Analytical solutions for some problems of optimum with
applications in air traffic and economics

Corneliu BERBENTE*!, Sorin BERBENTE?

*Corresponding author
*1 “POLITEHNICA” University of Bucharest, Faculty of Aerospace Engineering
Gh. Polizu Street 1-5, 011061, Bucharest, Romania
berbente@yahoo.com
2INCAS — National Institute for Aerospace Research “Elie Carafoli”
B-dul luliu Maniu 220, Bucharest 061126, Romania
sberbente@incas.ro

DOI: 10.13111/2066-8201.2014.6.51.2

Abstract: Analytical solutions for some problems of optimum with applications in air traffic and
economics are given. For air traffic minimal distances between commercial airplanes (flight
corridors) are imposed considering various trajectories: straightlines, orthodromes and loxodromes.
Some other applications are related to target functions submitted to linear or nonlinear restrictions.
Although specialized numerical codes exist the analytical solutions are useful giving a more clear
understanding, suggesting new ways of approach and providing fast tests for preconception.
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1.INTRODUCTION

Analytical solutions for some problems are in general useful, even when specialized
numerical codes exist giving a more clear understanding, suggesting new ways of approach
and providing fast tests for preconception.

2. OPTIMIZATIONS WITHOUT RESTRICTIONS

Let’s consider two airplanes flying on two straight lines trajectories (D1) and (D2), given by
the equations:

(Dl) Moo =h+4&; (Dz) fos =T, +4,8,, 1)

r,A,a,i =1;2 being the position vectors of two fixed points fixe M1 and M2, two

variable parameters and the direction unit vectors of the two straight lines trajectories,
respectively. It is required to determine the minimum distance between the two trajectories,
in order to observe the flight corridors (Fig.1).

Solution
The vectors I, ,I, give the positions of two arbitrary points on trajectories. We shall

look for a minimum for the module of the vector I, — T, , introducing the target function
F(4,4,) equal to the module square as below:
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FdA)=(4a-4a ) +2(5 %) (4a,-4a )+(5-1) . @

Because F(A,,4,) is pozitive it has always a minimum. In this case necessary
extremum conditions are as well:

OF o 0 =\ (=
a—o ) Alai _ﬂy(ai'az )_<r2_rl)'a1
oF @)

N _ A A 2_ (v _ S\ &
@‘0’ ﬂi(araz)"'izaz - (rz rl)'aZ

Fig. 1 Distance between two straight lines trajectories

The system (3) has the determinant:
N2 — 2
A:azbz—(ai.az) :‘aixa2 : 4)

Denoting with N the unit vector attached to the vectorial product axa—2 , One obtains
the values of A, 4,, coresponding to the minimum distance:

ai’x_’ [HX(FZ—Fl)}g [HX(Fz—Fl)}i

- a
n== ——2';/11min= —_— — ;/‘i’Zminz —— — (5)
‘alxaz‘ ‘aixa2 ‘aixa2
The two planes positions for the minimum are:
Flemin = q +Alminahl , r'D2min = ré +22minaz * (6)

By working out some algebra one yelds a simple expression for the square distance
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= — 2 = (= - 2
F(4,4,) = n[ ( 2—I’1)} (rDZ_rDl) :[n'(rz_rlﬂ - (7
In this way one has both the minimum distance and the plane positions.
Exemples

1. Let the points M, , M, be given by the position vectors:
r: =(12;16;30)" ; r> =(20;14;35)" ; r>—r. =8e, - 2e, +5e, ,
and the direction unit vectors of the two straight lines trajectories:
a, =(2;3;15)";a, =(2;5;-0.5)'
One calculates the vectorial product: ixg , its unit vector n and some other

necessary guantities:
a xa, = -9¢, +4e, +4e,; | 3, xa,| =/113; N =(-9¢, +4e, +4¢,)//113 ,

113 nx(r.—11) = 286, +77¢, -14¢;

The minimum distance, Ay + Aomin @Nd the plane positions are then:

- — - 448 266
d., :‘n( ) \/_

=5.64433; Ay, = 12 =3.9646 4y, =5 =2.35308 = 364.433 m.
r-Dlmm - r +ﬂ'lmm al D2m|n = r +ﬂ'2m|n a2

2.1 The general case: the minimum distance between two curves in space

Let the trajectories of the airplanes A, A,, be given by the equations:

=T (4); T, =T (4), ®)

the parameter A, , 4, being independent. The problem to be solved is:

d =| T, () = Fu(A)| = min.,or 4% =[ 7, (4,) — T (A =F (4, 4,) =min. ©)

=F (A A) =14 415 =210 Tap) (10)
The necessary and sufficient conditions for minimum are:
OF (ydy) _o. OF(Uns) g
o4 0,
leading to the system of equations:
dry —dry_g. dn, —dr,

Ala_rAZ'E 11A2 dﬂ? .dﬂ?

