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Abstract: It is to be expected that space robotics systems will develop more and more in the future 
spatial applications. One of the most challenging and risky missions for spacecraft is to perform 
autonomously Rendezvous and Docking (RvD) in space. This paper describes a hardware-in-the-loop 
RvD simulation facility which uses two ABB industrial robots to simulate the 6-DOF dynamic 
manoeuvring of the rendezvous process. Firstly, we also simulate the real robots and we deduce the 
kinematic and dynamic equations of space robotic system, then the trajectory is planned. The target 
motion is reduced only to the movement of the end-effector, but the chaser’s motion is based on the plan 
which solves the inverse kinematic equations, considering the movement limitations of the joints. 
Finally, a 3D simulation system was developed to evaluate the proposed method using Matlab/ Simulink 
environment. Simulation results verified the corresponding method and algorithms. 
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1. INTRODUCTION 
Industrial robots are mechanical manipulators that rely on user controls, or can make their own 
decisions based on sensors inputs. The decision making and actions of the robot completely 
depends on the program running on the robot’s computing unit. In a robotic programming the 
input devices include robot sensors, teach pendants and touch screens, and the output devices 
include displays and actuators. Any of the programming languages can program robots, but 
C++, Python and Matlab/Simulink are the most commonly used. 
Robot simulators are useful tools for developing robot behaviour and provide a fast and 
efficient means for testing real robots. Software such as Robotics Developer Studio built on 
the ABB Virtual Controller is a PC application for modelling, offline programming, and 
simulation of robot cells. RAPID is the programming language used in ABB industrial robots 
to automate robotic applications. 
Hardware-in-the-loop (HIL) simulation is a technique for validation and control of the robotic 
programs by creating a virtual real-time environment that represents the real physical system. 
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HIL helps to test the behaviour of robots without physical prototypes. HIL simulation runs on 
an intended target controller. 
The Robot Operating System (ROS) is another set of software libraries and tools that helps 
building robot applications. ROS contains many open source implementations of common 
robotics functionality and algorithms [15-18], [21], [24-28]. 
Basically, ROS is a framework for communicating between two programs or processes. ROS 
processes are represented as nodes in a graph structure, connected by edges called topics over 
which nodes send and receive messages. 

2. ROBOT MANIPULATORS IN JOINT SPACE 
The mechanical system of a serial robot consists of a configuration of n+1 rigid body, called 
links or "body", linked to each other successively through the n rotating joints called “joint”. 
The links are assumed to be perfectly rigid and are numbered such that link 0 constitutes the 
base of the robot and link n is the terminal link. Thus, joint i connects link i-1 and link i. The 
relative positions of these elements determine the overall position of the mechanical arm. 
This position is of interest in robot applications. Each link contains a single degree of freedom 
relative to the previous link so that the transformation relationships between items contain a 
single variable parameter. 
This parameter is the angle of rotation in the case of a “revolute” joint. The crowd of these 
angles forms the joint positions or joint configurations.  
Knowing the geometry of the robot and all the positions of its joint, it is possible perform its 
mathematics and determine the position and orientation of any point on the robot. Therefore, 
joint positions can be controlled to place the end effector (tool) of the robot in 3D space. This 
is known as forward kinematics (FK). 
Forward kinematics will determine where the tool of the robot manipulator will be if all joints 
are known. The FK objective is to determine the cumulative effect of the entire set of joint 
variables. 
In many robotics applications, we want to calculate the joint angles needed such that the end 
effector reaches a specific position and orientation. 
This is known as inverse kinematics (IK). Inverse Kinematics (IK) analysis determines the 
joint angles for desired position and orientation in Cartesian space for an end effector as a 
homogenous transformation.  
The solution of inverse kinematic is more complex than direct kinematics and there is not any 
global analytical solution method. 
Hence, forward kinematics is defined as transformation from joint space (joint configuration) 
to Cartesian space while inverse kinematics is defined as transformation from Cartesian space 
to joint space [12-14]. 
Modelling and simulation are two processes used for developing and testing robot behaviour 
inside his workspace. 
The robot workspace is the total volume swept out by the end effector when the manipulator 
executes all possible motions. The position control problem consists in driving the manipulator 
end-effector (the joint variables, respectively) to the desired position, regardless of the initial 
posture. 
This problem consists in solving, in one single step, the following sub-problems: path 
planning, trajectory generation and control design. Generally, the most important property in 
a control system, is its stability [8]. 
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Fig. 1 The relationship between direct and inverse kinematics problem 

