, which makes it inappropriate to apply the normal/classic time series 

analysis, such as the autoregressive-integrated-moving-average model. Generally, the Hurst exponent 

is a measure used in nonlinear time series analysis to reveal local trend of series among adjacent 

successive terms. H can describe the local change in the ratio between the ranges of accumulated 

mean-removed values to the original standard deviation and thus represents the diversity of spectral 

values. Although H may be used to characterize regions of the image regarding persistence or 

antipersistence spectrum (highlighting noisy data), it does not directly address the separation between 

the classes of interest. The algorithm uses the rescaled range analysis method. This method introduces 

a measure of the variability of a time series using a ratio range/standard deviation (R/S). The 

algorithm was tested on hyperspectral data with spectra of various lengths and with persistence or 

antipersistence spectrum. 
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1. INTRODUCTION 

Hyperspectral images are important source of information which is used in many 

environmental assessments and monitoring of agriculture, meteorology, mineralogy etc. 

These data obviously provide much more detailed information about the scene than a normal 

color camera, which only acquires three different spectral channels corresponding to the 

visual primary colors red, green and blue. 

Hyperspectral data sets are generally composed of about 100 to 200 spectral bands of 

relatively narrow bandwidths (5-10 nm), whereas, multispectral data sets are usually 

composed of about 5 to 10 bands of relatively large bandwidths (70-400 nm). Hence, 

hyperspectral imaging leads to a vastly improved ability to classify the objects in the scene 

based on their spectral properties. 

Due to the rich information content in hyperspectral images, they are uniquely well 

suited for automated image processing, whether it is for online industrial monitoring or for 
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remote sensing. Efficient exploitation of hyperspectral images is of great importance in 

remote sensing. 

Hyperspectral images contain abundant spatial, spectral, and radiometric information of 

earth surfaces, which makes earth observation and information acquisition much more 

effective and efficient for material applications. 

Images acquired from hyperspectral sensors contain many more bands and potentially 

more information than multispectral images, but hyperspectral images also tend to contain 

more noise, especially when acquired using small aircraft. 

Hyperspectral data are spectrally overestimated and the useful signals usually occupy 

lower dimensional subspace which needs to be inferred. Therefore it is necessary to explore 

the dimensionality reduction methods which can effectively reduce noise in data sets with 

minimum loss of information. The signal information is usually concentrated in lower 

dimensional subspaces. 

A hyperspectral pixel is generally a mixture of different materials present in the pixel 

data with various abundance fractions. 

These materials absorb or reflect within each spectral band. As a consequence, spectral 

band characterization becomes crucial in hyperspectral analysis. 

Since each pixel is composed of hundreds of spectral bands, the spectral information 

provided by pixel is generally very valuable in material detection, discrimination, and 

identification. 

The paper is structured as follows: Section 2 contains an overview of the Hurst method, 

in Section 3 the Hurst algorithm is detalied while Section 4 gives the results on a real 

hyperspectral image. 

2. HURST METHOD 

Time and space series analysis methods have become widespread and valuable tools in 

studying hyperspectral data. A hyperspectral reflectance curve from each pixel is regarded as 

a chaotic series. This inspires us to treat a spectrum as a time series. 

These data are typical heteroscedastic variables, which makes it inappropriate to apply 

the normal/classic time series analysis, such as the autoregressive-integrated-moving-average 

model. The Hurst exponent (H) is a measure used in nonlinear time series analysis. It is a 

classical value to detect long memory in time series. 

The Hurst exponent's namesake, Harold Edwin Hurst (1880-1978), was a British 

hydrologist who researched reservoir capacity along the Nile River. He introduces as 

measure of the variability of a time series the statistical rescaled range. 

H can describe the local change in the ratio between the ranges of accumulated mean-

removed values to the original standard deviation and thus represent the diversity of spectral 

values. H is not limited to defined applications, and does not require training data, but it does 

not directly address the separation between the classes of interest into hyperspectral data. 

The presence of large inhomogeneities in the series, such as large-magnitude abrupt 

changes in series variable (jumps or spikes), may lead to spurious results in detecting fractal 

scaling and calculating Hurst exponents [12]. 

