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Section 1 — Aerodynamics

Abstract: In this paper different types of stabilities (global, local) with respect to instantaneous
perturbations and permanent source produced time harmonic perturbations are numerically
illustrated in case of a constant spatially developing 2D gas flow. Some types of instabilities (global
absolute, local convective) are also illustrated. For this purpose the 2D Euler equations linearized at
the constant gas flow are used. It is illustrated for instance, that the constant gas flow is global
absolutely unstable with respect to some instantaneous and some permanent source produced time
harmonic perturbations. The locally convective instability is also illustrated with respect to some
instantaneous and some permanent source produced time harmonic perturbations.

Key Words: global/ local stability/ instability; spatially developing gas flow

1. INTRODUCTION

In the 2D gas flow model, the nonlinear Euler equations governing the flow of an inviscid,
compressible, non heat conducting, isentropic, perfect gas are [1]:

X aVX avX 1ap
+V, - +vy - +——=0
ox oy  p ox
ov ov ov
_y+vx._y+vy._y+l@:0 (1)
ot X &y poy

ov
@+Vx'@+vy'@+p' %_'__y =O
at x oy x oy

Here: t-time, v,, v, - velocity components along the Ox, Oy axis respectively;
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p - pressure, p - density.
The pressure p, the density p and the absolute temperature T satisfy the state equation of
the perfect gas

p=p-R-T 2

where the specific gas constant R = ¢, —c,; c,and c, being the specific heat capacities at

(ALl

constant pressure and constant volume, respectively.

If v, =U, =const>0; v, =0; p=p, =const>0; p=p,=const>D0, then according

to (2): py=po-R-To

¢’ = Po_g -T,. Linearizing (1) at v, =Uy; v, =0; p = py; p = p, and using that the
Po

perturbations p', p' satisfy:

and the associated isentropic sound speed c, verifies

0 0 \(.. ,
(EWO'&)(P—%Z'pFO ©)
the following system of linear Euler equations is obtained:
8VX+UO_BVX+L.6_p:O
OX py OX
! avf ’
_y_{_UO._y_}_i.a_p:O (4)
ot OX  pg Oy
' ' ' av'
a_p+U0.5_p+pO.Cg aVX+_y =0
ot OX ox oy

In [2] the Lyapunov stability, with respect to instantaneous perturbations and source
produced permanent time harmonic perturbations, of the null solution of the equation (4) is
investigated in a particular infinite dimensional phase space.

Following [2], for a given set §= {I} of initial values | = (F, G, P) the solution of the initial

value problem (4), (5)

v,' (%, ¥,0) = F; v, (x,,0) = G; p'(x,y,0) =P ©)

equal to zero for t < 0 is called instantaneous perturbation propagation problem.

Beside the instantaneous perturbation propagation problem (4), (5) in [1] the source
produced permanent time harmonic perturbation propagation problem is also considered.
That is the solution of the equation

’ avl ’
EVJFUO.a_V i-a—pzh(t)-G-sinmft
X Po
avl avl !
MUy D L P b6 sine,t (6)
ot oX  pg
’ ’ 4 av’
Py, P Y M hy P sinet
ot X ox oy
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which is equal to zero for t < 0.
In equations (6) A = (F,G,P) is the amplitude of the source produced permanent time

harmonic perturbation; w; is the angular frequency and h(t) is the Heaviside function.

F,G, P appearing in equalities (5) and (6) are continuously differentiable real valued
functions depending on the variables X,y .

For the Lyapunov stability of the null solution of (4) in [2] the following infinite dimensional
topological function spaces are considered:
a) X - the topological function space ([3], [4]) of the set of systems |=(F,G,P) (or

A= (F,G,P)) of functions F,G,P:R? — R! which are continuously differentiable,
endowed with the usual algebraic operations and topology generated by the uniform
convergence on R? [5].

