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Section 1 – Aerodynamics 

Abstract: In this paper different types of stabilities (global, local) with respect to instantaneous 

perturbations and permanent source produced time harmonic perturbations are numerically 

illustrated in case of a constant spatially developing 2D gas flow. Some types of instabilities (global 

absolute, local convective) are also illustrated. For this purpose the 2D Euler equations linearized at 

the constant gas flow are used. It is illustrated for instance, that the constant gas flow is global 

absolutely unstable with respect to some instantaneous and some permanent source produced time 

harmonic perturbations. The locally convective instability is also illustrated with respect to some 

instantaneous and some permanent source produced time harmonic perturbations. 

Key Words: global/ local stability/ instability; spatially developing gas flow 

1. INTRODUCTION 

In the 2D gas flow model, the nonlinear Euler equations governing the flow of an inviscid, 

compressible, non heat conducting, isentropic, perfect gas are [1]: 
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Here: t - time, xv , yv - velocity components along the OyOx,  axis respectively;  
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p - pressure,  - density. 

The pressure p , the density   and the absolute temperature T satisfy the state equation of 

the perfect gas 

TRp   (2) 

where the specific gas constant vp ccR  ; pc and vc  being the specific heat capacities at 

constant pressure and constant volume, respectively. 

If ;00  constUvx  ;0yv  ;00  const  00  constpp , then according 

to (2): 000 TRp   and the associated isentropic sound speed 0c  verifies 
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perturbations ',' p  satisfy: 
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the following system of linear Euler equations is obtained: 
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In [2] the Lyapunov stability, with respect to instantaneous perturbations and source 

produced permanent time harmonic perturbations, of the null solution of the equation (4) is 

investigated in a particular infinite dimensional phase space. 

Following [2], for a given set I  I  of initial values  PGFI ,,  the solution of the initial 

value problem (4), (5) 

;)0,,(' Fyxvx   ;)0,,(' Gyxvy   Pyxp )0,,('  (5) 

equal to zero for 0t  is called instantaneous perturbation propagation problem. 

Beside the instantaneous perturbation propagation problem (4), (5) in [1] the source 

produced permanent time harmonic perturbation propagation problem is also considered. 

That is the solution of the equation 
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which is equal to zero for 0t . 

In equations (6) ),,( PGFA   is the amplitude of the source produced permanent time 

harmonic perturbation; f is the angular frequency and )(th  is the Heaviside function. 

PGF ,,  appearing in equalities (5) and (6) are continuously differentiable real valued 

functions depending on the variables yx, . 

For the Lyapunov stability of the null solution of (4) in [2] the following infinite dimensional 

topological function spaces are considered: 

a) X - the topological function space ([3], [4]) of the set of systems ),,( PGFI   (or 

),,( PGFA  ) of functions 12:,, RRPGF   which are continuously differentiable, 

endowed with the usual algebraic operations and topology generated by the uniform 

convergence on 2R  [5]. 

A neighborhood of the origin O in X  is a set 0V  of systems I  from X having the property 

that there exists 1R , 0 , such that if for XPGFI  ),,(  inequalities 

),( yxF ; ),( yxG ; ),( yxP  hold for any 2),( Ryx  , then 0VI  . 

The set 


0V  defined by: 
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is a neighborhood of the origin O  in X . 

b) Y  is the topological function space of the set of systems ),,( 321 ffff   of functions 

11: RRfi  , 3,1i  which are continuously differentiable endowed with the usual 

algebraic operations and topology generated by the uniform convergence on 1R . 

A neighborhood of the origin O  in Y  is a set 0W  of systems f  from Y  having the property 

that there exists 1R , 0 , such that if for Yffff  ),,( 321  inequalities )(if , 

3,1i  hold for any 1R , then 0Wf  . 
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is a neighborhood of the origin O  in Y . 

c) Z  is the topological function space of the set of systems ),,( PGFI   of the form 
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obtained for a given set of constants ii lk ,  3,1i  with 03 k  endowed with the usual 

algebraic operations and the natural relative topology generated by the topology of X  [6]. 

A neighborhood of the origin O  in Z  is a set '0V  of systems ),,( PGFI   from Z  

having the property that there exists 1R , 0 , such that if for ZPGFI  ),,(  
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inequalities ),( yxF  and so on hold for any 2),( Ryx  , then '0VI  . The set '0V  

defined by: 

 2
0 ),(),(),,(' RyxanyforonsoandyxFZPGFV    (10) 

is a neighborhood of the origin O  in Z . 

