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Abstract: In this article, gauge condition in elastodynamics is explored more to revive its potential 

capability of simplifying wave propagation problems in elastic medium. The inception of gauge 

condition in elastodynamics happens from the Navier-Lame equations upon application of Helmholtz 

theorem. In order to solve the elastic wave problems by potential function approach, the gauge 

condition provides the necessary conditions for the potential functions. The gauge condition may be 

considered as the superposition of the separate gauge conditions of Lamb waves and shear horizontal 

(SH) guided waves respectively, and thus, it may be resolved into corresponding gauges of Lamb 

waves and SH waves. The manipulation and proper choice of the gauge condition does not violate the 

classical solutions of elastic waves in plates; rather, it simplifies the problems. The gauge condition 

allows to obtain the analytical solution of complicated problems in a simplified manner. 
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1. INTRODUCTION 

In elastodynamics, the equations of motion for homogeneous isotropic linearly elastic solids 

are represented by the Navier-Lame equations, in vector form, 

2

( ( )u u u          (1) 

where, u  is the displacement vector,   is the density,   and   are the Lame constants. 

To construct the solutions of Navier-Lame equations, the displacement fields can be 

considered as the superposition of the gradient of scalar potential   and the curl of the 

vector potential H . Use the Helmholtz theorem (mentioned originally in ref. [1] and then in 

its translated version [2]) to write 

u grad curlH H     (2) 

The potentials   and H  satisfy the wave equation, i.e., 

2 2 2 2;        p sc c H H      (3) 

where, 
pc  and 

sc  are the pressure and shear wavespeeds, respectively. 
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It can be noted from Eq. (2), in three dimensions, the three components of displacement are 

represented by four components of potentials. 

Thus, an additional unknown exists. In order to ensure the uniqueness of the solution, Eq. (2) 

is complemented by the gauge condition [1], i.e., 

0H   (4) 

The gauge condition is needed to mitigate the requirement of the additional unknown in the 

potential formulation. 

However, the formula given in Eq. (4) is not the only possible form of the gauge condition; 

in fact, a multitude of alternative forms exist [3] as used in elastodynamics [4] [5] (pg. 465 ), 

and electrodynamics [6] [7] [8]. 

1.1 General guided wave solution in terms of potentials 

Meeker and Meitzler [9] developed the general solution for y -invariant straight-crested 

guided waves (Figure 1) using the Helmholtz potentials 

( )cos sin i x tA z B z e          (5) 

( )cos sin i x t

xH C z D z e         (6) 

( )cos sin i x t

yH E z F z e         (7) 

( )cos sin i x t

zH G z H z e         (8) 

and the gauge condition 

0x z
H H

H
x z

 
   

 
 (9) 

The constants , , , , , , ,A B C D E F G H  are eight unknowns to be determined from the six 

traction free boundary conditions on the top and bottom boundaries of the plate. Because the 

number of unknowns (8) is greater than the number of conditions (6), the gauge condition 

Eq. (9) is used to produce two additional conditions. This is done by evaluating the gauge 

condition at the top and bottom surfaces of the plate. 

In order to produce the required additional equations, Graff [5] suggested to substitute the 

complex-valued 
xH , 

zH  into equation Eq. (9) and to separate them into real and imaginary 

parts to produce four equations with four unknowns. 

However, the traction-free boundary condition equations were not separated into real and 

imaginary parts. 

This complication may explain why the solution of SH waves is usually expressed in terms 

of displacement although the Lamb waves are elegantly solved using potentials functions [5] 

[10] [11]. Thus, the gauge condition seems to remain a redundant condition in these classical 

solutions. 

1.2 General solution in terms of displacements 

Alternatively, Achenbach [12] [13] proposed a guided wave solution using an ingenious 

definition of the displacements that utilizes the solution of membrane wave equation, i.e., 
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 (Lamb wave) (10) 
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




 





 (SH wave) (11) 

where k  and l  are wavenumber-like quantities and the functions  ,  satisfies the 

membrane wave equation. (The details can be found in ref. [12] [13]) 

However, this approach does not involve the wave equation since the displacement satisfies 

the Navier-Lame equation but not the wave equation. 