The Hurst method provides an assessment of variability values from hyperspectral 

curve. Estimating the Hurst exponent for a data set provides a measure of whether the data is 

a pure white noise random process or has underlying trends. It is also used in characterizing 

stochastic processes. Using the Hurst exponent we can classify time series into types and 

gain some insight into their dynamics. 
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Practically, the Hurst exponent is a measure of autocorrelation (persistence and long 

memory). 

o A value of )5.0,0(H indicates a time series with negative autocorrelation (e.g. a 

decrease between values will probably be followed by an increase). The series is 

antipersistent.  

o A value of )1,5.0(H indicates a time series with positive autocorrelation (e.g. an 

increase between values will probably be followed by another increase). The series 

is persistent. 

o A value of 5.0H indicates a “true random walk”, where it is equally likely that a 

decrease or an increase will follow from any particular value (e.g. the time series has 

no memory of previous values). Series of this kind are hard to predict because there 

is no correlation between the observations and a future observation; being higher or 

lower than the current observation are equally likely. 

Also, the Hurst exponent is referred to as the “index of dependence” or “index of long-

range dependence”. 

The Hurst exponent is not so much calculated as it is estimated. A variety of techniques 

exist for estimating the Hurst exponent (H) and the process detailed here is both simple and 

highly data intensive. 

To estimate the Hurst exponent one must regress the rescaled range on the time span of 

observations. 

To do this, a time series of full length is divided into a number of shorter time series and 

the rescaled range is calculated for each of the smaller time series. A minimum length of 

eight is usually chosen for the length of the smallest time series. 

Below we describe the algorithm from “Using Hurst and Lyapunov Exponent for 

Hyperspectral Image Feature Extraction” – Jihao Yin, Member IEEE, Chao Gao, and 

Xiuping Jia, Senior Member IEEE). 

This algorithm uses the rescaled range analysis method. This method computes a ratio 

R/S (range/ standard deviation). 

Rescaled range analysis reveals whether or not a timeseries exhibits persistence or anti-

persistence bias. 
R/S provides a simple tool for analyzing the time series in form of a plot. The Hurst 

exponent H, which ranges between 0 and 1, can be derived as the slope in the plot, in which 

ln(R/S) is plotted against ln(t), where t is the time step. 

  
Fig. 1. An antipersistent series with 200 terms. 

H=0.3881 

Fig. 2. A persistent series with 200 terms. H=0.9343 
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3. HURST ALGORITHM 

A hyperspectral image can be illustrated as an image cube with the two dimensions of the 

cube face representing the spatial information and the third dimension representing the 

spectral information. 

The spectral information available in a hyperspectral image (cube) is organized in a 

tridimensional matrix (each plane is an image corresponding to one wavelength band) named 

HS3D. 

From the point of view of subsequent calculations we abandon the idea that the three-

dimensional matrix represents the image; it is considered now that there is just a three-

dimensional matrix that will be reorganized in a bidimensional matrix, HS2D, by the rule: 

each column of the bidimensional matrix contains the entire image from one spectral band. 

Thus, the number of columns of the bidimensional matrix will be equal to the spectral 

bands number, and the number of the rows will be equal to the image dimension in one band. 

 
Fig 3. A hyperspectral image (from Yuliya Tarabalka, Jón Atli Benediktsson, Jocelyn Chanussot, IEEE, and James C. Tilton; 

Multiple Spectral–Spatial Classification Approach for Hyperspectral Data) 

The vector njmixxxX ijpijijij ,1;,1),,,,( 21     is named, in this context, 

“spectral vector” of (i, j) pixel or “pixel vector”. Pixel vectors or spectra are defined as the 

vectors formed of pixel intensities from the same location, across the bands. Each pixel 

vector is treated as a time series ),,,( 21 pxxxx  . 

Steps for estimating the Hurst exponent after breaking the time series into subseries: 

For each subseries of observations, Hurst algorithm computes: 

 the mean of the time series, 

 a mean centered series by subtracting the mean from the series, 

 the cumulative deviation of the series from the mean by summing up the mean 

centered values, 

 the Range (R), which is the difference between the maximum value of the 

cumulative deviation and the minimum value of the cumulative deviation, 

 the standard deviation (S) of the mean centered values, and 

 the rescaled range by dividing the Range by the standard deviation. A high standard 

deviation indicates that the data values are spread out over a large range of values. 

1. Divide the given series  Kkxk ,...,2,1|   into D subseries, where K is the total 

number of bands. The dth subseries is denoted as 

  DdndndkxX kd ,...,2,1,*,...,1*)1(|  . 
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The length of each subseries n is set between ],[ln KKn  . Note the subseries 

elements with 

.,...,2,1;,...,2,1,*)1(, niDdxg indid    

2. For each subseries, we compute the mean dm  and the standard deviation dS  



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3. Normalize each subseries by subtracting its sample mean: 

.,...,2,1,,, nimgg didid   (n subserie’ s length). 