For a given set of constants ii lk ,  3,1i  for which the relations: 
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hold, the topological function space Z  is the phase space for the perturbation propagation 

problems (4), (5) and (6), respectively and the Lyapunov stability is analyzed in this phase 

space. 

In [2] it is shown that in a phase space Z  the instantaneous perturbation propagation 

problem is well posed, the solution of the initial value problem (4), (5) is given by 
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(13) 

where the initial perturbation ),,( PGFI   is given by (9) and the null solution of (4) is 

stable in Lyapunov sense. 

It is also shown that the source produced permanent time harmonic perturbation 

propagation problem (6) is well posed in a phase space Z , the solution is given by: 
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(14) 

where the amplitude ),,( PGFA   is given by (9) and the null solution of (4) is unstable in 

Lyapunov sense. 

In [7] the phase space is the same. What is different is the type of stability. The stability 

considered there is moreover the type of stability considered in the papers [8]-[17]. 

In the present paper we provide numerical illustration for the global and local stability 

and instability results of the constant spatially developing 2D gas flow reported in [7]. 

2. NUMERICAL ILLUSTRATION OF SOME GLOBAL AND LOCAL 

STABILITIES; ABSOLUTE AND CONVECTIVE INSTABILITIES WITH 

RESPECT TO INSTANTANEOUS PERTURBATION IN 2D 

In [7] several types of stabilities and instabilities of the null solution of (4) with respect to 

instantaneous perturbation are presented. 

They are different from those introduced by Lyapunov [18] from which the concept of 

hydrodynamic stability [19] was derived. 

One of the differences is that the stability and instability are considered here with respect to a 

given perturbation (not with respect to a set of perturbations) and the magnitude of the 
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perturbation as well that of the perturbation propagation is compared to a prior given fixed 

value, called tolerance. 

Definition 2.1 For the instantaneous perturbation  PGFI ,,  from X the magnitude of the 

perturbation at the point ),( yx  is the maximum of ),(,),(,),( yxPyxGyxF  and it is 

denoted by 

 ),(,),(,),(max),( yxPyxGyxFyxI  . 

The magnitude of the propagation at a point 2),( Ryx   at the moment of time 0t  (i.e. 

that of the solution       tyxptyxvtyxvtyxS yx ,,'),,,(',,,',,'   of the initial value 

problem (4), (5), equal to zero for 0t ) is the maximum of 

     tyxptyxvtyxv yx ,,',,,',,,'  and is denoted by 

   ),,(',),,(',),,('max,,' tyxptyxvtyxvtyxS yx . 

Definition 2.2 The null solution of (4) is globally stable with respect to the instantaneous 

perturbation  PGFI ,,  from Z and the prior given tolerance 0  if the magnitude of 

its propagation (i.e. that of the solution of the initial value problem (4), (5), equal to zero for 

0t  at any point 2),( Ryx   and at every moment of time 0t  is less than the  tolerance 

0 . 

Acoustic modes [19] - [22] can be seen as propagations of some particular instantaneous 

perturbations. 

In 2D the acoustic modes are propagation of the form 

 ,exp),,(' lykxtiAtyxvx   lykxtiBtyxvy  exp),,(' ,

 lykxtiCtyxp  exp),,('  with real or complex frequency 21  i and wave 

numbers k 21 ikk  , l 21 ill  . 

For ,0kl and   satisfying  00  kU  real acoustic mode is of the form: 





 













))(cos())(sin(

),,('

101101

])([

2
2

2
1

2211
2

2
2

1

2112

202

yltUxkyltUxk

eBtyxv

kk

klkl

kk

klkl

yltUxk
x

 

))(cos(),,(' 101
])([ 202 yltUxkeBtyxv yltUxk

y    

0),,(' tyxp  

(15) 

and corresponds to the instantaneous perturbation 
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or of the form 

 

 



49 Numerical illustration of the global and local stability and instability of the constant spatially developing 2D gas flow 
 

INCAS BULLETIN, Volume 8, Issue 4/ 2016 





 













))(cos())(sin(

),,('

101101

])([

2
2

2
1

2112
2

2
2

1

2211

202

yltUxkyltUxk

eBtyxv

kk

klkl

kk

klkl

yltUxk
x

 

))(sin(),,(' 101
])([ 202 yltUxkeBtyxv yltUxk

y    

0),,(' tyxp  

(17) 

and corresponds to the instantaneous perturbation 
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and corresponds to the instantaneous perturbation 
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or of the form 
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(21) 

and corresponds to the instantaneous perturbation 
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(22) 

In [7] it was shown that if the null solution of (4) is globally stable with respect to a mode-

type instantaneous perturbation  PGFI ,,  and tolerance 0 , then necessarily 

022  lk . 

