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Abstract: The objective is to emphasize the importance of the functional framework specification 

when the linear stability of a gas flow is analyzed. For this the linear stability with respect to the 

initial value perturbations of the constant 1-D gas flow is presented in three different functional 

frameworks. For the linearized Euler equations in each framework the initial value problem is well-

posed in sense of Hadamard and the zero solution is stable, i.e. the constant flow is linearly stable. 

However, in the first framework the set of the exponential growth rate of the solutions of the 

linearized equations is the whole real axis and the Briggs-Bers stability analysis can not be applied. 

In the second framework even if the exponential growth rate of the solutions of the linearized equation 

is equal to zero, the Briggs-Bers stability analysis fails, because the Fourier transform can not be 

applied. In the third framework the exponential growth rate of the solutions of the linearized equation 

is equal to zero, the Briggs-Bers stability analysis works, but there are solutions which satisfy the 

linearized equations only in a generalized sense (almost everywhere). These considerations can be 

useful in a better understanding of some apparently strange results obtained in different mathematical 

models of the sound propagation in a gas flowing in a lined duct. 

Key Words: Liapunov stability; instantaneous perturbation; exponential growth rate; 1D analysis 

aeroacoustics. 

1. MOTIVATION OF THE MATHEMATICAL CONSIDERATIONS 

Due to the practical importance of the sound attenuation, in the last 60 years more than five 

hundred papers were published, reporting experimental and theoretical results on the subject. 

The papers referred here concern mainly acoustic perturbation attenuation in a gas flowing 

through a lined duct and represent just a small part of the literature concerning the subject. 

For describing the instantaneous acoustic perturbation propagation in a gas flowing 

through a lined duct, the authors of [1-18] consider the nonlinear Euler equations governing 

the gas flow and the solution of these equations describing the gas flow. After that, the 
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nonlinear Euler equations are linearized at the specified solution and the so-called 

homogeneous linearized Euler equations are derived. 

It is assumed that the homogeneous linearized Euler equations describe the evolution of 

an instantaneous acoustic perturbation. More precisely, it is assumed that if at the moment, 

let say, 0t , an instantaneous acoustic perturbation occurs, then its evolution is described 

by that solution of the homogeneous linearized Euler equations which satisfies on the duct 

wall the boundary condition and at 0t  is equal to the perturbation. 

In [1-18] for the above initial-boundary value problem, mode type solutions are 

researched. The conditions for the existence of the mode type solutions are found. The 

space-time behavior of a mode is investigated by using the zeros of the dispersion relations. 

The mode type solutions correspond to a particular set of initial data. The extension of 

the results obtained in this particular set to a larger set of initial data requires a precise 

definition of the new set of data and the investigation of the fact that the initial-boundary 

value problem is well-posed in the new framework. The necessity of such type of 

investigations was emphasized in [10] only in 2009. 

In [10] a “concept” of well-posed problem was introduced, showing that in a lot of 

papers published before, the initial-boundary value problem is ill-posed, because the set of 

the exponential growth rates of the solutions of the homogeneous linearized equations is 

unbounded from above. Later in [11-14] considerable efforts were undertaken for modifying 

the boundary conditions on the duct wall in order to make the initial-boundary value problem 

well-posed in sense of [10]. 

The objective of this paper is to underline that the precise description of the functional 

framework is crucial even in the case of 1-D gas flow, where the wall and its effect do not 

appear. For this purpose, the linear stability analysis with respect to the initial value 

perturbation of the constant 1-D gas flow is presented in three different functional 

frameworks. 

The concept of linear stability with respect to the initial value perturbations of the 

constant 1-D gas flow is defined in Section 2 and it has to be mentioned that this is not 

necessarily hydrodynamic stability in the sense defined in [19]. In each framework the initial 

value problem is well-posed in sense of Hadamard [20, 21] and the constant flow is linearly 

stable with respect to the initial value perturbations. 

However, in the first framework the set of exponential growth rates of the solutions of 

the homogeneous linearized Euler equations is the whole real axis. In this framework the 

Briggs-Bers stability analysis [22, 23] can not be applied. 

In the second framework, even if the exponential growth rate of the solutions of the 

homogeneous linearized Euler equations is equal to zero, the Briggs-Bers stability analysis 

fails. In the third framework the exponential growth rate of the solutions of the homogeneous 

linearized Euler equations is equal to zero, the Briggs-Bers stability analysis works, but there 

are solutions which satisfy the linearized Euler equations only almost everywhere (i.e. there 

are generalized solutions). 

These facts can be helpful in a better understanding of some apparently strange results 

obtained in different mathematical models of the sound propagation in a gas flowing in a 

lined duct. 

2. THE 1-D GAS FLOW MODEL 

Consider an inviscid, non-heat conducting, compressible, isentropic, perfect gas. In the 1-D 

gas flow model the nonlinear Euler equations governing the gas flow are [24]: 
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Here: t -time; u - velocity along the Ox axis; p - pressure;  -density. Eqs. (1) are 

considered for 'Rx   and 0t . 

