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Abstract: The gas flow field within an 1D normal shock wave at variable specific heats, viscosity and 

Prandtl numbers with temperature is considered. At Pr = 0.75 and constant specific heats and 

viscosity, the already known analytical solution in a somehow different form is found. At some 

distance from the wave, the flow is isoenergetical (constant total enthalpy). In order to see if the 

isoenergetical character of flow within the shock wave is maintained, a method to correct the solution 

for variable Prandtl number is developed. The obtained solution is close to an analytical one and 

proves that the deviation from the constant enthalpy hypothesis is less than 0.5%. An interesting thing 

pointed out is the coexistence of the supersonic and subsonic regimes within the shock wave. 

Examples of application for air at two Mach numbers are given. 

Key Words: Prandtl number, dimensionless temperature, stagnation enthalpy, isoenergetical flow 

1. INTRODUCTION 

The occurrence of a normal shock wave is possible if a supersonic flow is slowed down by 

an obstacle or by a counter pressure (Fig.1). 

Although important quantitative aspects (pressure, density and velocity jumps) can be 

expressed without using directly the viscosity, the shock formation is due to it. 

If the Navier-Stokes equations are used, more information is obtained, and the important 

role of the viscosity in such a narrow region is highlighted. 

 

 

 

 

 

 

 

 

 
Fig. 1 – The normal shock wave 

An analytical solution is known in case of constant specific heats and viscosity [1], for a 

fixed value of Prandtl number Pr = 0.75, when the total enthalpy is constant throughout the 

flow field. Due to the high value of the Reynolds number, the shock wave thickness is very 

small, which explains the good results obtained by treating it as a simple jump. 
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In case of considering this simple situation, the effect of variation of specific heats was 

first introduced numerically [2]. Then, the maintaining of the analytical expressions for 

pressure, temperature and density ratios etc. in terms of an equivalent Mach number was 

pointed out [3]. Now, along with the specific heats variable with temperature, the effect of 

viscosity (also variable) is introduced, correcting the assumption Pr = 0.75 as well.  

2. THE BASIC EQUATIONS 

One writes the conservation equations for steady viscous laminar flow in 1D. By adopting 

the usual notation u, , p, T for velocity, density, pressure and temperature, one has [4], [5], 

[6]: 
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where , ,h   are the enthalpy, the thermal conductivity and the dynamic viscosity 

respectively, all of them depending on temperature.  

It is to be noted that in momentum and energy equations, instead of 4/3, the quantity 

4/3+ is often considered (as in [4] and [6]) where  is the second coefficient of viscosity. 

In the following developments, the coefficient  will be neglected. 

We use the NASA data [7], [8] for specific heats in a slightly modified form [8], by 

introducing the dimensionless temperature, defined by: 
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One starts with integrating once the energy equation (1- c) and writing it in a form 

containing the Prandtl number Pr, and the total enthalpy
*h : 
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1h  being the initial stagnation enthalpy. 

Because the derivatives with respect to x are equal to zero at large distances from the 

shock wave (which is located around x=0), one yields: 

22
   ; 

2
2

2

2
1

121

u
h

u
hhh    (4) 

By integrating the momentum equation (1-b) once one obtains: 
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Again, because the derivatives with respect to x are equal to zero at large distances from 

the shock wave, the following momentum equality is derived: 

2
212

2
111 upup   (6) 

3. THE METHOD OF SOLVING 

The proposed method of solving consists in the following steps:  

a) one finds the state 2 at large distances behind the shock wave, by solving the algebraic 

system of equations (1- a), (4) and (6); the solution for variable specific heats is taken from 

[3] and several values are given in Table 1, together with the stagnation temperature T*; 

 b) one solves the energy equation (3) under the form: 

  const.   ; 
3

4
11  


 hh

dx

dh
hhu  (7) 

where the term denoted as  zTroth 
1 defined by: 

   
2

1
Pr4

3

3

4 2

1 




















 u

dx

d

u
zTroth  (8) 

was neglected (the factor 


1h  being used for obtaining the dimensionless function Trot (z) 

defined in eq.12).  

