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Abstract: This paper is the first part of a 2D description of a single crystal thin plate growth by 

micro-pulling–down (μ-PD) method. This part concerns the following aspects: the free surface 

equation and the pressure difference across the free surface (section 2); limits of the pressure 

difference p across the free surface (section 3); static stability of the free surface (section 4); the plate 

half thickness change rate due to the change of the pressure difference p across the free surface and 

the half half-thickness control (section 5). 

Numerical illustrations of the above aspects is given in case of a Si thin plate of 0.0001 [m] by using 

the Maple 17 software. 

The advantage of this description is that it helps to better understand the dependence of the meniscus 

free surface shape and size on the pressure difference across the meniscus free surface and may help 

the automation of manufacturing. 
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1. INTRODUCTION 

The near two-dimensional single crystal plates have attracted some attention on the 

applications of optical and electronic devices.  

A method for growing single crystal plates from the melt is the edge-defined film-fed 

growth (E.F.G.) method. 

The micro-pulling down (μ-PD) (Fig. 1) is a variant of the inverse EFG method and 

could be a second method of the single crystal thin plate growth from the melt. 

In any case the micro-pulling down (μ-PD) method  developed by Fukuda’s laboratory 

in Japan [1]-[9], has been shown promising in producing single crystal fibers with good 

diameter control and concentration uniformity. 
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Figure 1. Schematic diagram of the μ-pulling-down plate growth process 

2. THE FREE SURFACE EQUATION AND THE PRESSURE DIFFERENCE 

ACROSS THE FREE SURFACE IN A PD GROWTH PROCESS 

The free surface of the meniscus (see Fig. 1) is described mathematically by the Young-

Laplace equation [10, 11]: 

( ) ba PPRR −=+ 21 /1/1  (1) 

Here:   is the melt surface tension; 21 /1,/1 RR  denote the main normal curvatures of the 

free surface at a point M of the free surface; aP  is the pressure in front of the free surface; 

bP  is the pressure behind the free surface (Fig. 1). The pressure bP  behind the free surface is 

the sum of the hydrodynamic pressure mp  in the meniscus melt (due to the convection), the 

Marangoni pressure Mp  due to the thermal Marangoni convection and the hydrostatic 

pressure of the melt column behind the free surface equal to )( mhzg +  (see Fig. 1). Here: 

  denotes the melt density; g  is the gravity acceleration; z  is the coordinate of M with 

respect to the Oz axis, directed vertically downwards; mh  denotes the melt column height 

between the horizontal crucible melt level and the shaper bottom level (Fig. 1). The pressure 

difference ba PP −  across the free surface is denoted usually by p  and, according to the 

above considerations 

)( mMma hzgppPp +−−−=  (2) 

The part p  of the total pressure difference p  given by: 

Mmma pphgPp +++−=  (3) 

is independent of the spatial coordinate z  (it can depend on the moment of time t ) and the 

major part of p is ma hgP +− . That is because the sum Mm pp +  in general is small with 
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respect to ma hgP +− . For this reason thereafter it is assumed that the pressure difference 

p  is given by: 

ma hgPp +−=  (4) 

Remark that the pressure difference p  given by (4) can be controlled by aP  and mh . 

With this approximation the Young-Laplace free surface equation (1) can be written as: 

( ) pzgRR −−=+ 21 /1/1  (5) 

Therefore, for a meniscus free surface which is symmetric with respect to the vertical 

plane YOZ and is independent on the coordinate y [10], [11], the differential equation of the 

meridian curve of the free surface is given by: 

( )  2
3

2
'1" z

pzg
z +



+
−= ;    dc xxx   (6) 

where cx  is the tape half-thickness and dx  is the shaper half-thickness, respectively. 