A neighborhood of the origin Oin X isaset V, of systems | from X having the property

that there exists ¢ e R, &>0, such that if for | =(F,G,P)e X inequalities
IF(x,y)| <e; |G(x y) <&; |P(x,y) <& hold forany (x,y) € R?, then I € V,.
The set V,* defined by:

VA {(F,G, P) e Xi[F(x,y)|<eand soon, forany(x,y) e Rz} @)
is a neighborhood of the origin O in X .
b) Y is the topological function space of the set of systems f = (f, f,, f;) of functions

f :R' > R, i=13 which are continuously differentiable endowed with the usual

algebraic operations and topology generated by the uniform convergence on R?.
A neighborhood of the origin O in Y isaset W, of systems f from Y having the property

that there exists & € R, & > 0, such that if for f = (f;, f,, f;) €Y inequalities |f;(€) < &,
i =1,3 hold forany & e R?, then f e W,.
The set W," defined by:

Wy* = {(f,, f,, f,) e Yi[f, (&) <& forany&eR* andi=13 | ®)

is a neighborhood of the origin O in Y .
c) Z is the topological function space of the set of systems | = (F, G, P) of the form

|
F(X,y) =k - fi(kx+Ly) +k; - f(kx +1,y) + k_3 - fa(kex + 13Y)

3

Gx,y) = b - fulkx + 1y) + 1, - F (kX + L) = Fy(kox + L5y) ®©)
P(X, y) = —Copo v/ k? + 1,7 - f (kX + LY) + Copg v k" + 1,7 - fy (kX + 1)
obtained for a given set of constants k;,I. i =13 with k, = 0 endowed with the usual

algebraic operations and the natural relative topology generated by the topology of X [6].
A neighborhood of the origin O in Z is a set V," of systems | = (F,G,P) from Z
having the property that there exists € € R, ¢ >0, such that if for I =(F,G,P)eZ
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inequalities |F(x, y)| < ¢ and so on hold for any (x,y) e R?, then I eV,'. The set V,"
defined by:

V, " = {(F,G, P) e Zi|F(x,y)| < € and so on for any (x,y) e RZ} (10)
is a neighborhood of the origin O in Z.
For a given set of constants k;, I, i =13 for which the relations:
kK ks = 0 (11)
and

A= _C(;(Po [ﬂkf + 1, (Kokg + Iolg) +y ko + 1, (ks + I1'3)} #0 (12)
3

hold, the topological function space Z is the phase space for the perturbation propagation
problems (4), (5) and (6), respectively and the Lyapunov stability is analyzed in this phase
space.

In [2] it is shown that in a phase space Z the instantaneous perturbation propagation
problem is well posed, the solution of the initial value problem (4), (5) is given by

v,' (X, y,t) =k, - h(t) - fl[klx +ly- (kluO - co,/kl2 + |12).t} n
ky - h(t) - fz[kzx + 1y - [kZUO + Gy ko + Izzj : t} +

II(_S h(t) - folkex + Ly — kUot]

3

v,' (X, y,t) =1 - h(t) - fl[klx + Ly - (klu0 - (;O,lkl2 + |12) . t} +
|[hayf{@x+5y—(@uo+%dhz+bzj¢}_
h(t) - fa[keX + Loy — kU,t]
pr(xy.t) = _Copo\/k12 +1% - h(t) - fl[klx +hy - (kluo - Co\/k12 + Ilz) : t} +
%pmkf44;'MU-B[@X+by—(@Uo+cmW;44;)‘q

where the initial perturbation I = (F,G, P) is given by (9) and the null solution of (4) is

stable in Lyapunov sense.
It is also shown that the source produced permanent time harmonic perturbation

propagation problem (6) is well posed in a phase space Z, the solution is given by:

(13)
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t
v 06y = h) K - | fl[klx Ly - (klUO ek |12] (- ‘E)j|Sin o, tdt+
0
fz[kzx Fly - (kzuO g fko? + |22) (- ‘E)}Sin o tdt +

h(t) - L fo[keX + ly — kaU, (t — 7)]sin o, tdt +

t
j fl[klx +ly - (kluO — ek’ + 1,2 J-(t - r)}sin o;tdt +
0
t
-1, - | fz[kzx Fly- [kzuO eyk,? + |22j - r)}sin o, 7t -
0

t
h(t) - j falkax + Ly — kU, (t — 7)]sin o, T dr
0

p (X, y,t) = —h(t)copo\/k12 + I12 :
t
j fl[klx + 1y - (klu0 — Kk + |12)(t - r)} sin ot dt +
0

h(t)copo\/kz2 + Iz2 :
t
j fz[kzx + Ly - (kzu0 + CyyKy2 + |22j(t - r)} sin ot dr
0

where the amplitude A = (F, G, P) is given by (9) and the null solution of (4) is unstable in

Lyapunov sense.