The vectors a@ being given, the nonlinear system (12) provides the unknowns

, (11)

=0. (12)

Apin s omin @Nd, With them,the minimum position.
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2.2 Orthodrome. Loxodrome. Minimum distance

1. For the orthodrome we have by definition an intersection of a sphere of radius (Rn+h)
(Rm the local mean radius of earth); h-the height of flight with a plane passing through its the
center:

R=R +h=const=R. (=R.);
m flight f (13)
ax+by+cz=0 ;
a=YpZa-yaZp ; D=ZpXa-ZaXo ; C=XpYa-XaYp. (14)
We use the spherical coordinates to write:
X=R;sinfcosw; y=R; sindsinw;z =R, coso,; (15)
From (13) one yields (Ri# 0):
a sinfcosw +b sinbsinw + ¢ cosd =0 . (16)

Fig. 2 Loxodrome

The relation (16) can be used to express one of the coordinates w, # as function of the
remaining one, for exemple:

e forc=0: (acos w+b sin w)=0, (6£0), a7

tgw, = —% —const. (640), (18)

) ) - a
one obtains the flight along a meridian (wo=-arctg b ).

The orthodrome is:

X=Rtcoswo sind ; (19-a)
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Y=Rt sinwo sinf ; =R cosb , (19-b)

written as a space curve function of one parameter 6.
» for c#0 one can express simpler 0 as a function of ®:

: —C
ctgez—ﬂcosw—gsma);Hzatan( : ],c;to (20)
c c acosw+bsinw

2. For a loxodrome one imposes an angle y between the flight velocity and the local
meridian:

\% =cos y =const. ; V, =’\7‘COS}(J}( =<@7\7) , (21)

because the direction of the meridian is given by the unitvector €, .

Considering the velocity constant in module, by (21) the velocity component Vy is
imposed which represents a relation between the two parameters w, 8. The simplest way is
to consider the spherical coordinates. The velocity is then written as follows:

2
V =R, (—sm 08, +d—e€) V2= RZ([d—a)sin 0} (de) ); Vo =0; (22)
dt dt d
2 2
V|=R, (d—“’J sin29+(d—9j V=R, ging v, =g 99 (22-a)
dt dt dt dt
One obtains a differential equation of the first degree:
do Vv,
——tan dw ; tan y =—2=const.
sin@ x=tes « V, (23)

The equation (23) can be solved analyticaly starting from w=wp ,0=60p; y is taken as
parameter to meet the arrival point w=wa ,6=0x.
The solution is:

o=, +tan;gln(tan gj . (24)

For an orthodrome along a meridian, one has a loxodrome with y =0 and the
equation (24) becames: @ =w,, @, being calculated from the initial conditions. The
velocity is V =V,, the flight velocity on the orthodrome. Therefore the parametrical

equations are:
- for orhodrome:

R=R;; o=w; f=atan -
acosw+bsinw

jﬂ-ﬁ,c;&o, i=(01),0e0),  (@25)

the parameter being @. For c=0, one obtains a flight on a vertical, @ being
undetermined;
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- for loxodrome:
R=R; ; w=0, +tan;(.lntan§; 0=0, (26)

the parameter being 4.

In the above relations, the parameters a,b,c are given by relations (14).

The loxodrome angle can also be expessed using the coordinates of the departure and
arrival points D, A:

- o
tany = coz On 5@ = —tan;(.lntan? ; ”7
In| tan—=/tan 2 (@7)
2 2
) z
tan—2 = Yo ; COSH, , =2 (28)
XD,A ’ Rf

Problem 2. Find the minimal distance and its location for: a) two orthodromes; b) one
orthodrome and a loxodrome; c) two loxodromes, in horizontal flight.

Solution.
Let the orthodrome and the loxodrome be given by equations (25) and (26) in the forms:

a):a);ezatan[ G _ j+j7r,ci¢0,i=1;2;j=0;1; (29)
a, Cosw+b sinw

R=R,+h

io?

R=R,+h, ; o=, +tan;(i.ln(tan§} 1=1;2, (30)

the altitude h and and the navigation angles being diferent.
In horizontal flight the altitudes are constant for each trajectory, and the minimal
distances are the altitude differences:

do,min :|h20 _hl0| , dI,min :|h2l _hll| - [ :1;2’ (31)

for orthodromes and for loxodromes. As regards the minimum location, one needs to satisfy
the conditions:

€r1 =€r2: 0, =0, 0, =w,, (32)

giving the minimum distance: according to (2.3), the distance function F(A4,4,), for

r, =Const.,r,, =const. is minimal when the scalar product T,_.r,, is maximum for (32).
Case a). The equality conditions of coordinates @ and @ (320 lead to:

< _ —C, .
a,cos@,,, +bsinm,;,, a,cosw,, +b,sinw,, (33)
a,c, —a,C —C
tanw,;, 24735 . 0., =atan( L
c,b, —chb, a,Cosm,;, +b sinaw,;,
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Case b). The equality conditions of coordinates w and & lead to:

_Cl
a,Ccosm,, +b sina,..