The function ( )xz , describing the meridian curve profile, verifies the following 

boundary conditions: 

( ) ( )gcxz −−= 2/tan'  ;               0)( = cc hxz  (7) 

( ) cdxz −= tan'  ;                           ( ) 0=dxz  (8) 

( )xz  is strictly decreasing on  dc xx ,  (9) 

The first condition in (7) expresses that at the three phase point ),( cc hx , where the 

thermal conditions for solidification have to be realized ( ch  is the crystallization front level), 

the angle between the tangent line to the meridian curve of the free surface and the vertical is 

equal to the growth angle g . If this condition is satisfied during the whole growth process, 

then the plate thickness is constant. The second condition in (7) expresses that the height of 

the crystallization front is equal to 0ch . The first condition in (8) expresses that at the 

point )0,( dx , where the meridian curve touches the outer edge of the shaper, the catching 

angle (contact angle) is equal to c . The second condition in (8) expresses that at the point 

)0,( dx  the meridian curve is fixed to the outer edge of the shaper. Condition (9) expresses 

that the meniscus shape is relatively simple. For the static stability of the free surface the 

function ( )xz , describing the meridian curve profile, beside the conditions (6), (7), (8) and 

(9), has to minimize the functional of the  free energy  of the melt column behind the free 

surface [10], [11], given by: 

( ) ( ) 








−−+=
d

c

x

x

dxzpzgzzI 22
1

2

2

1
'1  (10) 

Note that only statically stable free surface can exist in the real world. Equations (6)-

(10) define a part of the 2D model of the process. 
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3. LIMITS OF THE PRESSURE DIFFERENCE p  IN A μ-PD GROWTH 

PROCESS 

If p  is arbitrary, then it can happen that there is no function )(xz  defined for  dc xxx ,  

which verifies (6) - (9) and supplementary 0)(" xz . This means that there is no convex 

static meniscus symmetric with respect to the plane YOZ having convex meridian curve 

independent on y. The following statement is a necessary condition for the existence of a 

function )(xz  having the properties (6) - (9) and 0)(" xz  for  dc xxr , . 

Statement 1. If 2/+ gc  and there are )(xz  defined for  dc xxx ,  which verifies (6) 

- (9) and 0)(" xz , then p  satisfies: 

( ) ( )

g

d

gc

gdc

d

gc

n

n

x

p
n

n
xg

n

n

x


−


−+



−
−

−
−


−+



sin
1

2/

2/tan
1

cos
1

2/

 (11) 

where 1/ = cd xxn . 

 The proof of this statement can be found in Appendix. In the following we show how to 

use the above inequalities to create a convex static meniscus that is symmetric to the plane 

YOZ having convex meridian curve independent on y. 

 For instance, in case of a thin Si plate the following numerical data are used [12], [13]: 

  ;102 4 mxd
−=   ;523.0

1
radc =  ;192.0 radg =  ;/1058.2 33 mkg=

 2/81.9 smg = ; = 0.765 [N/m] and  mxc
4101 −= . 

The pressure limits appearing in (11) (Statement 1) are denoted by: 

( ) ( )gdc

d

gc

n

n
xg

n

n

x
nL −

−
−

−


−+
= 2/tan

1
cos

1

2/
)(1  (12) 

g

d
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n

n

x
nL 

−


−+
= sin

1

2/
)(2  (13) 

For n  in the range ]10,01.1[ these limits are represented in Fig. 2. 

 

Figure 2. The pressure limits for ]10,01.1[n : the lower limit )(1 nL  (red curve), the upper limit )(2 nL   

(blue curve) 
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For 2dc xx =  the value of n  is 2== cd xxn  and the pressure limits are )2(1L = - 

5350.677670 [Pa]; )2(2L = - 1175.797552 [Pa]. So, the values of p have to be in the range of 

[- 5350.677670; - 1175.797552] [Pa]. In practice, the value of ma hgPp +−=  can be 

controlled through the values of aP  and mh . But the values of p  should range in a large 

interval and we don't know which value of p  is appropriate. Moreover, it is not sure that in 

the above range there is a value of p  for which a meniscus exists which is symmetric to the 

YOZ plane independent on y and with convex meridian curve (the condition (11) is only 

necessary). In order to answer these questions the following initial value problem: 















==






+
=



−=

cdd xxz

pzg

dx

d

dx

dz

)(,0)(

cos

1

tan

 (14) 

has to be solved numerically for different values of the pressure difference p  in the range   

[- 5350.677670; - 1175.797552] [Pa]. In this way a family of solution is obtained ),( pxzz = , 

),( px=  depending on p . That value of p  is good for which the growth angle is 

achieved at 
cx ; i.e. ( ) ( )gc pxz −−= 2/tan,' . In this way it is found that the value of p  is 

p = - 3472.5 [Pa] for this value of p at ][101 4 mxc
−=  the growth angle g  is achieved; i.e. 

