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Abstract: This paper is the second part of a 2D description of a single crystal thin plate growth by 

micro-pulling–down (μ-PD) method. This part concerns the following aspects: temperature 

distribution and melt flow in the melt–crystal system (section 2); impurity distribution (section 3). 

Numerical illustration concerning the above aspects are given for the growth of a thin Si plate of 

0.0001 [m] by using COMSOL Multiphysics software. The advantage of this description is that it 

helps in the better understanding of the impurity dispersion in meniscus and may help the 

improvement of crystal quality. 
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1. INTRODUCTION 

The 2-D geometry of a static stable Si meniscus, whose meridian curve was determined in 

the paper [1], and a Si tape of ][0001.0 m  half thickness and of ][0006.0 m  length, are 

represented in Fig. 1. 

 
Figure 1. The 2-D geometry in which the temperature distribution, the melt flow and the impurity dispersion are 

computed 
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2. TEMPERATURE DISTRIBUTION AND MELT FLOW IN THE 

CRYSTAL- MELT SYSTEM IN A PD GROWTH PROCESS 

Investigation of the temperature distribution in the crystal – melt system requires 

simultaneous consideration of the heat flows in the crystal-melt system (which is a Stefan 

problem with moving boundary where a heat source is located at the crystallization front) 

and the Navier-Stokes equation for the flows associated with both melt crystallization and 

convection. The equations, which govern the flow in the above 2D domain, are the 

incompressible Navier-Stokes equations: 
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In equations (1):  

- in the sub-domain CO2, according to [2], 

]/[)(1015.1)(1059.12580)( 3241 mkgTTTTT mm    is the temperature- 

dependent melt density and ]/[2580 3mkgm   is the melt density at melting temperature 

][1687 KTm  . 

- in the sub-domain CO1, according to [3], ]/[2300 3mkg ; 

- in the sub-domain CO2, according to[2], ][)(1022.11075.0)( 63 PaTTT m   is the 

temperature-dependent melt viscosity and ][1075.0 3 Pam
  is the melt viscosity at the 

melting temperature ; in the sub-domain CO1, according to [3], 31075.0 m [Ps]; 

- u


 is the flow velocity field in CO2; p  is the dynamic pressure field in CO2; 

gF

  is the volume force field, which incorporates in domain CO2 also the buoyancy 

force field jT m


 )( ; 

- 285 )(1072.4)(1018.6)( mm TTTTT    is the temperature-dependent heat 

expansion coefficient in CO2; 

In CO2 the flow is generated by F


, the outlet velocity ]/[0001.0 smU   equal to the 

pulling rate applied at the boundary 6 and the Marangoni flow due to the surface tension 

variation on boundaries 2 and 9. According to [2], in this case the temperature-dependent 

surface tension is given by ]/[)(10016.0765.0)( 3 mNTTT m   and 

]/[765.0 mNm   is the surface tension at melting temperature. Since region with high 

surface tension pulls more strongly on the surrounding liquid than that with a low surface 

tension, the presence of a gradient in surface tension will naturally cause the liquid to flow 

away from regions of low surface tension. The stress caused by the gradient of the surface 

tension acts tangentially to the gas-liquid interface and generates the liquid flow. The above 

liquid flow is referred to as thermal Marangoni flow (convection). This is a boundary 

condition that acts at the free surface of the fluid (typically a gas-liquid interface) modelled 

with the incompressible Navier-Stokes equations. Note that the surface tension gradient can 

also be caused by gradient of concentration and the resulting flow is called Marangoni flow. 

The velocity field u


 is subjected to the following boundary conditions: 

- on the boundaries 1, 3, 10 and 11, u


 satisfies the no slip condition;  

- on the boundary 4, u


satisfies inlet condition; 
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- on the boundary 6, u


satisfies outlet condition, i.e. u


 is equal to the vertical pulling rate, 

i.e. ]/[0001.0 smju


 ; 

- on the boundary 7, u


 satisfies the continuity condition; 

- on the boundaries 5 and 8, u


 satisfies the slip condition; 

- according to [4], on the boundaries 2 and 9 – due to the thermal Marangoni flow - u


 

satisfies the equation 
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where n


 is the outward normal to the meridian curve of meniscus. 