3. KINEMATIC MODELLING 
The kinematics model deals with the spatial position of links and joints without considering 
the forces or moments that cause the motion. 
The forward kinematics studies the effect of the entire set of joint variables on the position and 
orientation of the tool. 
Denavit and Hartenberg [1] proposed that four parameters assign orthogonal frames to each 
link of a manipulator and these DH parameters have become the most common standard 
method for describing the robot kinematics. 
DH parameters θi, ai, di, αi are the parameters of link i and joint i. The DH parameters give the 
angles and displacements between frames. 

• ai (link length), is the offset distance between zi-1 to zi axes, measured along xi; 
• αi (link twist), is the angle from zi-1 axis and zi axis measured about xi axis; 
• di (link offset), is the distance from the origin of frame i−1 to the xi axis along zi-1 axis; 
• θi (joint angle), is the angle between xi-1 and xi, measured about zi-1 axis. 

Note. The z-axis should lie on the axis of rotation, for a revolute joint, the x-axis should lie 
along the “common normal”, which is the shortest orthogonal line between the previous z-axis 
and the current z-axis. 
In representing the frame, the axes are drawn using the following color z-axis (blue), x-axis 
(red) and y-axis (green). 
The generalized joint coordinate denoted by qi, corresponds to the angular displacement 
around zi if the i-th joint is revolute. 
The Direct Geometric Model is the set of relations that defines the location of the end-effector 
of the robot as a function of its joint configurations. 
For a serial structure, it may be represented by the transformation matrix 0Tn= 0T1 1T2   n-1Tn = 
F(q) where each transformation Ti is represented as a product of four basic transformations Ti 

= Rotz,θi Transz,di Transx,ai Rotx,αi; 

i-1Ti = 

cosθi    -sin θi cosαi     sin θi sinαi      ai cosθi 
sinθi      cos θi cosαi   -cos θi sinαi      ai sinθi 
  0             sinαi               cosαi               di 
  0               0                     0                   1 

 (1) 

Finally, transformation is given by the following matrix multiplication and is generally 
represented as follow: 
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0T6= 0T1 1T2    5T6 = 

lx     mx     nx     px 
ly     my     ny     py 

lz     mz     nz     pz 
0      0      0       1 

 (2) 

where l, m, n are orthogonal vectors and they represent the orientation (rotation element), p is 
a vector which represents the position. The fourth column of this matrix defines the coordinates 
of the origin of the end-effector frame referred to the reference frame. The first column of this 
matrix defines the projections of the normal axis of the tool frame onto the x, y and z axes of 
the reference frame axes. The second column defines the projections of the orientation vector 
y onto the x, y and z axes of the reference frame axes. The third column defines the projections 
of the vector z on to the x, y and z axes of the reference frame axes. 

4. MODELLING A 6_DOF MANIPULATOR USING MATLAB SOFTWARE 
In this paper we will refer to the industrial robots IRB4600-60 and IRB7600-500/2.55 installed 
in the INCAS SpaceLab Laboratory. The control of these robots is made by Industrial 
RobotController S4Cplus [11], [29-30]. It admits the programming of robots in RAPID 
language, TCP/IP communication or other protocols. The mechanical system of both serial 
robots consists of a configuration of 6+1 rigid bodies, linked to each other successively 
through the 6 rotating joints. These 6 joints define the 6 degrees of freedom (DOF). 
For the modelling of the IRB robots installed in the laboratory were used the following two 
Matlab tools: 

• Robotics_Vision_Control-Rvctools. The development of this toolbox respects the 
terminology of Denavit and Hartenberg [20], [22-23]. 