=−= gcx 2/)( 1.37871023884957 [rad]. For this value of p  the level of the 

crystallization front cc hxz =)(  is ].[104011.1 4 mhc
−=  The profile of the meridian curve of 

the meniscus )(xzz =  in this case is presented in Fig. 3a and the variation of )(x  in Fig. 

3b. 

                       

Figure 3a. Meridian curve shape )(xzz =                          Figure 3b. Variation of )(x  

=p -3472.5[Pa], ][101 4 mxc
−=

                           
= ),( pxc 1.37871023884957 [rad]

  

               

].[104011.1 4 mhc
−=

 Computation reveals that in the considered range there is no other value of p  such that 

for ][101 4 mxc
−= , =−= gcx 2/)( 1.37871023884957 [rad]. At this point it has to be 
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noted that the downward orientation of the OZ axis in Fig. 1. and the upward orientation of 

the OZ axis in figures Fig. 3a; Fig. 4a; Fig. 5a; Fig. 6a; Fig. 7a; Fig. 9a; Fig. 10a; Fig. 12a; 

Fig. 13a are opposite. For that, these last figures have to be rotated with 180 degrees around 

the OX axis in order to obtain the meridian curve shape as presented in Fig. 1. 

Remark. The same computation reveals that for different values of p  in the range [- 5350, - 

1737.9] [Pa] there are different values of )(pxc  for which =−= gcx 2/)(

1.37871023884957 [rad]. More than that, when p  increases from value of - 5350 [Pa] to 

value of - 1737.9 [Pa] then )(pxc , having the above property, decreases from value of 

0.0001351 [m] to value of 0.00000001 [m] and )())(( phpxz cc =  increases from value of 

0.00009094869 [m] to value of 0.00028024634269 [m]. For p = -5350 [Pa] the meridian 

curve of the corresponding meniscus ),( pxzz =  is presented in Fig. 4a and the variation of 

),( px  in Fig. 4b. 

                    
Figure 4a. Meridian curve shape ),( pxzz =                   Figure 4b. Variation of ),( px  

              p = - 5350 [Pa], =)(pxc 0.00001351 [m]             = )( cx 1.37871023884957 [rad] 

=)(phc 0.00009094869 [m]  

For p = - 1737.9 [Pa] the meridian curve of the corresponding meniscus ),( pxzz =  is 

presented in Fig. 5a and the variation of ),( px  in Fig. 5b. 

                      

            Figure 5a. Meridian curve shape ),( pxzz =                      Figure 5b. Variation of ),( px  

           p = - 1737.9 [Pa], =)(pxc 0.00000001 [m]             = )( cx 1.37871023884957 [rad] 

          =)(phc 0.00028024634269 [m] 
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In other words, the computation reveals that to any p in the range [- 5350, - 1737.9] [Pa] 

corresponds a meniscus which is symmetric to the YOZ plane independent on y and with 

convex meridian curve ),( pxzz = , but for only one of them, namely for p = - 3472.5 [Pa], 

the following equality holds ][0001.0 mxc = . The computation reveals also that to any p in 

the range [- 5350, - 3472.5] [Pa] corresponds a static meniscus such that the corresponding 

plate half thickness )(pxc  satisfies ][0001.0)( mpxc   and to any p in the range [- 3472.5, - 

1737.9] [Pa] corresponds a static meniscus such that the corresponding plate half thickness 

satisfies ][0001.0)( mpxc  . So, for any p  in the range [- 3472.5, - 1737.9] [Pa] it makes 

sense to compute ),0001.0( p  and ),0001.0( pz . Moreover, although ][0001.0)( mpxc  , 

for any p  in the range [-3601,- 3472.5)[Pa] it makes sense, to compute ),0001.0( p  and 

),0001.0( pz . For p = - 3601 [Pa] the results of this computation are represented in Fig. 6a 

and Fig. 6b, respectively. For p = - 1737.9 [Pa] the results of this computation are 

represented in Figs. 7a and 7b. 