It is assumed that, p ,  and the absolute temperature 'T  satisfy the equation of state of 

perfect gas: 

'TRp   (2) 

with: vp ccR  ; vp cc ,  being the specific heat capacities at constant pressure and 

constant volume, respectively. 

Let: 00  constUu , 00  const , 00  constpp  be a constant 

solution of the system of partial differential equations (1). According to (2): 000 TRp   
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Linearizing Eq.(1) at 0Uu  , 0 , 0pp   and assuming that the perturbations 

',' p  of 00 ,p  satisfy: 
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for the perturbations ',' pu  of 00 , pU  the following system of homogeneous linear partial 

differential equations is obtained: 
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It is assumed that this system governs the evolution of an instantaneous acoustic 

perturbation, i.e. it at 0t  an acoustic perturbation occurs, then the evolution is given by 

that solution of the system (4) which at 0t  is equal to the instantaneous perturbation. 

The solution 0Uu  , 0pp   is linearly stable with respect to the initial value 

perturbation if the solution ),('),,(' txptxu  of (4) is small all time 0t  provided it is 

small at the beginning 0t  (i.e. )0,('),0,(' xpxu  are small). This stability is not 

necessarily equivalent to that defined in [21]. 

The precise meaning of the concepts “solution” and “small” has to be designed by 

definition and there is some freedom here. 

By using the above freedom in the next section three different functional frameworks 

are considered, having the property that in each of them the concepts “solution” and “small” 

have specific meanings. Due to that, the mathematical tools and some of the results 

concerning linear stability are specific. 
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3. LINEAR STABILITY WITH RESPECT TO THE INITIAL VALUE 

PERTURBATION OF THE CONSTANT 1-D GAS FLOW 

First, let X be the set of initial data defined as: 

  abledifferentiycontinouslRRGFGFHX '':,,   . 

For an initial data XGFH  ),(  the couple of functions  ),('),,('),(' txptxutxH   given 

by: 
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is continuously differentiable, verifies Eqs. (4) and the initial condition: 

)()0,(' xHxH   (6) 

 The couple of functions ),(' txH , having the above properties is unique and is called 

classical solution of (4), (6). In other words, for the set X  of the initial data, the initial value 

problem (4), (6) has a unique, continuously differentiable, classical solution [24]. 

 If a sequence of initial data   XGFH nnn  ,  converges uniformly (on 'R ) to the 

initial data   XGFH  , , then for every 0t  the sequence of the corresponding 

solutions  tHn ,'   converges uniformly to the solution  tH ,'   corresponding to H . 

This means that for the set of the initial data X  the initial value problem (4), (6) is well-

posed in sense of Hadamard on  T,0  for every 0T  [20], [21]. 

With respect to the usual algebraic operations and topology generated by the uniform 

convergence [25] the set X  is a topological vector space [26]. 

 A neighborhood of   XGFH  000 ,  is a set XVH 
0

 having the property that there 

exists a strictly positive real number 0  such that if      xFxF 0  and 

     xGxG 0  for any 'Rx  , then  
0

, HVGFH  . For 0  and XH 0 , the set 
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is a neighborhood of 0H . 

The fact that H  is close to 0H  can be expressed by saying that 
0HVH  for   small. 

The fact that H  is small can be expressed by saying that  0VH  for  small. It can be seen 
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solution 0Uu  , 0pp  , 0  of (1) is linearly stable with respect to the initial value 

perturbation with initial data from X . 

On the other hand, the exponential growth rate of the solution  txH ,'  corresponding to 

the initial perturbation       xxxH 2exp,exp   is equal to   02 00  cU . Here the 

exponential growth rate of       txptxutxH ,',,'.'   is defined as: 
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Moreover, the set of exponential growth rates of the solutions of the initial value 

problem (4), (6) is the whole real axis and there exist solutions whose exponential growth 

rate is equal to   (for instance that of the solution corresponding to the initial data 

     2exp xxGxF  ). 

The linear stability in the presence of solutions having strictly positive or   growth 

rate can be surprising. That is because usually the stability of the linear evolutionary 

equations is analyzed in functional framework in which the Hille-Yoshida theory can be 

applied [27], [28], [20] (i.e. locally convex and sequentially complete topological vector 

spaces). The change of this framework is the source of surprise. In the new framework in 

general the Fourier transform with respect to x  and Laplace transform with respect to t  of a 

solution do not exist. So, the Briggs-Bers linear stability analysis [22], [23] cannot be 

applied. 

Finally, it has to be noted that the real and the imaginary parts of the initial data for 

which mode type solutions (i.e.  ,exp' kxtiAu   kxtiBp  exp' ) exist, belong to 

X  for arbitrary real or complex wave numbers k . 

Now let Y  be the set of initial data defined as:   

  boundedandabledifferentilycontinuousRRGFGFHY 11:,,    

Y  is a subset of X  which does not contain initial data for which modes having complex 

wave number exist. That is because such an initial data is unbounded. 

For   YGFH  ,  the couple of functions       txptxutxH ,',,','   given by (5) is 

the unique bounded classical solution of (4), (6). For every 0t    YtH ,' . 