Numerical illustration of this type of stability is given by the example: 

Example 2.2 is the illustration of the global stability of the null solution of equation (4) with 

respect to the mode type instantaneous perturbation (16) 






 







 )cos()sin(),( 1111
][

2
2

2
1

2211
2

2
2

1

211222 ylxkylxkeByxF
kk

klkl

kk

klklylxk  

)cos(),( 11
][ 22 ylxkeByxG ylxk    

0),( yxP  

and the prior given tolerance 0  for: smU /800  ; 3
0 /20.1 mkg ; smc /3450  ; 

1.0  and .1,0,0001.0 1122  lklkB  

                 

a.  evolution of xv'                                                                     b.  evolution of 'yv  

Figure 1: Global stability with respect to the instantaneous perturbation at an arbitrary point of the line 

dyx   during the first s5.0 . 

Definition 2.3. The null solution of (4) is globally absolutely unstable with respect to the 

instantaneous perturbation  PGFI ,,  if for any point 2),( Ryx   any real numbers 

0,0  NM  ( M  and N  big) there exists a moment of time Nt   such that the 

magnitude of its propagation (i.e. that of the solution of the initial value problem (4), (5), 

equal to zero for 0t )  at the point ),( yx  and at moment of time t  is greater than M . 

In [7] it was shown that if 0,0 21  kk , and 0B , then the null solution of (4) is 

globally absolutely unstable with respect to the instantaneous perturbation  PGFI ,, , 

where PGF ,,  are given by (16) or (18). 
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Numerical illustration of this type of global absolute instability is given by the example: 

Example 2.3 is the illustration of the global absolute instability of the null solution of 

equation (4) with respect to the mode type instantaneous perturbation (16), for: 

smU /800  ; 3
0 /20.1 mkg ; smc /3450  ; and 

.1,1,1,1,0001.0 2121  llkkB   

         

a.  evolution of xv'                                                        b.  evolution of 'yv  

Figure 2: Global absolute instability with respect to the instantaneous perturbation at the points of the lines 

yxd  , d  in the range [-1,1] during the first s1.0 . 

Definition 2.4. The null solution of (4) is locally stable on 2R , with respect to the 

instantaneous perturbation  PGFI ,,  from Z and the prior given tolerance 0  if the 

magnitude of its propagation (i.e. the solution of the initial value problem (4), (5) which is 

equal to zero for 0t ) at any point x  and moment of time 0t is less than the 

tolerance 0 . 

In [7] several statements concerning local stability of the null solution with respect to 

instantaneous perturbations which propagate as acoustic modes were given. 

Numerical illustration of a local stability is given by the example: 

Example 2.4 is the illustration of the local stability of the null solution of equation (4) with 

respect to the instantaneous perturbation  PGFI ,,  from a phase space 

Z ( 0)()(,)(,1,1 32111

2
  ffeflk ) of amplitude ;),(),(

2)( yxeyxGyxF   
2)(

00 2),( yxecyxP  , and tolerance 0  on 







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



















00ln,
1

lnmax),(
c

yxRyx  for: smU /800  ; 3
0 /20.1 mkg ; 

smc /3450  ; 1.0 ; dyx   in the range   m50,...,260  and t  in the range 

 s5.0,...,0 . 

Definition 2.5. The null solution of (4) is locally convectively unstable on 2R  with 

respect to the instantaneous perturbation  PGFI ,,  if for the prior given tolerance 0  

at any point ),( yx  at every moment of time 0t  the magnitude of the solution of (4), 

(5) is less than   and there exists a sequence of points ),( nn yx , which tends to   (i.e. 


22

nn yx ) and a sequence of moments of times nt , which tends also to   such 



Agneta M. BALINT, Stefan BALINT 52 
 

INCAS BULLETIN, Volume 8, Issue 4/ 2016 

that the magnitude of the solution of (4), (5) at the points ),( nn yx  and moments of times nt  

is greater than 0 . 

            

a.  evolution of xv'                                                                 b.  evolution of 'p  

Figure 3: Local stability with respect to the instantaneous perturbation at an arbitrary point of the line 

dyx    in the range   m50,...,260  and t  in the range  s5.0,...,0  

In [7] several statements concerning local convective instability of the null solution with 

respect to instantaneous perturbations were given. 