              
Figure 6a. Meridian curve shape ),( pxzz =                Figure 6b. Variation of ),( px  

              p = - 3601 [Pa],                                                      p = - 3601 [Pa] 

             =),0001.0( pz 0.00016667473381311 [m]         = ),0001.0( p  1.53759729718637 [rad]  

              

            Figure 7a. Meridian curve shape ),( pxzz =                    Figure 7b. Variation of  ),( px  

           p = - 1737.9 [Pa]                                                         p = - 1737.9 [Pa]                                 

      =),0001.0( pz  0.0000806366424196828 [m]          = ),0001.0( p 0.834161904617903 [rad]  
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The angle ),0001.0( p , considered above, is the angle made by the line tangent to the 

meniscus corresponding to p , at the point ),0001.0(,0001.0( pz , with the horizontal 

axis. This angle is equal to =− g2/ 1.37871023884957 [rad] if and only if p = - 

3472.5 [Pa]. 

For any p  in the range [- 3601, - 3472.5] [Pa] the angle ),0001.0( p satisfies 

=− gp 2/),0001.0( 1.37871023884957 [rad]. For p in the range [- 3472.5, - 1737.9] 

[Pa] the angle ),0001.0( p  satisfies =− gp 2/),0001.0( 1.37871023884957 [rad]. 

If p is different from p = - 3472.5 [Pa], then the difference 

),0001.0()2/(),0001.0( pp g =−−  - 1.37871023884957 [rad] represents the 

deviation from the growth angle, due to the deviation of the pressure difference p  

from the value p = - 3472.5 [Pa]. For p  in the range [-3601,- 3472.5) [Pa] the deviation 

is strictly positive and for p in the range (-3472.5,- 1737.9)[Pa] the deviation is strictly 

negative. 

4. STATIC STABILITY OF THE FREE SURFACE IN A PD GROWTH 

PROCESS 

This section deals with the static stability of the free surface [11].The following statement is 

a sufficient condition of static stability of the free surface. 

Statement 2. Under the conditions appearing in Statement1, if 1/ = cd xxn  satisfies 

2/12/1

2/32/1 sin11

gxn

g

d 


  (15) 

then the convex meniscus symmetric to the YOZ plane and independent on y is stable, i.e. 

)(xz  minimizes the free energy functional )(zI . 

The proof of this statement can be found in Appendix. In the case of the thin Si plate 

considered in Section 3 we have: 5.0/1 =n  and 198643944.7
sin1

2/12/1

2/32/1

=





gR

g

d

. 

Therefore, the static free surface is stable. 

5. EQUATION OF THE PLATE HALF THICKNEES CHANGE RATE DUE 

TO THE CHANGE OF THE PRESSURE DIFFERENCE IN A PD GROWTH 

PROCESS 

Starting from the condition of growth angle constancy according to [11] the following 

equation of the plate half thickness change rate, due to the pressure difference perturbation 

p  is obtained: 

0001.0)0(

))2/(),0001.0(tan(/

=

−−−=

c

gc

x

pvdtdx
 (16) 

Here )(txc  is the tape half thickness at the moment of time t , v  for the moment is a 

strictly positive constant (the pulling rate) and ),0001.0( p  is the angle between the line 
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tangent to the meridian curve of the perturbed meniscus at the point of coordinates 

)),0001.0(,0001.0( pz , and the horizontal axis. If p = - 3472.5 [Pa], then 

gp −= 2/),0001.0( . So, 0)0tan())2/(),0001.0(tan( ==−− gp  and the initial 

value problem (16) becomes: 

0001.0)0(

0/

=

=

c

c

x

dtdx
 (17) 

For p = - 1737.9 [Pa] we have ),0001.0( p ==0.834161904617903. 