• Matlab Robotics system Toolbox [21], [24] . 
In addition, the simulation of the kinematic behaviour of the robot using Matlab instruments 
was compared with that made with RobotStudio. The table below shows data extracted from 
the documentation attached to the ABB7600-500/2.55 product. 
 

 

 
 

Alpha 
 

 
 

a(m) 

 
 

theta 

 
 

d(m) 

-pi/2 0.41 0 0.78 
0 1.075 -pi/2 0 

-pi/2 0.165 0 0 
pi/2 0 0 1.056 
-pi/2 0 0 0 

0 0 pi 0.25 

Fig. 2a  Robot ABB7600-500/2.55 Fig. 2b  Denavit and Hartenberg Parameters (DH) for 
IRB7600-500/2.55 robot 

Table 1. ABB7600-500/2.55 Joint position  

Joint position Local ref. frame(xyzl ) joint axis 
0 0 0 0 0 0 0 0 1 
a(1) 0 d(1) a(1) 0 d(1) 0 1 0 
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a(1) 0 d(1)+a(2) 0 0 a(2) 0 1 0 
a(1) 0 d(1)+a(2)+a(3) 0 0 a(3) 1 0 0 
a(1)+d(4) 0 d(1)+a(2)+a(3) d(4) 0 0 0 1 0 
a(1)+d(4)+d(6) 0 d(1)+a(2)+a(3) d(6) 0 0 0 0 1 

Table 2. ABB7600-500/2.55 motion range (joint motion range) 

J1 J2 J3 J4 J5 J6 
-180 180 -60 85 -180 60 -300 300 -100 100 -360 360 

 

Based on this data, the rigid body tree model was created using Matlab classes Link, SerialLink 
or robotics.RigidBodyTree. Every rigid body tree has a base. The base defines the world 
coordinate frame and is the first attachment point for a rigid body. The base cannot be 
modified. The base origin is [0 0 0]. Each rigid body has a joint that defines how that body 
moves relative to its parent in the tree. Specify the transformation from one body to the next 
by setting the fixed transformation on each joint [4]. Robotics System Toolbox assumes that 
the positions and orientations are defined in a right handed Cartesian Coordinate System [19]. 
Using the codes below, two models were created for the same ABB7600 robot represented in 
figures 3a and 3b. 
Create robot body tree model using SerialLink [20]. 

dhparams=[theta;d;a;alpha]'; 
                          L(i) = Link ([dhparams(i,:)   0      0] , 'standard');    i=1:6 

IRB7600SL = SerialLink(L, 'name', 'IRB7600SL INCAS'); 
Create robot body tree model using RigidBodyTree[21]. 

type='revolute';  
for ilink=1:nr_links 
       body(ilink)=robotics.RigidBody(strcat('body',num2str(ilink))); 
        joint (ilink) = robotics.Joint(strcat('joint' ,num2str(ilink)), type); 
        setFixedTransform(joint(ilink),trvec2tform(xyzl(ilink,:) )); 
        joint(ilink).JointAxis = JAxis(ilink,:); 
        joint(ilink).PositionLimits= [limitsrad(ilink,1) limitsrad(ilink,2)]; 
        body(ilink).Joint = joint(ilink);  
        if ilink==1  
             addBody(IRB7600RB, body(ilink), 'base'); 
        else 
             addBody(IRB7600RB,body(ilink), strcat('body',num2str(ilink-1))) 
        end 

  
Fig. 3a  Robot model using SerialLink Fig. 3b  Robot model using RigidBodyTree 
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Table 3. The models for ABB4600-60/2.05 are analogous where DH parameters are in the table 
 
 
 
 
 

Table 4. ABB4600-60/2.05 motion range (joint motion range) 

J1 J2 J3 J4 J5 J6 
-180 180 -90 150 75 -180 -400 400 -125 120 -400 400 

Regarding the ABB7600-500/255 robot, we start with the description of the direct kinematics 
as serial link using (1) and (2) that have been implemented in Matlab programs. The kinematic 
chain F(q) that describes the direct kinematics of the serial link robot IRB7600 is the following 
set of matrices: 
 

 