The solution (7) represents the isoenergetical flow, const. 1   hh  which is exact at 

large distances from the shock wave. For constant Pr , ,pc , there is an analytical solution as 

follows: 
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where z is a dimensionless velocity difference with respect to entrance, varying in the 

interval (0, 1 -  ) and k1 is the adiabatic exponent of air at the state “1”. In case of 

variable Pr , ,pc , one uses the equations [5]: 

 

 












































1

1

5.0

111

72.0Pr   ; 122.0   ; 
/1

/1

p

p

S

S

S

c

c
C

C

C
      (for air) (10) 

and the solution is: 
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airR being the gas constant for air. The function ( )z  is obtained by interpolation (five 

nodes) using the energy equation (7) const. 1   hh  

c) by using the energy equation (7), one evaluates the neglected term Trot (z) - eq. (8) - 

under the form: 
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that introduced in the energy equation, gives the total enthalpy correction denoted as Csh (z), 

defined bellow: 
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The differential equation from (13) is linear and has the solution: 
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w being an integration variable. 

The condition to determine the integration constant has to be imposed at z = zmax. 

4. EXAMPLES OF APPLICATION  

In Table 1, the state 2 far behind the shock wave is given, as well as the stagnation 

temperature for two initial Mach numbers M1 = 2 and M1 = 3 and the initial temperature 

(dimensionless), 1 = 0.300, for variable , ,Prpc  . 

Table 1 (air; 
1 0.300  ) 

M1 
3

1.10u 

 2 1/u u  
2  

Wave thickness 

(10
7
 m) 

*  Pr (interval) 

2 0.6959 0.3727 0.5045 5.992 0.5369 0.720 - 0.738 

3 1.0844 0.2517 0.7874 3.491 0.8187 0.720 - 0.785 

The shock wave form is given in Fig.2 and 3. The continuous curve (xv (z) – for 

variable , ,Prpc  ) indicates a thicker wave, as the viscosity increases with temperature:  
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Fig. 2 - M1= 2; Shock wave form (air) 

xv(z) - cp and   = variable with temp., xc(z) - cp and   = const. 
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One has defined the wave thickness from the condition for velocities to reach 0.9999 of 

the values
1 2,u u ; the resulted values are given in Table1. 
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Fig. 3 - M1 = 3; Shock wave form (air) 

xv(z) - cp and   = variable with temp., xc(z) - cp and   = const. 
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Fig. 4 - Solution corrections; M1 = 2; 
1 0.300   

The wave thickness decreases with flow Mach number. Therefore, one confirms that the 

“far distance” starts at microns from the wave. 

The solution corrections are represented in Fig.4 and 5 for the two Mach numbers for 

the neglected term in the energy equation (trot (z)) and for the total enthalpy (Csh (z)). 

Both are small as compared to the initial gas stagnation enthalpy and do not exceed 

0.5%. The correction Csh(z) is smaller at M1 = 3, because the Prandtl number goes through 

the value Pr = 0.75 where the correction is zero. 
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Fig. 5 - Solution corrections; M1 = 3; 

1 0.300   

-  Pr (z)- first curve from above; 

- Tetint(z)-  dimensionless temp.as function of z (interpolation with 5 nodes); sec. 

curve; 

- trotv(z)- evaluation of Prandtl number term neglected in isoenergetical approx. 

with variable cp, ,  

   and Pr; (δshv = 3.491E-7 m); - third curve from above; 

- trot(z)- evaluation of Prandtl number term neglected in isoenergetical approx. with 

const. cp, , and  

  Pr; (δshc = 1.689E-7 m); - fourth curve from above; 

- Csh(z)- stagn. enthalpy correction 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

Fig. 6 - The variation of the Mach number through shock wave; the subsonic and 

supersonic regimes coexist (M1 = 2; air) 
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An interesting thing is highlighted in Fig. 6 and 7, namely the coexistence of the 

supersonic and subsonic regimes within the shock wave. 

The passing from the supersonic to subsonic flow is continuous, although very rapid, 

pointing out the effect of viscosity to make jumps smooth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.7 - The variation of the Mach number through shock wave;  

              the subsonic and supersonic regimes coexist (M1 = 3; air) 

5. CONCLUSIONS 

An almost analytical solution for the flow within a normal shock wave in laminar regime 

considering the specific heat, viscosity and Prandtl number variations with temperature was 

given. The isoenergetical flow is proved to be valid even inside the shock wave with a small 

error not exceeding 0.5% of the initial stagnation enthalpy. 

The wave thickness is very small (tens of microns) and decreases with the Mach number 

of the incident flow. The increasing of viscosity and specific heats with temperature leads to 

a thickening of the shock wave. 

This fact, together with the coexistence of the supersonic and subsonic regimes inside 

the shock, highlights the role of the viscosity to make smooth flow jumps. A more complex 

problem could be related to the oblique shock wave, in a 2D flow, using the existing 

solutions for the simple jump [9]. 

As the viscosity increases when the flow is turbulent, it is to be expected a shock wave 

thickening in turbulent flows [10], [11]. 
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