So, v−  ))2/(),0001.0(tan( gp −− =- tanv ( - 0.5446344224) and (5.1) becomes: 

=dtdxc / tanv (0.5446344224) 

0001.0)0( =cx     
(18) 

For p = - 3601 [Pa] we have ),0001.0( p =1.53759729718637. 

So, tan))2/(),0001.0((tan −=−−− vpv g  (0.15880097) and (16) becomes: 

=dtdxc / tanv− (0.15880097) 

0001.0)0( =cx     
(19) 

For ]]/[0001.0 smv =  the solutions of the initial value problems (17), (18) and (19) are 

represented on Fig. 8 with green, blue and red, respectively. 

 

Figure 8. The plate half thickness change for ]/[0001.0 smv = , p = - 3472.5 [Pa] (green), 

p = - 3601 [Pa] (red), and p = - 1737.9 [Pa] (blue), respectively 

On Fig. 8. can be seen that: 

- if p is constantly equal to - 3472.5 [Pa] in the first ][1.0 s , then the plate half thickness is 

equal to ][0001.0 mxc =  (colour green). 

- if at 0=t , p  decreases instantaneously from - 3472.5 [Pa] to - 3601 [Pa], then the plate 

half thickness decreases in ][1.0 s  from ][0001.0 mxc =  to ='cx  0.000098398505586 [m] 

(colour red). 
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- if at 0=t , p  increases instantaneously from - 3472.5 [Pa] to – 1737.9 [Pa], then the 

plate half thickness increases in ][1.0 s  from ][0001.0 mxc =  to =''cx  

0.000106057468617 [m] (colour blue). 
In the two cases when the half thickness ][0001.0 mxc =  varies due to the pressure 

perturbation a problem appears: “what is the procedure which has to be applied in order to 

recover the half thickness ][0001.0 mxc = ”? 

In the following two procedures are presented: 

 a). the recovery of the value ][0001.0 mxc =  starting from the value =''cx  

0.000106057468617 [m]. 

 b). the recovery of the value ][0001.0 mxc =  starting from the value ='cx  

0.000098398505586 [m]. 

Both procedures are based on the pressure difference value modification at the moment 

of time ][1.0 st = . 

a). The first step in this procedure is the determination of the static meniscus for which 

the half thickness is =''cx  0.000106057468617 [m]. This means in fact the determination of 

the pressure difference "p  for which the half thickness is "cx . Computation shows that 

][39.3696" Pap −=  and the results are presented in Figs. 9a and 9b. 

         

         Figure 9a. Meridian curve shape )",( pxzz =                    Figure 9b. Variation of )",( px  

        ][39.3696" Pap −=                                                  ][39.3696" Pap −=  

        == ")","( cc hpxz  0.000131635404585648 [m]      = )","( pxc  1.37879883721489 [rad]  

        =''cx  0.000106057468617 [m]  

The second step in this procedure is to find a perturbation p  of "p  for which the half 

thickness =''cx  0.000106057468617 [m] decreases. We have to look for a value of p  less 

than "p . 

For example for ][3800 Pap −= , computation reveals that ),( pxzz =  and ),( px  vary 

as in Figs. 10a and 10b, which show that "cx  will decrease. 
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           Figure 10a. Meridian curve shape ),( pxzz =                  Figure 10b. Variation of ),( px  

         ][3800 Pap −=                                                       ][3800 Pap −=  

        =),"( pxz c  0.000145555762785026 [m]                  = ),( p"xc  1.4721619552749 [rad]  

=''cx  0.000106057468617 [m]  

For the value ][3800 Pap −=  starting from =''cx  0.000106057468617 [m] at the moment of 

time ][1.0 st =  the decrease of "cx  is described by the solution of the initial value problem 

tan/" vdtdx c −=  (0.093365628) 

=)1.0("cx  0.000106057468617 
(20) 

The decrease of "cx  and the complete recovery of ][0001.0 mxc =  are presented in Figs. 11. 