0T1 

  1.00  -0.00  -0.00   0.41  
  0.00   0.00   1.00   0.00  
  0.00  -1.00   0.00   0.78  
  0.00   0.00   0.00   1.00 

 

1T2 
  0.00   1.00  -0.00   0.00  
 -1.00   0.00  -0.00  -1.07  
  0.00   0.00   1.00   0.00  
  0.00   0.00   0.00   1.00 

 

2T3 
  1.00  -0.00  -0.00   0.17  
  0.00   0.00   1.00   0.00  
  0.00  -1.00   0.00   0.00  
  0.00   0.00   0.00   1.00 

 

3T4 
  1.00  -0.00   0.00   0.00  
  0.00   0.00  -1.00   0.00  
  0.00   1.00   0.00   1.06  
  0.00   0.00   0.00   1.00 

 

4T5 
  1.00  -0.00  -0.00   0.00  
  0.00   0.00   1.00   0.00  
  0.00  -1.00   0.00   0.00  
  0.00   0.00   0.00   1.00 

 

5T6 
-1.00  -0.00   0.00  -0.00  
  0.00  -1.00   0.00   0.00  
  0.00   0.00   1.00   0.25  
  0.00   0.00   0.00   1.00 

 
 

0T6= 0T1 1T2. . . 5T6 = 
 
(0T6=robot-baseTend-effector) 

-0.00  -0.00   1.00   1.72 
-0.00   1.00   0.00   0.00 
-1.00  -0.00  -0.00   2.02 
  0.00   0.00   0.00   1.00 

For the initial joint configuration q=[0 0 0 0  0 0];   TCP=[1716       0  2020], and for q=[0 0 0 
0  30 0]; TCP=[1682.51  0  1895]. These results were confirmed with RobotStudion solution. 
The tool center/centre point (TCP) is the point in relation to which the entire positioning of the 
robot is defined. 
Using Matlab guide we created an interface that allowed the user to determine the robot end-
effector position and orientation for different joint configurations [31].  
The functions used are robot.fkine for serial link model and setFixedTransform and 
replaceJoint for rigid.body model. 

Table 5. User interface for setting joint configuration and observing the result 

Joint’s configuration Robot position (model serial link) end-effector pose including TCP 

  

 

 
   q=[-80  0  -9  -42  56  0]; 

5. MOTION CONTROL OF ROBOT 
The main application in which we will use the two robots installed in the INCAS SpaceLab 
Laboratory is the simulation of an autonomous spatial rendezvous and docking. This process 

alpha -pi/2 0 -pi/2 pi/2 -pi/2 0 
a 0.175 0.9 0.175 0 0 0 
theta 0 -pi/2 0 0 0 pi 
d (m) 0.495 0 0 0.96 0 0.135 
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consists of a series of orbital manoeuvres and controlled trajectories, which successively bring 
the active vehicle (chaser) into the vicinity of, and eventually into contact with, the passive 
vehicle (target) [5]. 
Equations of motion in the orbital plane can be used for trajectory analysis until the chaser 
vehicle is in the close vicinity of the target. 
For relative navigation it becomes more convenient to keep one of the spacecraft as a fixed 
point (target). We distinguish two stages for the simulation of an autonomous spatial 
rendezvous using robots. 
First, we create applications for the offline control of robots, then these applications will be 
implemented on real robots. 
In this paper we are concerned with the control of the robot end-effector to describe a certain 
trajectory in its own motion envelope [12-14]. 
The work is focused on establishing the procedures and software programs to control the 
movement of one of the robots (IRB7600) in order to move it through a trajectory. To achieve 
this we used procedures specific to the inverse kinematics [2,] [3], [6], [7], [10]. 
Inverse Kinematics involves determining a set of appropriate joint configurations for which 
the end effectors move to desired positions as smoothly, rapidly, and as accurately as possible 
[8-9]. 
Trajectory generation consists in parameterizing in time during the path planning but our 
reference trajectory is defined in terms of coordinates in robot workspace. 
Once a trajectory is generated, the Inverse Kinematics block is used to translate his Cartesian 
space to a joint-space trajectory, which can then be used to simulate the dynamics of the robot 
manipulator. 
Using inverse kinematic procedure q=F-1(end-effector pose) the joint configuration for several 
trajectories was obtained. 
Figure 4a shows a trajectory through several points through which the end effector of the robot 
will pass. 
In those points its orientation is required as in Figure 4a. Fig. 4b shows the Joint angles along 
the trajectory that are obtained with inverse kinematics procedure. 
 