In [7] the phase space is the same. What is different is the type of stability. The stability
considered there is moreover the type of stability considered in the papers [8]-[17].

In the present paper we provide numerical illustration for the global and local stability
and instability results of the constant spatially developing 2D gas flow reported in [7].

h(t) - k, -

vy ' (% Y, 1) = h(t) -1, -

(14)

2. NUMERICAL ILLUSTRATION OF SOME GLOBAL AND LOCAL
STABILITIES; ABSOLUTE AND CONVECTIVE INSTABILITIES WITH
RESPECT TO INSTANTANEOUS PERTURBATION IN 2D

In [7] several types of stabilities and instabilities of the null solution of (4) with respect to
instantaneous perturbation are presented.
They are different from those introduced by Lyapunov [18] from which the concept of
hydrodynamic stability [19] was derived.
One of the differences is that the stability and instability are considered here with respect to a
given perturbation (not with respect to a set of perturbations) and the magnitude of the
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perturbation as well that of the perturbation propagation is compared to a prior given fixed
value, called tolerance.
Definition 2.1 For the instantaneous perturbation | = (F, G, P) from X the magnitude of the
perturbation at the point (x,y) is the maximum of |F(x,y)|, [G(x, )|, [P(x, y)| and it is
denoted by

[10x, )| = max{[F(x, y), [Gx Y}, [P, )
The magnitude of the propagation at a point (X, y) € R? at the moment of time t > 0 (i.e.
that of the solution S'(x,y,t)=(v,'(x,y,t)v, (x, y,t), p'(x, y,t)) of the initial value
problem (4), (5), equal to zero for t<0) is the maximum of
Vv, (% v, th|vy (x, v, 1), [p' (%, . t)] and is denoted by

S'(x, y,t) = max{|vx‘(x, y, 1)), ‘vy'(x, y,t)‘, Ip' (%, Y, t)|}.
Definition 2.2 The null solution of (4) is globally stable with respect to the instantaneous
perturbation | = (F, G, P) from Z and the prior given tolerance ¢ > 0 if the magnitude of
its propagation (i.e. that of the solution of the initial value problem (4), (5), equal to zero for
t < 0 atany point (x, y) € R? and at every moment of time t > 0 is less than the tolerance

€>0.

Acoustic modes [19] - [22] can be seen as propagations of some particular instantaneous
perturbations.

In 2D the  acoustic modes  are propagation of the  form

V' (% Y, 1) = Aexpi(ot — kx - ly), v, (X Y, t) = Bexpi(ot — kx — ly),

p'(x,y,t) =C expi(oat —kx — Iy) with real or complex frequency o = o, + im,and wave
numbers k =k, +ik,, I =1, +il,.

For kl0,and @ satisfying @—KkU, =0 real acoustic mode is of the form:

V' (X, y,1) = B - elke(x-Ua)+l2y]

['zkl'lkz sink, (X = Ugt) + Ly) — 24722 cos(k, (x — Ut) + 'M}
1 K2

ki +kp? k
1 2 (15)
V' (X, y,t) = B - ellet-Uaiil cos(k, (x — Ut) + 1Y)
p'(x y,t)=0
and corresponds to the instantaneous perturbation
F(X,y) = B elkex+layl] 29752 gjn (i x + 1 y) — 24722 cog(k,x + 1,y)
ki +ky2 k2 +ko?