         

             Figure 11a. Decrease of )(" txc  for t                       Figure 11b. Increase from ][0001.0 mxc =  

             in the range   s75.0,1.0                                    to ="cx  0.000106057468617 [m] and the 

                                                                                                  recovery of ][0001.0 mxc = . 

b). The first step in this procedure is to establish the static meniscus for which the half 

thickness is ='cx  0.000098398505586 [m].This means in fact to establish the pressure 
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difference 'p  for which the stable meniscus half thickness is 'cx . Computation shows that 

we have to take ][9.3417' Pap −=  and the result is presented in Figs. 12. 

                 

          Figure 12a. Meridian curve shape )',( pxzz =                   Figure 12b. Variation of )',( px  

       ][9.3417' Pap −=                                                      ][9.3417' Pap −=  

       ='cx  0.000098398505586 [m]                                   = )','( pxc  1.37879883721489 [rad]  

       == ')','( cc hpxz  0.000142368182337325 [m]  

The second step in this procedure is to find a perturbation p  of 'p  for which the half 

thickness ='cx  0.000098398505586 [m] increases. For that we have to look for p  whose 

value is greater than 'p . For example, if we take ][3300 Pap −= , computation reveals that 

),( pxzz =  and ),( px  vary according to Figs. 13a and 13b, showing that 'cx  will increase. 

                  

         Figure 13a. Meridian curve shape ),( pxzz = ,                 Figure 13b. Variation of ),( px  

        ][3300 Pap −=                                                        ][3300 Pap −=  

       =),'( pxz c  0.000131854329762203 [m]                  = ),'( pxc  1.30540344368778 [rad]  

       ='cx  0.000098398505586 [m]  

For ][3300 Pap −=  starting from ='cx  0.000098398505586 [m] at the moment of time 

][1.0 st =  the increase of 'cx  is described by the solution of the initial value problem: 

tan0001.0/' −=dtdxc (-0.073392883) 

=)1.0('cx 0.000098398505586   
(21) 



49 A 2D description of the single crystal thin plate growth from the melt by micro- pulling- down method. Part 1 
 

INCAS BULLETIN, Volume 10, Issue 3/ 2018 

The increase of 'cx  and the complete recovery of ][0001.0 mxc =  are presented in Figs. 14. 

                

         Figure 14a. Increase of )(' txc                                    Figure 14b. Decrease from ][0001.0 mxc = to 

    For t  in the range [0.1, 0.33] [s]                  ='cx  0.000098398505586 [m] and the recovery of 
cx  

If )(tpp =  oscillates around the value ][5.3472 Pa− , then ),0001.0( p  oscillates 

around the value g− 2/ . In this case the plate half thickness evolution is described by the 

solution of the initial value problem: 

0001.0)1(

))2/())(,0001.0(tan(/

=

−−−=

c

gc

x

tpvdtdx
 (22) 

For ]/[0001.0 smv =  and )6sin(001.02/))(,0001.0( ttp g +−=  the plate half 

thickness evolution during the first second can be seen in Fig. 15a. In Fig. 15b the plate half 

thickness evolution during the first second is presented for the already considered 

instantaneous perturbations and for the above considered time dependent perturbation. 

           

              Figure15a. The plate half thickness change for                    Figure15b. The plate half thickness 

     )6(sin001.02/))(,0001.0( ttp g +−=             change for ]/[0001.0 smv = , 

        p = - 3472.5 [Pa] (green) 

                                                                                                      p = - 1737.9 [Pa] (red), p = - 3601 [Pa] (blue) 

                                                                            )6sin(001.02/))(,0001.0( ttp g +−=  (magenta) 
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6. CONCLUSIONS 

In the framework of the presented description, the following quantities, related to the micro 

tape growth process from the melt by pulling down method, can be computed: 