Numerical illustration of a local convective instability is given by the example: 

Example 2.5 is the illustration of the local convective instability of the null solution of 

equation (4) with respect to the instantaneous perturbation  PGFI ,,  from a phase space 

  ZPGFI  ,,  ( 0)()(,)(,1,1 32111

2
  ffeflk ) of amplitude  

;),(),(
2)( yxeyxGyxF 

2)(
00 2),( yxecyxP  , and tolerance 0  on  
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003 ln,
1

lnmax),(
c

yxRyx  for: smU /800  ; 3
0 /20.1 mkg ; 

smc /3450  ; 1.0 ; dyx   in the range   m50,...,260  and t  in the range  s5.0,...,0 . 

                              

a.  evolution of xv'                                                                            b.  evolution of 'p  

Figure 4: Local convective instability with respect to the instantaneous perturbation at an arbitrary point of the 

line dyx    in the range   m260,...,50  and t  in the range  s5.0,...,0  
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3. NUMERICAL ILLUSTRATION OF SOME GLOBAL AND LOCAL 

STABILITIES; ABSOLUTE AND CONVECTIVE INSTABILITIES WITH 

RESPECT TO SOURCE PRODUCED PERMANENT TIME HARMONIC 

PERTURBATION IN 2D 

Definition 3.1. The null solution of (4) is globally stable with respect to the source produced, 

permanent time harmonic perturbation of amplitude ),,( PGFA   and angular frequency 

f  for a given tolerance 0  if the magnitude of the solution of (6) (equal to zero for 

0t ) at any point 2),( Ryx   and moment of time 0t  is less than the prior given 

tolerance 0 . 

In [7] it was shown the following general result: If in a phase space Z the following 

conditions hold: 

i) the supports of the functions PGF ,, , defining the amplitude ),,( PGFA  of the time 

harmonic perturbation are compact 

ii) 0
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then the null solution of (4) is globally stable with respect to the source produced permanent 

time harmonic perturbation of amplitude ),,( PGFA  and arbitrary angular frequency f  

for the given tolerance 0 . 

Numerical illustration of a global stability is given by the example: 

Example 3.1 is the illustration of the global stability of the null solution of equation (4) with 

respect to the source produced permanent time harmonic perturbation which amplitude 

 PGFA ,,  is from a phase space Z ( 0)()(),sin()(,1,1 32111  ffflk ) 

and is given by ;)sin(),(),( yxKyxGyxF   )sin(2),( 00 yxcKyxP   

of angular frequency 0 f  and prior given tolerance 0  for: 

smU /800  ; 3
0 /20.1 mkg ; smc /3450  ; 1.0  and 100,0001.0  fK . 
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a.  evolution of xv'                                                               b.  evolution of 'p  

Figure 5: Global stability with respect to a source produced permanent time harmonic perturbation during  

the first s600  at an arbitrary point of the line dyx   during the first s600 . 

Definition 3.2. The null solution of (4) is globally absolutely unstable with respect to the 

permanent source produced time harmonic perturbation of amplitude ),,( PGFA   and 

angular frequency f  if for any point 2),( Ryx   any real numbers 0,0  NM  ( M  

and N  big) there exists a moment of time Nt   such that the magnitude of the solution of 

problem (6) (which is equal to zero for 0t ) at ),( yx  and at moment of time t  is greater 

than M . 

In [7] the following result were proven: 

In a phase space Z  for a source produced permanent time harmonic perturbation of 

amplitude ZPGFA  ),,(  and angular frequency f  the following statements hold: 

i) if )sin(),( 111
11 ylxkekyxF ylxk   ; )sin(),( 111

11 ylxkelyxG ylxk   ; 

)sin(),( 11

2

1

2

100
11 ylxkelkcyxP ylxk    and 0

2

1

2

1001  lkcUkf , then 

the null solution of (4) is globally absolutely unstable with respect to the perturbation. 

ii) if )sin(),( 222
22 ylxkekyxF ylxk   ; )sin(),( 222

22 ylxkelyxG
ylxk



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)sin(),( 22

2

2

2

200
22 ylxkelkcyxP ylxk    and 0

2

2

2

2002  lkcUkf , then 

the null solution of (4) is globally absolutely unstable with respect to the perturbation. 

iii) if )sin(),( 33
33

3

3 ylxkeyxF ylxk
k

l
  ; )sin(),( 33

33 ylxkeyxG ylxk   ; 0),( yxP ; 

001  Ukf  and 03 l , then the null solution of (4) is globally absolutely unstable with 

respect to the perturbation. 