(16)

G(x,y) = B - ellx*2¥] cos(k, x + 1,y)
P(x,y)=0

or of the form
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VX'(X! y,t) =B- e[kZ(X—Uot)+|2y]

['{1*'2@ sin(ky (x = Uot) + lyy) — -25-22 cos(k, (x - Ut)+'1Y)}

17)
vy (X, y,t) = =B - elle-Yo+ T sin(k, (x — Ut) + L y)
p'(xy,t)=0
and corresponds to the instantaneous perturbation
F(X,y) = e[kzx”zyl['lk“'zkz sin(k,x + l,y) — '2k1 '1k2 cos(k X + Ily):|
(18)

G(x,y) = -B - el 2Vl sin(k,x + ,y)
P(x,y)=0
For kI = 0,and o satisfying (o — kU,)2 = c,”(k2 + 12) real acoustic mode is of the form:

VXI (Xl y, t) = [S_[) . e[k2X+|2y—m2t]

I-*kl(wrkzﬁkz(wrkl) H _ kq (@1 K1) +kp (02 —kp) _ ]
o2 (ot 2 sin(k;x + Ly mlt)+—(on—k1)2+(mz—kz)2 cos(k, X + Ly — o)

Vy' (Xl yv t) = ;:_0 . e[kZXsz*mZt] (19)

(o) (o h) - h(or—h) o (0p-15) - ]
o7 top . SN Y —ont) + i COS(kX + hy = o)

p'(X,y,t) = C - etkx+lay—eatl cog(k x + Iy — ot)
and corresponds to the instantaneous perturbation

_ c Tkox-+1py] | ke (@2 —ka) +kp (1 —ky) ke (1 —kg) +Kp (02 —kp) J
F(x,y)==-¢ o t)? o sin(k,x + 1,y) + (o) (g hn)? cos(k,x + Ly)

_c. [k2x+I2y]["1((92—'2)‘*"2(&)1—'1) : Iy (1 —h)+1p (@p-1p) J
G(x,y)=-e o) (o )? sin(k,;x + ly) + O+ (g 12 cos(k,;x + Ly)| (20)

P(x,y) = C - ell*12¥] cos(k, x + 1,y)
or of the form

v, (X Y, t) = £ . glkex+lay-oat]

[k1(0>1 k1)+k2(032 ka) _ —kq (@2 —kp)+ko (o1 k1) _ ]
L (o - k1)2+(002—k )2 Sln(klx + Ily (’Olt) + (c)1—k1)2+(m2—k2)2 Cos(klx + Ily ('Olt)

vy (%, Y, 1) = & - ellexrlymen o

[ h(o—h)+la(02-13) o _ =l (@ —1p)+15 (e ~h) _ ]
(01-h)2+(0z-12)? sin(kx + by = o) + (01 -h)2+(wp-12)? cos(kyx + Ly — ant)

p' (X, Y, t) = —C - elkx+ly=etl sin(k x + |,y — wyt)

and corresponds to the instantaneous perturbation
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_ C . alkoxtlpyl|Fhalor—k) +ho (0p-kp) i —ky (02 —kp) +kp (1 —ky) J
Fx,y)=-e o2 (apty)? sin(k,x + Ly) + or )2 (o )2 cos(k;x + 1,y)

_c. [k2x+I2y][_ (o —l)+a(@2-1p) o Iy (p 1) +lp (1 1) J
Gxy)=-e o ey )2 sin(k,;x + ly) + o) (o cos(k,x + Ly)| (22)

P(x,y) = —C - etk*12¥T sin(k,x + I y)

In [7] it was shown that if the null solution of (4) is globally stable with respect to a mode-
type instantaneous perturbation | = (F,G, P) and tolerance ¢ > 0, then necessarily
k,=1,=0.

Numerical illustration of this type of stability is given by the example:
Example 2.2 is the illustration of the global stability of the null solution of equation (4) with
respect to the mode type instantaneous perturbation (16)

F(x, y) = B - elkex+lay] [% sin(k,x + ly) — 24422 cos(k, x + |1y))
ki“ +ko ki“+ka

G(x,y) = B - etk*2¥I cos(k,x + |, y)
P(x,y)=0
and the prior given tolerance ¢ > 0 for: U, =80 m/s; p, =1.20 kg/m?; ¢, =345m/s;

a. evolution of V', b. evolution of v, '

Figure 1: Global stability with respect to the instantaneous perturbation at an arbitrary point of the line
X+ Yy =d during the first 0.55.