4. Find the mean-removed cumulative series {cd,i} and its range Rd for each subseries 
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5. Calculate the mean value nSR )/(  for all subseries with length n  
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6. Repeat the aforementioned steps for all possible n. 

7. The H is estimated by the following empirical equation. 

H
n ncSR *)/(   

By logarithm of both terms of the above equation, the H value can be obtained 

considering the expresion 

nHcSR n ln*ln)/ln(   

as a linear regression in which c and H can be estimated (using Matlab's polyfit). 

4. EXPERIMENTS 

Based on this algorithm we have built a matlab function to determine the Hurst exponent for 

each hyperspectral curve from a scene gathered by AVIRIS senzor over Indian Pines site in 

North-western Indiana. This hyperspectral image consists of 145X145 pixels in 200 spectral 

bands in the wavelength range 0.4-2.5 μm, with approximately 10 nm spectral resolution and 

30 m spatial resolution. A hyperspectral image can be illustrated as an image cube with the 

two dimensions of the face of the cube represents the spatial information and the third 
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dimensional representing the spectral information. The spectral information available in a 

hyperspectral image (cube) is organized in a tridimensional matrix (each plane is an image 

corresponding to one wavelength band) HS3D. From the point of view of subsequent 

calculations we abandon the idea that the three-dimensional matrix represents the image; it is 

considered now that there is just a three-dimensional matrix that will be reorganized in a 

bidimensional matrix, HS2D, by the rule: first column of bidimensional matrix includes all 

the columns of HS3D, placed successively, where, p=1; second column will contain all 

columns of the hs3d matrix, placed successively, where p=2, and so on. Each row can then 

be written as vector and regarded as a chaotic series. If the hyperspectral image consists of 

hXw pixels in p spectral bands, the 3D hyperspectral image will be HS3D(h,w,p) and the 

bidimensional HS2D(h*w,p). 

The pixel ),,( kjix from ),,( kji  position in HS3D, in HS2D will be in 

ijhhwk  )1()1(  position, where .,,2,1;,,2,1;,,2,1 pkwjhi    

Using statistical language, we consider that the vectors pixels of a hyperspectral image 

are observations and their components are variable associated features. 

  
Fig. 4 Hyperspectral images on a scene on Earth’ surface Fig. 5 Pixel reflectance. Reflectance is a unitless 

quantity that ranges in value from 0 to 1.0 

These figures are from “Hyper&Multispectral _Imaging.pdf”, Dr. Richard Gomez, Applied Technology 

Institute (ATI). 

 

Fig. 6 Airborne Visible IR Imaging Spectrometer image of 

Purdue Indiana Indian Pine test site 
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Fig 7. Pixel’s vector (are highlighted their position in the 

original image) 

        H is the slope of regression line 

 

 
Fig. 8 R/S and regression line ( H= slope of regression line) 

 
0.9506    0.9222    0.9085    0.9348    0.9379    0.9455    0.9491    0.9314 

0.9243    0.9175    0.9255    0.9523    0.9421    0.9536    0.9640    0.9599 

0.9327    0.9406    0.9167    0.9373    0.9656    0.9278    0.9450    0.9356 

0.9433    0.9125    0.9144    0.9220    0.9709    0.9513    0.9183    0.9501 

0.9296    0.9171    0.9352    0.9319    0.9495    0.9609    0.9456    0.9594 

0.9367    0.9425    0.9415    0.9248    0.9328    0.9713    0.9270    0.9304 

0.9460    0.9593    0.9384    0.9415    0.9575    0.9562    0.9366    0.9753 

0.9480    0.9548    0.9471    0.9297    0.9671    0.9415    0.9360    0.9423 
 

Fig. 9 The H values for a small region of Indian Pine hyperspectral image ( 8x8 

pixels - upper left corner). H>0.5 each pixel vector represent a persistent series 
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Fig. 10 The H exponent for a small region (50x50 pixels) of Indian Pine hyperspectral image. Because H>0.5 

each pixel vector represents a persistent series 

5. CONCLUSION 

The Hurst exponent is a useful statistical method for inferring the properties of a time series 

without making assumptions about stationary. It is most useful when used in conjunction 

with other techniques, and has been applied in a wide range of industries. The Hurst 

exponent is frequently calculated for experimentally obtained data sets to characterize noise 

data series or in characterizing stochastic process. 
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