Numerical illustration of a global absolute instability is given by the example: 

Example 3.2 is the illustration of the global absolute instability of the null solution of 

equation (4) with respect to the source produced permanent time harmonic perturbation 

which amplitude  PGFA ,,  is from a phase space 

Z ( 0)()(),sin()(,1,1 32111  ffflk ) and is given by 

;)sin(),(),( yxKyxGyxF  )sin(2),( 00 yxcKyxP  ; of angular 
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frequency f  for: smU /800  ; 3
0 /20.1 mkg ; smc /3450  ; ,1K  

200 cUf  . 

                 

a.  evolution of xv'                                                                  b.  evolution of 'p  

Figure 6: Global absolute instability with respect to a source produced permanent time harmonic perturbation at 

an arbitrary point of the line dyx   during the first s5.0 . 

Definition 3.3. The null solution of (4) is locally stable on 2R , with respect to the 

source produced permanent time harmonic perturbation of amplitude ),,( PGFA   and 

angular frequency f if the magnitude of the solution of the problem (6) (which is equal to 

zero for 0t ) at any point ),( yx  and moment of time 0t  is less than a prior given 

value 0 . 

In [7] the following result were proven concerning local stability with respect to the source 

produced permanent time harmonic perturbation. In a phase space Z  for a source produced 

permanent time harmonic perturbation of amplitude ZPGFA  ),,(  and an arbitrary 

angular frequency f  the following statements hold: 

i) if )sin(),( 111
11 ylxkekyxF ylxk   ; )sin(),( 111
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then the null solution of (4) is locally stable on 
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for the given tolerance 0 . 
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for the given tolerance 0 . 
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iii) if )sin(),( 33
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  ; )sin(),( 33
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ylxkRyx  for the given tolerance 0 . 

Numerical illustration of a local stability is given by the example: 

Example 3.3 is the illustration of the local stability of the null solution of equation (4) on the 

set 
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with respect to the source produced permanent time harmonic perturbation which amplitude 

is  PGFA ,,  from a phase space Z ( 0)()(,)(,1,1 32111   ffeflk ) and 

is given by ;),(),( )( yxeKyxGyxF   )(
00 2),( yxecKyxP   of angular 

frequency f  and prior given tolerance 0  for: smU /800  ; 3
0 /20.1 mkg ; 

smc /3450  ; 1.0  and 100 f . 

                   

a.  evolution of xv'                                                     b.  evolution of 'p  

Figure7: Local stability on 
  of a permanent source produced time harmonic perturbation at an arbitrary point 

of the line dyx  , d  in the range   m500,,...6099.2 , during the first s600 . 

Definition 3.4. The null solution of (4) is locally convectively unstable on 2R  with 

respect to the source produced permanent time harmonic perturbation of amplitude 

 PGFA ,,  and angular frequency f  if for the prior given tolerance 0  at any point 

),( yx  at every moment of time 0t  the magnitude of the solution of (6) is less than 

  and there exists a sequence of points ),( nn yx   , which tends to   (i.e. 


22

nn yx ) and a sequence of moments of times nt , which tends also to   such 

that the magnitude of the solution of (6) at the points ),( nn yx  and moments of times nt  is 

greater than 0 . In [7] the following result were proven concerning local stability with 

respect to the source produced permanent time harmonic perturbation. In a phase space Z  

for a source produced permanent time harmonic perturbation of amplitude 

ZPGFA  ),,(  and an arbitrary angular frequency f  the following statements hold: 
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for the given tolerance 0 . 

ii) if )(
2

22),( ylxkekyxF  ; )(
2

22),( ylxkelyxG  ; )(2
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2

2002  lkcUk ; 02 l  and 02 k , then the null solution of (4) is locally 

convectively unstable on  
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for the given tolerance 0 . 

iii) if )( 33

3

3),( ylxk
k

l
eyxF  ; )( 33),( ylxkeyxG  ; 0),( yxP ; 003 Uk ; and 03 l , 

then the null solution of (4) is locally convectively unstable on 
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for the given tolerance 0 . 

Numerical illustration of a local stability is given by the example: 

Example 3.4 is the illustration of the local convective instability of the null solution of 

equation (4). The null solution of (4) is locally convectively unstable with respect to the 

permanent source produced time harmonic perturbation given in Example 3.3 on  , given 

by:  3),,( 2  yxRzyx . 

