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Abstract: Analytical solutions for some problems of optimum with applications in air traffic and 

economics are given. For air traffic minimal distances between commercial airplanes (flight 

corridors) are imposed considering various trajectories: straightlines, orthodromes and loxodromes. 

Some other applications are related to target functions submitted to linear or nonlinear restrictions. 

Although specialized numerical codes exist the analytical solutions are useful giving a more clear 

understanding, suggesting new ways of approach and providing fast tests for preconception. 
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1. INTRODUCTION 

Analytical solutions for some problems are in general useful, even when specialized 

numerical codes exist giving a more clear understanding, suggesting new ways of approach 

and providing fast tests for preconception. 

2. OPTIMIZATIONS WITHOUT RESTRICTIONS 

Let’s consider two airplanes flying on two straight lines trajectories (D1) and (D2), given by 

the equations: 

   1 1 1 1 1 2 2 2 2 2; ,D DD r r a D r r a      (1) 

, , ,i i ir a i 1;2   being the position vectors of two fixed points fixe M1 and M2, two 

variable parameters and the direction unit vectors of the two straight lines  trajectories, 

respectively. It is required to determine the minimum distance between the two trajectories, 

in order to observe the flight corridors (Fig.1). 

Solution 

The vectors 1 2,D Dr r  give the positions of two arbitrary points on trajectories. We shall 

look for a minimum for the module of the vector 2 1D Dr r , introducing the target function 

1 2( , )F    equal to the module square as below: 
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2 2

1 2 2 2 1 1 2 1 2 2 1 1 2 1( , ) 2 .F a a r r a a r r            , (2) 

Because 1 1( , )F   is pozitive it has always a minimum. In this case necessary 

extremum conditions are  as well: 
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Fig. 1  Distance between two straight lines  trajectories 

The system (3) has the determinant: 

 
2 2

2 2

1 2 1 2.a b a a a a     , (4) 

Denoting with n  the unit vector attached to the vectorial product 1 2a a  , one obtains 

the  values of 1 2,  , coresponding to the minimum distance: 

   2 1 2 12 1
1 2

1min 2min

1 2 1 2 1 2

. .
; ;

n r r a n r r aa a
n

a a a a a a
 

            
  

. (5) 

The two planes positions for the minimum are: 

1min 1 1min 1 2min 2 2min 2;D Dr r a r r a     . (6) 

By working out some algebra one yelds a simple expression for the square distance 
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2

2
2 1 2 11 2 2 1( , ) . .D DF n n r r r r n r r         

   
. (7) 

In this way one has both the minimum distance and the plane positions. 

Exemples 

1. Let the points 1M , 2M be given by the position vectors: 

1 12 6 0 Tr ( ;1 ;3 ) ; 2
Tr (20;14;35) ; 2 1 1 2 3r r 8e - 2e +5e  , 

and the direction unit vectors of the two straight lines  trajectories: 

1 2;T Ta (2;3;1.5) a (2;5;-0.5)  . 

One calculates the vectorial product: 1 2a a , its unit vector n  and some other 

necessary quantities: 

 1 2 1 2; ; /1 2 3 1 2 3a a -9e +4e +4e a a 113 n -9e +4e +4e 113     , 

 2 1113 1 2 3n r r 28 e +77 e -14e   . 

The minimum distance, 2,1min min   and the plane positions are then: 

 2 1. ;min 1min 2min

-60 448 266
d n r r 5.64433 =3.9646 ; = =2.35398

113 113113
      = 364.433 m. 

1 1 ;D1min 1min D2min 2 2min 2r r a r =r + a   . 