1
@ = O, +tany, Injtan > atan( (34)

After the angle @, is obtained from (3.22), one calculates the angle &, from relation:

—G

6 . =atan
i (a1 cosm,,;, +b, sina,;, (35)
Case c). The equality conditions of coordinates @ and & (32) lead to:

emin emin .

@y, +1an g, Intan 5 = @y, +tany,.Intan o
: 36
tan Onin —exp( W =@y Yo = wglany, —o ytany, (36)

2 tany, —tany,” tany, —tany,

Example. Find the location of the possible minimal distance between the trajectories of
the flights: 1) London-Rio de Janeiro; 2) New York- Cape Town.

Solution. The polar and carthesian coordinates and a,b,c are:
a) If the two trajectories are orthodromes, the location of the minimal distance is:

Orinory =— 29.172deg .;

6,.non = 78.893deg. a point above the Atlantic Ocean (latitude 90- 78.893= 11.107 deg.).
If the two trajectories are loxodromes, the coordinates for the minimum distance are:

Wi =—28.515deg.; 6., =79.285deg. very close to orthodromes. The loxodrome

directions are:
tan y1=-0.60501;tan »2=1.007; y1=—31.174deg.; y2=45.225deg.

L RJ NY CcT
Rkm 6400 6400 6400 6400
L-RJ NY-CT
wdeg 0 -50 ~63 20 ,
al07 21958 0.82696
Odeg 40 114 49 125 |

b.107 29132 28734 (37)

xkm  4113.8 3758.2 2192.8 4926.4 .
c.10”" -1.8422 25135

ykm 0.000 -4478.8 —-4303.7 1793.1
zkm 49027 -2603.1 4198.8 -3672.9

3. OPTIMIZATIONS WITH LINEAR TARGET FUNCION AND NON
LINEAR RESTICTION

Let the target function F: R® — R, be linear:
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a, j= ﬁ are known coefficients.
One looks for the minimum (maximum) with the restriction (ellipsoid):

2 2 2
SIEEANEEANCE o -
al a2 aS
X = X . —= X+ X . —
a_= iM |m;|:l;3’vvi= iM |m;|:l;31
i —2 —2 (40)
where xim,xiM;i:ﬁ, are minimum (maximum) values, forx;, and Wi,i:l;_3, are

coordinateles of the ellipsoid centre, respectively.
In particular, in a problem of economics, x,, i=1;3 , represent the cost prices for

material, labour and overhead on various markets in different locations.
After an interval of time by the mecanism of supply and demand the minimum prices in
the poor regions and the maximum prices in the reach regions defining a paralellepiped are

rounded on an ellipsoid (39), whereas «;, j=1;3 , giving the amounts for a product, are
constant.

Thus one will look for a minimum possible price for production and for a maximum
possible price for sale.

Solution.
We look for an analytical solution also useful for a numerical code testing.
To this aim one transforms the ellipsoid (39) in a sphere,by introducing the new coordinates

X, ,i= ﬁ , defined as bellow:

YY) - 3
X, =23 i=1;3; (5) Y X?=1, 1)
a; i=1
The target function becomes:
3
F:Z(“J anj+ajwj); grad, F =g, =(o;a,) (42)
=1

Restriction (39) led to a sphere with the centre in origine (S), of the radious unity (41),
whereas the target function represents a plane (P); it decreases in the gradient g, (relation

(30)) direction.
The normal (N) to the plan (P), passing through the sphere centre O (Fig.1) has the
equation:

(N) i(a,. a X,)=0 (43)
j=1
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(P Ly

Fig. 3 Minimum and maximum with one restriction (S)

The normal (N) intersects the sphere (S) in two points: L1 and L2; these points
represent the looked for the minimum and for the maximum, respectively. Their coordinates
are:

Oy : o a; 3
Xle:_A:_#; Xi2==Xju1 |gx|: Z(‘3°jaj)2 (44)
| 9| | 9| j=1

By replacing these coordinates in the target function (3), one gets:
3 3
minF=Z(aJWj)—|gX|; maxF=Z(ajo)+|gx| . (45)
=t j=1

The coordinates coresponding to L1, L2, on the ellipsoid ( E ), are:
X =a, X, +w;j=1;3;i=1;2 . (46)

Numerical results. The following vectors are given o, X.,, X, (UM/product/per hour
- labour, kg - materials and overhead: «=(0.3;1.2;1.0)" ; x,=(1.0;0.5;0.2)" ;

Xy =(8.0; 3.0; 0.8)". The values are presented in Table 1
Table 1

a

W,

W2 1

L1

L2

3.50

1.25

0.30

4.50

1.75

0.50

2.0946

5.8034

4. CONCLUSIONS

Analytical solutions for several problems of optimum with/without restictions are given. For
the minimum distance between two stright lines trajectories, as well as for the position of
minimum explicite compact formulas are obtained. The general formulation for the arbitrary
curve trajectories is also presented. Aplications for flight on orthodromes and loxodromes
are solved by using spherical coordinations and original parametrical representations
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proposed by the authors.

An application to price optimization for both production and sale considering material,
labour and overhead costs is developed, and treated in conditions of market competition.
Numerical examples are also presented.
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