− pressure difference across the free surface to create a stable static meniscus 

appropriate for the growth of a plate having a desired half thickness 

− pressure difference across the free surface to control the plate half thickness during 

the growth 

APPENDIX 

1. Proof of Statement 1. 

Let 2/+ gc  and )(xz  defined for  dc xxx ,  which verifies (6) - (9) and 0)(" xz  
The function ))('arctan()( xzx −=  verifies )cos/()()(' += pzgx  and the 

boundary conditions cdx = )( , gcx −= 2/)( . Hence, by the mean value theorem, 

there is  dc xxx ,'  such that the following equality holds: =p  

−
−

−+
 )'(cos

2/
x

xcxd

gc
 )'(xzg  . On the other hand, inequality 0)(" xz  implies 

that the function dxdz /  is strictly increasing and by consequence the function )(x  is 

strictly decreasing. Therefore, c < )'(x < g−


2
. Now, by taking into account that )'(xz

>0 and 0
2/


−

−+


cd

gc

xx
 the following relations hold: 

g

d

gc

g

cd

gc

cd

gc

cd

gc

n

n

xxx

x
xx

xzgx
xx

p


−


−+

=
−

−+



−

−+
−

−

−+
=

sin
1

2/
)(sin

2/

)'(cos
2/

)'()'(cos
2/

 

with 1/ = cd xxn .

 So, the right hand side of the inequality (11) is proven. 

In order to obtain the left hand side of (11) remark first the inequality: 

)(cos
2/

)'()'(cos
2/

cc

cd

gc

cd

gc
xzg

xx
xzgx

xx
−

−

−+
−

−

−+
 . 

The term )( cxzg −  can be evaluated applying the mean value theorem for the function 

)(xz  on  dc xx , . It follows that there exists  dc xxx ,''   such that 

( ) ( ) ( )gcdccdcdcd xxxzxxxzxxxzxz −−−=−−=− 2/tan)(')(''')()()(  with 

0)( =dxz . 

Consequently, the following inequality holds: 

( )gcdc xxgxzg −−−− 2/tan)()( . 

So, for p  the following relations hold: 
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( )

( ) ( )gdc

d

gc

gcdc

cd

gc

cc

cd

gc

cd

gc

n

n
xg

n

n

x

xxg
xx

xzg
xx

xzgx
xx

p

−
−

−
−


−+



=−−−
−

−+


−
−

−+
−

−

−+
=

2/tan
1

cos
1

2/

2/tan)(cos
2/

)(cos
2/

)'()'(cos
2/

 

This means that the left hand side of (11) is proven. 

2. Proof of Statement 2. [14] 

Since (6) is the Euler equation of the free energy functional given by (10) it is sufficient to 

prove that the Legendre and Jacobi conditions are satisfied in this case. 

Denote by ( )  zpzgzzzF −−+= 2/'1)',( 22/12 . 

It is easy to see that the Legendre condition in this case becomes ( )  0'1
2/32
+

−

z  

and so it is satisfied. 

The Jacobi equation in this case becomes  ( ) 0'')'(1
2/32 =++

−
gz . For the 

coefficients of this equation the following inequalities hold: ( )  gz +
−

3
2/32

sin'1  and 

0 g . Therefore, the equation ( ) 0''sin3 =+ gg  is a Sturm type upper bound 

[14] for the Jacobi equation. An arbitrary solution of this last equation is given by 

)(sin)( += xAx  where A  and   are real constants and )sin/( 32
gg = . 

The half period of this solution is equal to 2/12/32/1 )/(sin/ gg = . Inequality (15) 

implies that half period of )(x  is more than nxd /  and so )(x  vanishes at most once on 

the interval  dd xnx ,/ . Since any non-zero solution of the equation 

( ) 0''sin3 =+ gg  vanishes at most once on the interval  dd xnx ,/ , the solution of 

the Jacobi equation  ( ) 0'')'(1
2/32 =++

−
gz  which satisfies ,0)( = dx  ,1)(' = dx  

has only one zero on the interval  dd xnx ,/ . Hence the Jacobi condition is satisfied. 
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