2.1 The general case: the minimum distance between two  curves in space 

Let the trajectories of the airplanes 1 2,A A , be given by the equations: 

1 1 1 2 2 2( ); ( ),A A A Ar r r r    (8) 

the parameter 1 2,   being independent. The problem to be solved is: 

22

2 2 1 1 2 2 1 1 1 2( ) ( ) , ( ) ( ) ( , )A A A Ad r r min. or d r r F min.             (9) 

2 2 2

1 2 1 2 1 2( , ) 2( . )A A A Ad F r r r r     , (10) 

The necessary and sufficient conditions for minimum are: 

1 2 1 2

1 2

( , ) ( , )
0; 0

F F   

 

 
 

 
, (11) 

leading to the system of equations: 

1 1 2 2
1 2 2 1

1 1 2 2

. 0; . 0.A A A A
A A A A

dr dr dr dr
r r r r

d d d d   
     (12) 

The vectors 1 2,A Ar r  being given, the nonlinear system (12) provides the unknowns 

1 2,min min  and, with them,the minimum position. 
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2.2 Orthodrome. Loxodrome. Minimum distance 

1. For the orthodrome we have by definition  an intersection of a sphere of radius (Rm+h) 

(Rm the local mean radius of earth); h-the height of flight with a plane passing through its the 

center: 

( );

0   ;

m flight fR R h const R R

ax by cz

    


  

 (13) 

a=yD zA-yA zD   ;  b=zD xA-zA xD  ;  c=xD yA-xA yD. (14) 

We use the spherical coordinates to write: 

sin cos ; sin sin ; cos ;f f fx R y R z R        (15) 

From (13) one yields (Rf ≠ 0): 

a sinθcosω +b sinθsinω + c cosθ = 0 . (16) 

 
Fig. 2  Loxodrome  

The relation (16) can be used to express one of the coordinates ω, θ as function of the 

remaining one, for exemple: 

   •  for c = 0:   (a cos ω+b sin ω)=0, (θ≠0), (17) 

0 .
a

tg const
b

       (θ≠0), (18) 

one obtains the flight along a meridian (ω0=-arctg
a

b
). 

The orthodrome is: 

x=Rf cosω0 sinθ  ; (19-a) 
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y=Rf sinω0 sinθ  ;   z=Rf cosθ , (19-b) 

written as a space curve function of one parameter θ. 

• for c≠0 one can express simpler θ as a function of ω: 

 sincos
c

b

c

a
ctg   ; , 0

cos sin

c
atan c

a b


 

 
  

 
 (20) 

2. For a loxodrome one imposes an angle χ  between the flight velocity and the local 

meridian: 

cos .
V e

const
V

 


    ;   cos ; ,V V e V    , (21) 

because the direction of the meridian is given by the unitvector e . 

Considering the velocity constant in module, by (21) the velocity component Vθ is 

imposed which represents a relation between the two parameters ω, θ. The simplest way is 

to consider the spherical coordinates. The velocity is then written as follows: 

2 2

2 2( sin ); ( sin ); 0;f R

d d d d
V R e e V R V

dt dt dt dt
 

   
 

   
       

   
 (22) 

2 2

2sin ; sin ;f f f

d d d d
V R V R V R

dt dt dt dt
 

   
 

   
      

   
. (22-a) 

One obtains a differential equation of the first degree: 

tan ; tan .
sin

Vd
d const

V






  


    (23) 

The equation (23) can be solved analyticaly starting from ω=ωD ,θ=θD;  χ  is taken as 

parameter to meet the arrival point ω=ωA ,θ=θA. 

The solution is: 

0 tan ln tan
2


  

 
   

 
. (24) 

For an orthodrome along a meridian, one has a loxodrome with 0   and the 

equation (24) becames: 0  , 0  being calculated from the initial conditions. The 

velocity is V V , the flight velocity on the orthodrome. Therefore the parametrical 

equations are: 

- for orhodrome: 

R= fR ;  ; , 0, 0,1 , (0; ) ,
cos sin

c
atan j c j

a b
     

 

 
      

 
 (25) 

the parameter being  . For 0c  , one obtains a flight on a vertical,   being 

undetermined; 
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- for loxodrome: 

R= fR ; 
0 . ; ,

2
tan lntan


        (26) 

the parameter being  . 