Definition 2.3. The null solution of (4) is globally absolutely unstable with respect to the
instantaneous perturbation | = (F,G, P) if for any point (x,y) € R? any real numbers
M>0 N>0 (M and N big) there exists a moment of time t > N such that the
magnitude of its propagation (i.e. that of the solution of the initial value problem (4), (5),
equal to zero for t < 0) at the point (x, y) and at moment of time t is greater than M .
In [7] it was shown that if k, = 0,k, <0, and B = 0, then the null solution of (4) is
globally absolutely unstable with respect to the instantaneous perturbation | = (F,G, P),
where F, G, P are given by (16) or (18).
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51 Numerical illustration of the global and local stability and instability of the constant spatially developing 2D gas flow

Numerical illustration of this type of global absolute instability is given by the example:
Example 2.3 is the illustration of the global absolute instability of the null solution of
equation (4) with respect to the mode type instantaneous perturbation (16), for:

U, =80m/s;p, =1.20 kg / m?;c, = 345m/s; and

|B| =0.0001k =1k, =11, =11, = -1.

-0.1

0.04

a. evolution of V', b. evolution of v, '

Figure 2: Global absolute instability with respect to the instantaneous perturbation at the points of the lines
d =x+ vy, d inthe range [-1,1] during the first 0.15.

Definition 2.4. The null solution of (4) is locally stable on Q < R?, with respect to the
instantaneous perturbation | = (F, G, P) from Z and the prior given tolerance & >0 if the
magnitude of its propagation (i.e. the solution of the initial value problem (4), (5) which is
equal to zero for t < 0) at any point x € Q and moment of time t > 0is less than the
tolerance ¢ > 0.

In [7] several statements concerning local stability of the null solution with respect to
instantaneous perturbations which propagate as acoustic modes were given.

Numerical illustration of a local stability is given by the example:
Example 2.4 is the illustration of the local stability of the null solution of equation (4) with

respect to the instantaneous perturbation 1 =(F,G,P) from a phase space

Z(k =1l =1 () =e?, f,(&) = f,(5) = 0) of amplitude F(x,y) = G(x,y) = e =V*;

P(X,y) = —C, - pon/2 - e 007, and tolerance >0 on

Q+={(X,Y)eRx+y>\/max{lnl,lncop°}} for:  U;=80m/s;  p, =120kg/m?;
€ €

¢, =345m/s; €=0.1; x+y=d in the range [-260..50]m and t in the range
[0,...0.5]s.

Definition 2.5. The null solution of (4) is locally convectively unstable on Q < R? with
respect to the instantaneous perturbation I = (F,G, P) if for the prior given tolerancee > 0

at any point (x, y) ¢ Q at every moment of time t > 0 the magnitude of the solution of (4),
(5) is less than ¢ and there exists a sequence of points (x,, y,) € Q, which tends to + oo (i.e.

x>+, — +0) and a sequence of moments of times t,, which tends also to + oo such
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that the magnitude of the solution of (4), (5) at the points (x,, y,) and moments of times t,
is greater than ¢ > 0.

OO

a. evolution of V', b. evolution of p'

Figure 3: Local stability with respect to the instantaneous perturbation at an arbitrary point of the line
X+ Yy =d intherange [— 260,...,50] m and t in the range [0,...,0.5]5

In [7] several statements concerning local convective instability of the null solution with
respect to instantaneous perturbations were given.