The set of initial data Y  is a normed space [27], [28] with respect to the usual algebraic 

operations and the norm defined as: 
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It can be seen that if the sequence nH  converges to H , then for every 0t  the 

sequence of the corresponding solutions       tptutH nnn ,',,','   converges to the 

solution       tptutH ,',,','   corresponding to H . This means that for the set of the 

initial data Y  the initial value problem (4), (6) is well posed in sense of Hadamard on  T,0  

for every 0T  [20], [21]. 

The fact that H  is small, can be expressed by saying that 
Y

H  for   small. 
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It can be seen that for every prior given 0  if  0000 /11,1max/  ccH
Y

, 

then   
Y

tH ,'  for 0t . This means that the constant solution 0Uu  , 0pp  , 

0  of (1) is linearly stable with respect to the initial value perturbation with initial data 

from Y . 

A significant difference between the results obtained in the frameworks X  and Y is that 

in Y  the exponential growth rate of the solutions of the Eqs.(4) is equal to zero. Though in 

Y  for 0Re z  the Laplace transform with respect to t  is defined for every solution the 

Briggs-Bers linear stability analysis fails. That is because there exist solutions for which the 

Fourier transform with respect to x  cannot be applied. For instance, in the case of the 

solution   1,' txu  and   1,' txp . 
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But, if   ZGFH  ,  is continuously differentiable, then the couple 

      txptxutxH ,',,','  , given by (5), is continuously differentiable and verifies Eqs.(4). 
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In general for   ZGFH  ,  the couple  txH ,' , defined by (5), verifies the initial 

condition (6). 

For   ZGFH  ,  the couple       txptxutxH ,',,','  , obtained with formula (5), 

is called generalized solution of the initial value problem (4), (6). 

For t  fixed   ZtH ,'  and satisfies the inequality: 

   
ZZ

H
c

ctH 0,'
1

1,1max,'
00

00 









  (8) 

where the norm in Z  is defined as: 
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Inequality (8) implies that if the sequence   ZHn  0,'  converges in Z  to   ZH  0,' , then 

for every 0t  the sequence  tHn ,'   converges in Z  to  tH ,'  . This means that the initial 

value problem (4), (6) is well-posed for the set of initial data Z . 

According to the same inequality, for any 0  and ZH   with 
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tH ,' . 

This means that the considered constant solution 0Uu  , 0pp  , 0  of (1) is 

linearly stable with respect to the initial value perturbation with initial data from Z . The 

exponential growth rate of any generalized solution       txptxutxH ,',,','   defined as: 
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is equal to zero. 

For every generalized solution the Laplace transform is defined for 0Re z  and the Fourier 

transform with respect to x  exists. So, the Briggs-Bers stability analysis can be applied. 

 What can be strange (mainly for engineers) in this framework is the presence of 

solutions which satisfy the linearized Euler equations only almost everywhere and the fact 

that initial data for which modes type solution exists are not in Z . 

 Some conclusions based on the above considerations: 

1. In the functional frameworks ZYX ,,  the initial value problem is well-posed in sense 

of Hadamard and the constant 1-D gas flow is linearly stable with respect to the initial value 

perturbation. 

2. Though there exist solutions having strictly positive exponential growth rate, the null 

solution of the linearized Euler equations is stable with respect to the initial value 

perturbation from X . 

3. Even if in the framework Y  the exponential growth rate of the solutions of the 

linearized Euler equations is equal to zero, the Briggs-Bers stability analysis cannot be 

applied. 
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4. In the framework Z  there exist solutions which are not differentiable. These solutions 

satisfy Eqs.(4) only in a generalized sense. Only in the frameworks X  and Y  the solutions 

satisfy Eqs.(4) in a classical sense. 

4. COMMENTS 

1. The condition that the set of the exponential growth rates of the solutions of the 

linearized Euler equation has to be bounded from above by zero is not necessary in every 

functional framework for the initial value problem to be well-posed and the null solution 

to be linearly stable. 

2. Linear stability cannot be denied just because the set of the exponential growth rates of 

the solutions of the linearized equation is not bounded from above. 

3. The condition that the set of the exponential growth rates of the solutions of the 

linearized Euler equation is bounded from above is not sufficient in every functional 

framework for the Briggs-Bers stability analysis can be applied. 

4. The applicability of the Briggs-Bers stability analysis is not sufficient for the solutions 

built up by this method to satisfy the linearized Euler equation in a classical sense. 

5. When theoretical results are tested against experimental results it is crucial that the 

computed mathematical variable expresses exactly the measured quantity. This has to be 

a criterion when the functional framework is chosen. For instance, in this paper there are 

three different mathematical variables for expressing that the perturbation is small. Since 

'Rx  (the tube is infinitely long) which one of them can be measured experimentally 

and how?  

6. Since continuous dependence on the initial data is an expression of stability on a finite 

interval of time  T,0  a natural question occurs: what is really important in practice? Is 

the linear stability on  ,0  or the fact that the problem is well-posed on any interval 

 T,0 ? 
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