The velocity field u


 is also subjected to the following initial condition: 0)( 0 tu


 and

0)( 0 tp . The heat transport equation in the considered 2D domain is that of the heat 

transport by convection and conduction: 
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In this equation:   is the temperature-dependent melt density and ]/[2300 3mkg  is 

the crystal density; ]/[950 KkgJCp   is the heat capacity at constant pressure(the same in 

the melt and in the crystal); T  is the unknown temperature; )]/([60 KmW   is the 

thermal conductivity in the melt and )]/([20 KmW   in the crystal; Q  is a heat source 

due to the release of the latent heat ]/[1081.1 6 kgJ  [2] in the neighbourhood of the 

crystallization front h , i.e. in the region where the temperature is within the limits 

][)1687,1686( K . The unknown temperature T  is subjected to the following boundary 

conditions: on the boundaries 1, 3, 4, 10, 11, T  is a constant equal to ][1690 K ; on the 

interior boundary 7, T satisfies the continuity condition; on boundaries 2 and 9, there is an 

outer heat flux equal to ]/[109.4 25 mW ; on the boundaries 5, 6 and 8 there is an outer heat 

flux equal to ]/[101 25 mW . The temperature T  is also subjected to the initial condition 

][1690)( 0 KtT  . In Figs. 2-14, different details concerning the computed flow field, 

pressure field and thermal field in the melt and in the crystal are presented. 

 
Figure 2. Variation of the velocity field magnitude V depending on the position, streamlines with arrows 
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According to Fig. 2, the velocity field magnitude varies depending on the position in the 

sample in the range   sm /1006.1,0 2 . The streamline patterns in the meniscus show the 

effect of the Marangoni flows on the boundaries 2 and 9. On the boundary 2 the Marangoni 

flow is generated by the tangential stress 

yxx TTF   813949.0580935.0580935.0106.1 5 , 

yxy TTF   813949.0580935.0813949.0106.1 5  and on the boundary 9 by the 

tangential stress yxx TTF   813949.0580935.0580935.0106.1 5 , 

yxy TTF   813949.0580935.0813949.0106.1 5 , respectively. 

When these tangential stresses are equal to zero (slip condition), then the velocity field 

magnitude V, the streamlines with arrows look as in Fig. 3. 

 
Figure 3. Variation of the velocity field magnitude V depending on the position for zero tangential stress 

 

Figure 4. Variation of the velocity field magnitude V across the meniscus computed along the line defined by 

][10 4 my   
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According to Fig. 4, the variation of the velocity field magnitude V across the meniscus 

along the line ][10 4 my   is in the range ]/[]106,10[ 34 sm  . 

 

Figure 5. Variation of the velocity field magnitude V along the sample computed on the OY axis 

According to Fig. 5, the variation of the velocity field magnitude V along the OY axis 

ranges between   sm /1051.2,10 34   . 

 

Figure 6. Variation of the yv  velocity field magnitude in the sample, streamlines with arrows 

According to Fig. 6, the yv  velocity field magnitude varies, ranging between 

  sm /10535.2,10829.8 33   . 
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Figure 7. Variation of the yv  velocity field magnitude across the meniscus computed along the line defined by 

][10 4 my   

According to Fig. 7, the variation of the yv  velocity field magnitude across the 

meniscus along the line ][10 4 my   ranges between   sm /105.2,1075.0 34   . 

 

Figure 8. Variation of the yv  velocity field magnitude along the sample computed on the OY axis. 

According to Fig. 8, the variation of the yv  velocity field magnitude along the OY axis 

ranges between   sm /105.2,105.0 33   . 
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Figure 9. Dependence of the pressure field p on the position, isobars, streamlines with arrows 

According to Fig. 9, the pressure field Mm ppp   magnitude varies depending on the 

position ranging between ][]195.0,161.1[ Pa . Taking into account the value of

mg hgp  , which is of order ][103 Pa , neglecting Mm ppp   with respect to 

mg hgp   is justified. 

 

Figure 10. Variation of the pressure field magnitude 
Mm ppp   across the meniscus, computed on the line 

defined by ][10 4 my   

According to Fig. 10, the variation of the pressure field Mm ppp   magnitude across 

the meniscus computed along the line ][10 4 my   ranges between ][]105,105.3[ 22 Pa  . 
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Figure 11. Variation of the pressure field Mm ppp   magnitude along the sample, computed on the OY axis 

According to Fig. 11, the variation of the pressure field Mm ppp   along the OY axis 

is in the range of ][]106.1,0[ 1 Pa . 

 

Figure 12. Dependence of the temperature field T  on the position, isotherms, streamlines with arrows 

According to Fig. 12, the temperature field magnitude varies depending on the position 

in the range of ][]1690,1675[ K . The isotherms are almost parallel lines in the crystal. 
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Figure13. Variation of the temperature field magnitude T  across the meniscus, computed along the line defined 

by ][104011.1 4 my   = meniscus height 

According to Fig. 13, the temperature field magnitude T  varies along the meniscus 

height level in the range of ][]165.1687,105.1687[ K . 