Numerical illustration of a local convective instability is given by the example:
Example 2.5 is the illustration of the local convective instability of the null solution of
equation (4) with respect to the instantaneous perturbation | = (F, G, P) from a phase space

| =(F,G,P)eZ (k=11 =1 f (&) =e?, £,(6) = f;(§)=0) of  amplitude
F(X,Y) = G(x y) = e ™ P(x,y) = ¢, - pov/2 - e and tolerance ¢ >0 on

Q = (x,y)eR3x+ys\/max{lnl,lnC°ﬂ} for:U, =80m/s; p, =1.20 kg/m?;
€ €

C, =345m/s; £ =0.1; x+y =d intherange [-260...50] m and t in the range [0,...0.5]s.

OO0
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a. evolution of V', b. evolution of p'
Figure 4: Local convective instability with respect to the instantaneous perturbation at an arbitrary point of the
line X+ Yy =d intherange [-50,...260] m and t in the range [0,...0.5]s
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3. NUMERICAL ILLUSTRATION OF SOME GLOBAL AND LOCAL
STABILITIES; ABSOLUTE AND CONVECTIVE INSTABILITIES WITH
RESPECT TO SOURCE PRODUCED PERMANENT TIME HARMONIC

PERTURBATION IN 2D

Definition 3.1. The null solution of (4) is globally stable with respect to the source produced,
permanent time harmonic perturbation of amplitude A = (F,G, P) and angular frequency

o, for a given tolerance ¢ > 0 if the magnitude of the solution of (6) (equal to zero for

t <0) at any point (X,y) € R? and moment of time t > 0 is less than the prior given
tolerancee > 0.

In [7] it was shown the following general result: If in a phase space Z the following
conditions hold:

i) the supports of the functions F, G, P, defining the amplitude A = (F,G, P)of the time
harmonic perturbation are compact

i) KUy — ok’ + 12 # 0, kUy +Goy/k,> + 1,2 # 0

iii) & = max{ sup | f; (E)|} <=

i=13 Eela,b M
where: the bounded interval [a,b] contains the supports of the functions f,, i =13 and
M'= (b — a) - max Ky —— | + K, . 2|+| |23 |;
kUs — oyl + 12| [koUg + cofky” + 17| [ksUg|
l, . 1, +| 1 |’
kUo — corlkZ + 12| [kUy + corfl,? + 12| Kol

Copo\/kl2 + |12 N Copo\/kz2 + |22
KU, — Conki? + 12| [kUp + coiky? + 1,2

then the null solution of (4) is globally stable with respect to the source produced permanent
time harmonic perturbation of amplitude A = (F,G, P)and arbitrary angular frequency o,

for the given tolerance ¢ > 0.

Numerical illustration of a global stability is given by the example:
Example 3.1 is the illustration of the global stability of the null solution of equation (4) with
respect to the source produced permanent time harmonic perturbation which amplitude

A=(F,G,P) is from a phase space Z (k, =11, =1, f (&) =sin(g), f,(&) = f;(&) = 0)
and is given by F(x,y) =G(x,y) =K -sin(x+y); P(xy)=-K-¢,- pO\/E -sin(x + y)
of angular frequency ©; >0 and prior given tolerance &>0 for:

U, =80m/s;p, =1.20kg/ m*; ¢, =345m/s; ¢ = 0.1 and K = 0.000] ®,; = 100.
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a. evolution of V', b. evolution of p'

Figure 5: Global stability with respect to a source produced permanent time harmonic perturbation during
the first 600s at an arbitrary point of the line x + y = d during the first 6005 .

Definition 3.2. The null solution of (4) is globally absolutely unstable with respect to the
permanent source produced time harmonic perturbation of amplitude A = (F,G,P) and
angular frequency o, if for any point (x,y) € R? any real numbers M >0, N >0 (M

and N big) there exists a moment of time t > N such that the magnitude of the solution of
problem (6) (which is equal to zero for t < 0) at (x, y) and at moment of time t is greater
than M .