In the above relations, the parameters a,b,c are given by relations (14). 

The loxodrome angle can also be expessed using the coordinates of the departure and 

arrival points D, A: 

0; .
2

/
2 2

D A D
D

D A

tan tan lntan

ln tan tan

  
   

 


  

 
 
 

; 
(27) 

, , ,

,

,

; cos
2

D A D A D A

D A

D A f

y z
tan

x R


  . (28) 

Problem 2. Find the minimal distance and its location for: a) two orthodromes; b) one 

orthodrome and a loxodrome; c) two loxodromes, in horizontal flight. 

Solution. 

Let the orthodrome and the loxodrome be given by equations (25) and (26) in the forms: 

R= m ioR h ; ; , 0, ; 0;1;
cos sin

i
i

i i

c
atan j c i 1;2 j

a b
   

 

 
      

 
 (29) 

R= m ilR h ; 0 . ;
2

i itan ln tan i 1;2 ,


  
 

   
 

 (30) 

the altitude h and and the navigation angles being diferent. 

In horizontal flight the altitudes are constant for each trajectory, and the minimal 

distances are the altitude differences: 

, 2 1 ;o min o od h h  , 2 1l min l ld h h   , ;  ,i 1;2  (31) 

for orthodromes and for loxodromes. As regards the minimum location, one needs to satisfy 

the conditions: 

2 1 2 1 2; ; ,R1 Re e        (32) 

giving the minimum distance: according to (2.3), the distance function 
1 2( , )F   , for 

1 2., .A Ar const r const   is minimal when the scalar product 
1 2.A Ar r is maximum  for (32). 

Case a). The equality conditions of coordinates and   (320 lead to: 

1 2

1 1 2 2

2 1 1 2 1

2 1 1 2 1 1

;
cos sin cos sin

; ( )
cos sin

min min min min

min min

min min

c c

a b a b

a c a c c
tan atan

c b c b a b

   

 
 

 


 

 
 

 

 (33) 
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Case b). The equality conditions of coordinates and   lead to: 

1
02 2

1 1

1
. ( )

2 cos sin
min

min min

c
tan ln tan atan

a b
  

 


 


. (34) 

After the angle min is obtained from (3.22), one calculates the angle min from relation: 

1

1 1

( )
cos sin

min

min min

c
atan

a b


 





. (35) 

Case c). The equality conditions of coordinates and   (32) lead to: 

01 1 02 2

02 1 01 202 01

1 2 1 2

. . ;
2 2

( );
2

min min

min
min

tan lntan tan lntan

tan tan
tan exp

tan tan tan tan

 
   

     


   

  


 

 

. (36) 

Example. Find the location of the possible minimal distance between the trajectories of 

the flights: 1) London-Rio de Janeiro; 2) New York- Cape Town. 

Solution. The polar and carthesian coordinates and a,b,c are: 

a) If the two trajectories are orthodromes, the location of the minimal distance is: 

min 29.172deg.;ort   

min 78.893deg.ort   a point above the Atlantic Ocean (latitude 90- 78.893= 11.107 deg.). 

If the two trajectories are loxodromes, the coordinates for the minimum distance are: 

min min28.515deg.; 79.285deg.lox ort    very close to orthodromes. The loxodrome 

directions are: 

 tan 1 0.60501; tan 2 1.007; 1 31.174deg.; 2 45.225deg.         

7

7

6400 6400 6400 6400

deg 0 50 63 20
.10 2.1958 0.82696

;deg 40 114 49 125
.10 2.9132

4113.8 3758.2 2192.8 4926.4

0.000 4478.8 4303.7 1793.1

4902.7 2603.1 4198.8 3672.9

L RJ NY CT

R km
L RJ NY CT

a

b
x km

y km

z km








 
 
   
  
 
 
 
 

  
   

7

2.8734

.10 1.8422 2.5135c 

 
 
 
 
 

 

 
(37) 

3. OPTIMIZATIONS WITH LINEAR TARGET FUNCION AND NON 

LINEAR RESTICTION 

Let the target function  F : R3 → R, be linear: 
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  ,,3;1,; jxF jji . (38) 

,
j

j 1;3a = are known coefficients. 