                   

a.  evolution of xv'                                                                                   b.  evolution of 'p  

Figure 8: Local convective instability with respect to the permanent source produced time harmonic perturbation 

at an arbitrary point of the line dyx  , d  in the range m]3,...,500[   during the first s600 . 



Agneta M. BALINT, Stefan BALINT 58 
 

INCAS BULLETIN, Volume 8, Issue 4/ 2016 

CONFLICT OF INTERESTS 

The authors declare that there is no conflict of interests regarding the publication of this 

paper. 

ACKNOWLEDGMENT 

This work was supported by a grant of the Romanian National Authority for Scientific 

Research, CNCS-UEFISCDI, project number PN-II-ID-PCE-2011-3-0171. 

REFERENCES 

[1] A. Novotny and I. Shaškraba, Introduction to the Mathematical theory of compressible flow, Oxford 

University Press, Oxford, 2004. 

[2] A. M. Balint, S. Balint and R. Szabo, Lyapunov stability of a spatially developing constant 2-D gas flow, 

ICNPAA Congress, La Rochelle 05-08 July 2016. The proceedings in press by AIP. 

[3] N. Dunford  and J. T. Schwartz, Linear Operators, Part 1. General Theory, Wiley Interscience, New York 

1957. 

[4] S. H. Saperstone, Semidynamical Systems in Infinite-Dimensional Spaces, vol. 37, Springer, New York 1981. 

[5] N. Bourbaki, Elements de Mathematique, Premier Partie, Livre III, Topologie Generale, chapitre 1, Structure 

topologique, Hermann, Paris 1966. 

[6] S. Balint and A. M. Balint, The Concepts of Well-Posedness and Stability in Different Function Spaces for the 

1D Linearized Euler Equations , Abstract and Applied Analysis, Volume 2014, Article ID 872548, 10 

pages. http://dx.doi.org/10.1155/2014/872548. 

[7] A. M. Balint, S. Balint and R. Szabo, Non Lyapunov stability of a spatially developing constant 2-D gas flow, 

ICNPAA Congress, La Rochelle 05-08 July 2016. The proceedings in press  by AIP. 

[8] L. Landau and E. M. Lifschitz, Fluid Mechanics, London, Pergamon Press, pg. 113, 1959. 

[9] R. J. Briggs, Electron Stream Interaction with Plasmas, Research Monograph no. 29, M.I.T. Press, 

Cambridge, Mass, 1964. 

[10] A. Bers, Space-time evolution of plasma-instabilities absolute and convective, in Handbook of Plasma 

Physics I, A. A. Galeev and R. M. Sudan, Eds., Chapter 3.2 pp. 451–517, North Holland, Amsterdam, 

The Netherlands, 1983. 

[11] P. Huere and P. A. Monkiewitz, Local and global instabilities in Spatially Developing Flows, Annual Review 

of Fluid Mechanics, vol. 22, pp.473-537, 1990. 

[12] S. Jendoubi and P. I. Strykowski, Absolute and convective instability of axisymmetric jets with external 

flow, Physics of Fluids, vol. 6 no.9, pp.3000-3009, 1994. 

[13] T. Del Sole, Absolute instability induced by dissipation, Journal of the Atmospheric Sciences, vol. 54, 

pp.2586-2595, 1997. 

[14] S. M. Tobias, M. R. E. Proctor and E. Knobloch, Convective and Absolute instabilities of fluid flows in 

finite geometry, Physica D, vol. 113, pp.43-72, 1998. 

[15] B. Sandstele and A. Scheel, absolute and convective instabilities of waves on unbounded and large bounded 

domains, Physica D, vol. 145, pp.233-277, 2000. 

[16] S. Suslov, Numerical aspects of searching convective/ absolute instability transition, Journal of 

Computational Physics, vol. 212, pp.188-217, 2006. 

[17] S. Balint and A. M. Balint, Non Lyapunov stability of the constant spatially developing 1-D gas flow in 

presence of solutions having strictly positive exponential growth rate, ICNPAA Congress, La Rochelle 

05-08 July 2016.The proceedings in press by AIP. 

[18] D. R. Merkin, Introduction to the theory of stability, Texts in Applied Mathematics, Springer, 1997. 

[19] P. G. Drazin and W. H. Reid, Hydrodynamic Stability, Cambridge Monographs on Mechanics and Applied 

Mathematics, Cambridge University Press, 1995. 

 

 

 