1.3 The scope of this article 

In this article, we propose a unified potential-based solution to the guided wave propagation 

that is simpler (and has fewer unknowns) than that of ref. [4] and [5]. We will show that it is 

possible to reduce the eight unknowns of Eqs. (5)-(8) to only six unknowns by the proper 

utilization and manipulation of the gauge condition and thus, produce a much simpler 

solution of the guided wave propagation problem. 

The origin of the gauge condition in elastodynamics is discussed in Section 0; it will be 

shown that the gauge condition can be chosen arbitrarily within certain limits. The different 

forms of the gauge condition in electrodynamics are discussed is Section 0. 

The proper choice and manipulation of the gauge condition of elastodynamics is discussed in 

Section 0; our manipulation on the gauge condition does not violate the fundamental 

elastodynamics assumptions. The use of the proposed method is demonstrated on two 

classical problems, i.e., the straight crested and the circular crested guided wave propagation 

in a uniform plate. 

2. GOVERNING EQUATIONS AND ORIGIN OF GAUGE CONDITION IN 

ELASTODYNAMICS 

2.1 Origin of the gauge condition in elastodynamics 

The backbone of classical elastodynamics is the Navier-Lame equations [5]. The origin of 

the gauge condition can be traced to the Navier-Lame equations as follows: 

Substitute Eq. (2) into Eq. (1) to get 

  2( ( ) ( ) ( )H H H             (12) 

Upon rearrangement, 
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 2 2( 2 ( ) ( ) ( ( ) ( )H H H                    (13) 

Recall the general vector property ( ) 0H    (divergence of any curl is zero); hence, 

the third term of Eq. (13) drops out. Combining the similar potential functions, Eq. (13) can 

be written as 

 2 2( 2 ( ) 0H H              (14) 

Eq. (14) is separated into two wave equations 

2( 2 0         (scalar wave equation) (15) 

2 0H H      (vector wave equation) (16) 

Assuming harmonic time variation with circular frequency   and defining 

( 2 ) /pc      , /sc    , Eq. (15) and (16) become 

2
2

2
0

pc


     (17) 

2
2

2
0

s

H H
c


    (18) 

Eq. (17) indicates that the scalar potential   propagates with the pressure wave speed pc , 

whereas Eq. (18) indicates that the vector potential H  propagates with the shear wave speed 

sc . It can be shown that the pressure waves are irrotational waves i.e., have zero rotation, 

whereas the shear waves are equivolume waves, i.e., they have zero dilatation and are known 

as distortional waves [5]. From now on, we call the scalar potential   as pressure potential 

and the vector potential H  as shear potential. 

2.2 Inception of the gauge condition 

Now let’s take a look at the dropped out term in Eq. (13), i.e., 

 ( ( ) 0H       (19) 

Using the vector property    ( ) ( )H H      , Eq. (19) can be written as 

 ( ( ) 0H       (20) 

But ( 0    , hence, Eq. (20) can be written as 

 ( ) 0H     (21) 

Let H   , a scalar quantity; then, Eq. (21) becomes 
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 ) 0    (22) 

Eq. (22) represents the vector property that curl of any gradient field is zero. Thus,   can be 

chosen arbitrarily without affecting the generality of the solution; this is called gauge 

invariance. This is similar to the gauge invariance used in solving the Maxwell’s equations 

in electrodynamics through the potential approach (see section 2.5 of chapter 2 of ref. [3]). 

Owing to the uniqueness of the physical problem, any solution that satisfies the Navier-Lame 

equations be the unique solution to the problem, regardless of the value assumed by  . 

The selection of the gauge depends on the nature of the problem. The simplest gauge 

condition may be selected as      which is similar to the Coulomb gauge [7] in 

electrodynamics. The physical quantities such as displacements and stresses do not depend 

on the choice of the gauge for a problem with unique solution. However, the proper choices 

of gauge make the problems easier to solve. As an example, Gazis used ( , )F r t   [4] in 

order to simplify the shear potentials when developing the solution of wave propagation in a 

hollow cylinder. To avoid any confusion on the gauge condition, we can quote from ref. [14] 

a statement on the gauge condition used in electrodynamics. “As a rule, one should keep in 

mind that there are no ‘right’ or ‘wrong’ admissible gauge choices. Any proper gauge will 

lead to the same values of gauge invariant quantities. But, depending on an actual problem, a 

certain gauge can be more appropriate than others.” 