  

Fig. 4a  Cartesian trajectory between a sequence 
poses 

Fig. 4b  Joint configuration along the trajectory 

For the IK analysis with MATLAB tools we used serial link and rigid body models and for the 
ABB model (from ABB database) RobotStudio Simulator [11]. Matlab’s Inverse Kinematics 
tools are robotics InverseKinematics and GeneralizedIK classes. These classes are builted 
based on iterative algorithms Broyden–Fletcher–Goldfarb–Shanno ((BFGS)) or Levemberg – 

https://localhost:31515/static/help/robotics/ref/inversekinematics.html
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Marquardt [21]. The IK simulation with RobotStudio used the RAPID. Figures 5 capture a 
moment of movement of the three models in a trajectory. 

   

Fig. 5a  Robot serial link browse a 
date path 

Fig. 5b  Robot Rigid body browse 
a date path 

Fig. 5c  Robot RobotStudio 
browse a date path 

A MATLAB interface gives the user the opportunity to choose a point on the trajectory and 
one or two of the joints and will get the information below: 

 
Fig. 6  Control values on robot Trajectory 
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Fig. 7  Chaser seek for Target (in RobotStudio) 

The relation between the Cartesian space of the end-effector and joint space of the joint angles 
can be also achieved using jacobian matrix. The jacobian of any robot manipulator structure 
is a matrix that relates the endeffector linear and angular Cartesian velocities with the 
individual joint velocities 

𝐽𝐽(𝑞𝑞). 𝑞̇𝑞 = �𝑣𝑣𝑤𝑤�,        𝑞̇𝑞 = 𝐽𝐽−1(𝑞𝑞). 𝑋̇𝑋  ,             𝑋̇𝑋 =  �𝑣𝑣𝑤𝑤�. (3) 

where J(q) is the jacobian matrix of the robot manipulator, 𝑞̇𝑞 = [𝑞̇𝑞1 , 𝑞̇𝑞2,  𝑞̇𝑞3, 𝑞̇𝑞4 ,  𝑞̇𝑞5,  𝑞̇𝑞6] the 
joint velocity vector, 𝑣𝑣 = [𝑣𝑣1, 𝑣𝑣2,  𝑣𝑣3]𝑇𝑇 is the end-effector linear velocity vector, and 𝑤𝑤 =
[𝑤𝑤1, 𝑤𝑤2,  𝑤𝑤3]𝑇𝑇 is the end-effector angular velocity vector [8]. 
The 𝐽𝐽−1(𝑞𝑞) calculation process is a two-phase iterative process. The first phase consists in 
calculating the transformation matrices (1) to obtain the end-effector position. Then the end-
effector position is changed in the desired one. The second phase calculates Jacobian matrix 
inversion and changes joint angles using (3). The mentioned phases repeat until the difference 
between the current and the desired end-effectror position comes below a defined value or  
until the given number of iteration steps is reached. 

6. CONCLUSIONS 
The simulation of an autonomous spatial rendezvous and docking processes using ABB robots 
can be accomplished successfully. This process consists in controlling the movements of both 
robots. In general, the control of a robot involves solving stability problems, positioning 
control issues, trajectory tracking and even optimisation of its movement. The motion control 
problem consists in making the end-effector go to a specified point regardless of the trajectory 
(point to point method). Analyzing the results of the developed simulation programs we 
conclude that they can be used to control the Kinematic movement of any robot and they can 
be implemented on real robots. These gives correct joint angles so that the robot arm with its 
end- effector can easily moved to any reachable positions and orientations for performing a 
pick and place task. Also these programs can be used to solve kinematics for other robotics 
arm. 
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