In [7] the following result were proven:
In a phase space Z for a source produced permanent time harmonic perturbation of
amplitude A = (F,G, P) € Z and angular frequency o the following statements hold:

i) if F(xy) =k, - e sin(kx + Ly); G(x,y) = I, - W - sin(k,x + L,y) ;

P(X, Y) = —Copoy ki +h% - €Y - sin(k,x + Ly) and o, = kU, — coy/k> +1,° < 0, then
the null solution of (4) is globally absolutely unstable with respect to the perturbation.

i) if F(X,y) =k, - 2129 - sin(k,x + L,y); G(X,y) =1, - .sin(k,x +1,y);

P(X, ¥) = Coppy Ko+, - €272 sin(kpx + Ly) and o, = kU + ok, + 1,2 < 0, then
the null solution of (4) is globally absolutely unstable with respect to the perturbation.

i) if F(x,y) = l'(% -l Y sin(kx + Ly) 5 G(X, y) = —ek*Y sin(kox + Ly); P(x,y) =0;
o; = kU, <0 and |l; # 0, then the null solution of (4) is globally absolutely unstable with
respect to the perturbation.

Numerical illustration of a global absolute instability is given by the example:
Example 3.2 is the illustration of the global absolute instability of the null solution of
equation (4) with respect to the source produced permanent time harmonic perturbation
which amplitude A=(F,G,P) is from a phase space

Z(k =11 =1 f,) =sinE), f,(E) = ;&) =0) and is given by
F(x,y) =G(x,y) =K -sin(x+y); P(x,y)=-K-c, -pO\/E -sin(x+y); of angular
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frequency o; for: U, =80m/s; p,=120kg/m?; c,=345m/s; K =1
(nf=U0—CO\/§.

a. evolution of V', b. evolution of p'

Figure 6: Global absolute instability with respect to a source produced permanent time harmonic perturbation at
an arbitrary point of the line X + y = d during the first 0.5s.

Definition 3.3. The null solution of (4) is locally stable on Q < R?, with respect to the
source produced permanent time harmonic perturbation of amplitude A =(F,G,P) and
angular frequency o, if the magnitude of the solution of the problem (6) (which is equal to
zero for t < 0) at any point (x, y) € Q and moment of time t > 0 is less than a prior given

value ¢ > 0.

In [7] the following result were proven concerning local stability with respect to the source
produced permanent time harmonic perturbation. In a phase space Z for a source produced
permanent time harmonic perturbation of amplitude A= (F,G,P) e Z and an arbitrary

angular frequency o, the following statements hold:
i)if F(x,y) =k - e osin(k,x + Ly); G(X, y) = |, - e - sin(kx + y) ;
P(X, y) = —Copgy ki +,2 - €W sin(kx + Ly) ; kU, — ok + 1,2 > 0;and k, -1, =0,

then the null solution of (4) is locally stable on

Q=
e(kU, _Co\)klz + |12) In g(kU, - Co\/kl2 + |12) In e(kU, - Co\/klz + |12)H

k| I Coporki? + 12

{(x, y) € R?

kx+ Ly < min{ln

for the given tolerance ¢ > 0.
i) if F(X,y) =Kk, - e .sin(k,x + 1, y); G(X, y) = I, - e*12Y . sin(k,x + I, y) ;
P(X, ¥) = CoPoy K2+l 2 - €412V - sin(l,x + Ly) s kU, + Coafky? + 1,2 > 0;and k, -1, # 0,

then the null solution of (4) is locally stable on

Q=
e(k,Uq + Coy/ K7 +1,%) n (kU + Coy/ K7 + 1,%) n e(kUg + CoyK,% + |22)H

ksl 1 Copo ks + 1,2

{(x, y) € RZk,x + 1,y < min{ln

for the given tolerance ¢ > 0.
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i) if F(x,y) = Ik_33 - ekt L sin(kyX + ly) s G(X, Y) = -1V . sin(kox + Ly) ; P(x,y) = 0;
kU, > 0; and I; # 0, then the null solution of (4) is locally stable on

e-kUg - kg

1|
Numerical illustration of a local stability is given by the example:

Example 3.3 is the illustration of the local stability of the null solution of equation (4) on the
set

Q= {(x, y) € R?

KX + Ly < min{ln Ing- kSUOH for the given tolerance ¢ > 0.

Q, = {(x. y) € R?