 

Figure 14. Variation of the temperature T  along the sample, computed on the OY axis 

According to Fig. 14, the temperature T  varies in the range of ][]1690,1675[ K  along 

the sample, computed on the OY axis. 
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3. IMPURITY DISTRIBUTION IN A TAPE GROWN BY PD GROWTH 

PROCESS 

The quality of a monocrystalline sheet being grown by PD growth technique depends to a 

great extent on homogeneity of distribution of both specially added and detrimental 

impurities. Variations of concentrations of such impurities along the sheet length and cross-

section are determined by the processes that take place in the melt near to the crystallization 

front. The impurity transport equation in the CO2 domain is that of the convection and 

diffusion equation which incorporates also the thermal diffusion: 

  cTDuRcDtc  )(/


 (4) 

In this equation the following notations are used: c - impurity concentration; D - 

molecular diffusion;  - Soret coefficient; R - reaction rate. At this point, it has to be 

mentioned that the term TcD  , which appears in the formula of the thermal diffusion 

contribution )()( TcTcDTcD   is neglected in (4). This approximation is 

justified when the variation of T  is nearly linear. For more details, see [5], [6] and [7]. It is 

also assumed, that there is no reaction in the melt, so 0R . The impurity concentration is 

subjected to the following boundary conditions: boundaries 1, 2, 3, 10, 11, 9 – insulation; 

boundary 4 – constant concentration; inner boundary 7 - impurity rejection according to the 

law: ckv  )1( 0 , where v is the pulling rate and 0k  is the partition coefficient. For Al 

doped Si tape the following numerical data were used: ]/[103.5 28 smD  ; 

][109.4 14  K ;   ]/[101 32
0 mmolc Al concentration at boundary 4; inward flux due 

to rejection )]/([)1021(0001.0 23 smmolc    on the inner boundary 7; 3
0 102 k . The 

impurity concentration is also subjected to the initial condition 00)( ctc   constant. In Figs. 

15-17, different details concerning the computed concentration field in the capillary channel 

and in the meniscus are presented. 

 

Figure 15. Dependence of the Al concentration c on the position, isoconcentration lines 

According to Fig. 30, the Al concentration field magnitude c varies depending on the 

position in the range of ]/[]038.0,01.0[ 3mmol . The isoconcentration lines are almost parallel 

in the capillary channel but their form and disposal is much more complex in meniscus. 
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Figure 16. Variation of the Al concentration field magnitude c across the meniscus, computed along the line 

defined by ][102 5 my  . 

According to Fig. 16, the Al concentration across the meniscus close to the 

crystallization front varies in the range of ]/[]031.0,0255.0[ 3mmol . The concentration is 

minimal at the middle of the meniscus and is maximum at the margins of the meniscus. It 

follows that the Al concentration in the crystal side is ]/[102.6 35 mmol  at the margins and 

is ]/[105 35 mmol  at the middle. So, the impurity segregation coefficient across the plate is 

24.1 . The increase of concentration close to the crystallization front is due to the rejection of 

Al at the interface. The non-uniformity of concentration across the meniscus is due to the 

Marangoni flow. According to Fig. 17, the Al concentration along the capillary channel and 

meniscus, computed on the OY axis, increases from the top of the capillary channel to the 

bottom of the meniscus. This global increase is due to the rejection. In the capillary channel 

the Al concentration increases from ]/[01.0 3mmol  (at the top) to ]/[023.0 3mmol  (at the 

bottom) and in meniscus the Al concentration increases from ]/[023.0 3mmol  (at the 

meniscus top) to ]/[026.0 3mmol  (at the meniscus bottom). 

 

Figure17. Variation of the Al concentration along the meniscus and capillary channel computed on the OY axis 
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4. CONCLUSIONS 

In the framework of the presented description, the following quantities, related to the micro 

tape growth process from the melt by pulling down method, can be computed: 

- heat distribution in the melt-crystal system and the flow in the melt taking into account 

the volume force field including the buoyancy force field, pulling rate, thermal 

Marangoni flow, heat release due to the solidification and heat loose due to the cooling, 

- added impurity distribution in the meniscus and capillary channel taking into account the 

molecular diffusion, thermal diffusion (i.e. Soret effect) and impurity rejection at the 

front of solidification, 

- impurity segregation across the micro-plate which has been grown. 
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