One looks for the minimum (maximum) with the restriction (ellipsoid): 

1
a

wx

a

wx

a

wx
E

2

3

33

2

2

22

2

1

11 






 








 








 
)( , (39) 

; , ; ,iM im iM im

i i

x x x x
a i 1;3 w i 1;3

2 2

- +
= = = =  (40) 

where , ;
im iM

x x i 1;3= , are minimum (maximum) values, for
i

x , and 
i

w , i 1;3= , are 

coordinateles of the ellipsoid centre, respectively. 

In particular, in a problem of economics,
i

x , i 1;3= , represent the cost prices for 

material, labour and overhead on various markets in different locations. 

After an interval of time by the mecanism of supply and demand the minimum prices in 

the poor regions and the maximum prices in the reach regions defining a paralellepiped are 

rounded on an ellipsoid (39), whereas 3;1jj , , giving the amounts for a product, are 

constant. 

Thus one will look for a minimum possible price for production and for a maximum 

possible price for sale. 

Solution. 

We look for an analytical solution also useful for a numerical code testing. 

To this aim one transforms the ellipsoid (39) in a sphere,by introducing the new coordinates 

,
i

X i 1;3= , defined as bellow: 








3

1i

2

i

i

ii
i 1XS;3;1i

a

wx
X ,)(,  (41) 

The target function becomes: 

  T

jjx

3

1j

xjjjjj agFgradwXaF )(;  


 (42) 

Restriction (39) led to a sphere with the centre in origine (S), of the radious unity (41), 

whereas the target function represents a plane (P); it decreases in the gradient 
X

g (relation 

(30)) direction. 

The normal (N) to the plan (P), passing through the sphere centre O (Fig.1) has the 

equation: 

 



3

1j

jjj 0XaN )(  (43) 
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Fig. 3 Minimum and maximum with one restriction (S) 

The normal (N) intersects the sphere (S) in two points: L1 and L2; these points 

represent the looked for the minimum and for the máximum, respectively. Their coordinates 

are: 
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1

2
121 ;;

j

jjXLjLj

X

jj

X

jX

Lj agXX
g

a

g

g
X  (44) 

By replacing these coordinates in the target function (3), one gets: 

   



3

1j

Xjj

3

1j

Xjj gwFmaxgwFmin  ; . (45) 

The coordinates coresponding to L1, L2, on the  ellipsoid ( E ), are: 

; ; 2
jLi j jLi j

x a X w j 1;3 i 1;= + = = . (46) 

Numerical results. The following vectors are given Mm xx ,,  (UM/product/per hour 

- labour, kg - materials and overhead: ;)2.0;5.0;0.1(;)0.1;2.1;3.0( T
m

T x   

T
Mx )8.0;0.3;0.8( . The values are presented in Table 1 

Table 1 

1
a  

2
a  

3
a  

1
w  

21
w  

3
w  

1L
F  

2L
F  

3.50 1.25 0.30 4.50 1.75 0.50 2.0946 5.8034 

4. CONCLUSIONS 

Analytical solutions for several problems of optimum with/without restictions are given. For 

the minimum distance between two stright lines trajectories, as well as for the position of 

minimum explicite compact formulas are obtained. The general formulation for the arbitrary 

curve trajectories is also presented. Aplications for flight on orthodromes and loxodromes 

are solved by using spherical coordinations and original parametrical representations 
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proposed by the authors. 

An application to price optimization for both production and sale considering material, 

labour and overhead costs is developed, and treated in conditions of market competition. 

Numerical examples are also presented. 
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