X+y > max{ln ! , In P2 H
S(CO\/E—UO) S(CO\/E—UO)

with respect to the source produced permanent time harmonic perturbation which amplitude

is A=(F,G,P) from a phase space Z (k, =1 I, =1, f,(&) =e%, f,(&) = f,(¢) =0) and

is given by F(x,y) = G(x,y) = K -e®; P(X,y) = —K - Cy - po~/2 - e+ of angular

frequency ®,; and prior given tolerance ¢ >0 for: U, =80m/s; p, =1.20 kg /m?;

C, =345m/s; ¢ = 0.1 and w; =100.

DOOOO

=3
&
XK

200

t 400 300 x

a. evolution of V', b. evolution of p'

Figure7: Local stability on Q, of a permanent source produced time harmonic perturbation at an arbitrary point
ofthe line X+ y = d, d inthe range[2.6099,...,500] m , during the first 600 s .

Definition 3.4. The null solution of (4) is locally convectively unstable on Q < R? with

respect to the source produced permanent time harmonic perturbation of amplitude
A= (F, G, P) and angular frequency o, if for the prior given tolerance & > 0 at any point

(x,y)  Q at every moment of time t > O the magnitude of the solution of (6) is less than
¢ and there exists a sequence of points (x,,Yy,) € €, which tends to + o (i.e.

xn2 + yn2 — +00) and a sequence of moments of times t,, which tends also to + o such
that the magnitude of the solution of (6) at the points (x,, y,) and moments of times t, is

greater than ¢ > 0. In [7] the following result were proven concerning local stability with
respect to the source produced permanent time harmonic perturbation. In a phase space Z
for a source produced permanent time harmonic perturbation of amplitude
A= (F,G,P) € Z and an arbitrary angular frequency o, the following statements hold:
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57 Numerical illustration of the global and local stability and instability of the constant spatially developing 2D gas flow

|) if F(x, y) = |(l . g~ (kax+hy) : G(X, y) - |1 . e—(klx+|1y); P(X, y) = —CyPp k12 +I12 . g (kax+hy) :

kUp — Gk’ + 1% <0; k, >0 and I, =0 then the null solution of (4) is locally

convectively unstable on
Q=

k, In “1‘ In Copo\/kl2 + |12
8(Co\/kl2 + I12 - k) E(Co\/klz + |12 -kU,) S(Co\/klz + |12 -kUy)
for the given tolerance ¢ > 0.

i) if F(x,y) =k, -e (2 G(x,y) =1, - e ®*) ;. P(x,y) = cyppr/K,” +l,” - e kex+lay) ;

kU, + Cor/ky” + 1,7 <0; 1, >0 and k, = 0, then the null solution of (4) is locally

convectively unstable on
Q=

(x,¥) € R¥kx + Ly < max<In

‘kz‘ In I In Copo\)kzz + |22
Covko” + 1,7 +kUo|  eleok,’ + 1,2 + kU, e
for the given tolerance ¢ > 0.
i) if F(x,y) = L—?; e+ la) - G(x, y) = —e~kex ) p(x,y) =0; kU, <0; and I; >0,
then the null solution of (4) is locally convectively unstable on

(%, y) € RZk,x + L,y < max;In

g Covky + 1,2 + kU,

I
Q={(xY) € R%kx + L,y < max{In ———=2——— —In¢- kU
( y) 3 3Y { - |k3U0| -|k3| | 3 0|}
for the given tolerance ¢ > 0.
Numerical illustration of a local stability is given by the example:

Example 3.4 is the illustration of the local convective instability of the null solution of
equation (4). The null solution of (4) is locally convectively unstable with respect to the
permanent source produced time harmonic perturbation given in Example 3.3 on Q_, given

by: Q_ = {(x, y,z) e R®|x +y < —3}.

%
aletetetes
Rorete ettt

oteteles

-500

a. evolution of V', b. evolution of p'

Figure 8: Local convective instability with respect to the permanent source produced time harmonic perturbation
at an arbitrary point of the linex + y = d, d in the range [-500,...,~3] m during the first 600 s .
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