Therefore, the gauge condition may be used to simplify the problem. It is noted that the 

gauge condition does not depend on the pressure potential  ; rather, it depends only on the 

shear potential H . The proper choice and manipulation of the gauge condition should 

simplify complicated wave problems. 

3. DIFFERENT FORMS OF GAUGE CONDITION IN 

ELECTRODYNAMICS 

Helmholtz theorem gained its popularity for simplifying the problems in numerous fields of 

physics: hydrodynamics, elastodynamics, electrodynamics etc. In electrodynamics, 

Maxwell’s equations are solved using Helmholtz potential functions with a gauge condition 

that is not necessarily to be zero; rather, actual fields are invariant of the gauge condition. 

The choice of gauge is arbitrary and does not change the physical quantities, and the 

potential functions are adjusted according to the choice of gauge [6]. However, a certain 

gauge may be more appropriate than a random choice and may make the problem easier to 

solve analytically. Researchers in electrodynamics have taken advantage of this by utilizing 

various forms of the gauge condition to solve various problems in classical electrodynamics 

and quantum electrodynamics. 

Different choices of the gauge condition have already been used to solve different problems 

in electrodynamics. For example, the gauge invariance of classical field theory applied to 

electrodynamics allows one to consider the vector potential A  with various gauge conditions 

[7], i.e., 

0 (Coulomb gauge)A   (23) 

0 (Lorenz gauge with )A

      (24) 
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20 (Light cone gauge with =0)n A n

   (25) 

0 (Fock-Schwinger gauge)x A

   (26) 

0 (Hamiltonian or temporal gauge)oA   (27) 

etc, where A  is the vector potential, n  is the time axis,   is the four gradient, x  is the 

position four-vector. Each of the gauge condition mentioned here were used to solve 

particular types of electrdynamics problem and the appropriate choice of gauge simplified 

the calculations. However, in elastodynamics, very few variations of the gauge condition has 

been observed so far. In this article, the proper choice and manipulation of the gauge 

condition will be demonstrated for two problems: (a) Straight crested guided waves in a plate 

(Lamb waves and shear horizontal, SH waves) and (b) Circular crested guided waves in a 

plate (Lamb waves and shear horizontal, SH waves). Both problems will be solved by the 

potential approach. 

4. APPLICATION OF GAUGE CONDITION TO STRAIGHT CRESTED 

GUIDED WAVES IN A PLATE 

The wave equations Eq. (17) and (18) can be expanded in Cartesian coordinates (Figure 1) as 

2 2 2 2

2 2 2 2

px y z c

     
     

  
 (28) 

2 2 2 2

2 2 2 2

x x x
x

s

H H H
H

x y z c

  
    

  
 (29) 

2 2 2 2

2 2 2 2

y y y

y

s

H H H
H

x y z c

  
    

  
 (30) 

2 2 2 2

2 2 2 2

z z z
z

s

H H H
H

x y z c

  
    

  
 (31) 

The gauge condition takes the form 

(
yx z

HH H
f r

x y z


 
      

  
 (32) 

where, (f r    may be chosen differently depending on the nature of the problem. 

Expansion of Eq. (2) gives the displacement components in terms of pressure and shear 

potentials as 

yz
x

HH
u

x y z


  
  

 (33) 
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x z
y

H H
u

y z x

 
  
  

 (34) 

y x
z

H H
u

z x y

 
  
  

 (35) 

4.1 Solution for y -invariant straight crested Lamb + SH waves in a plate  

In the case of y -invariant straight crested guided waves ( / 0y   ), we state that the 

manipulation of the gauge condition yields 

0xH   (36) 

The rationale for Eq. (36) will be discussed in Section 0. 

The application of the y -invariant condition, / 0y   , and Eq. (36) into Eqs. (28)-(31) 

allows us to group the equations into Lamb waves and SH waves, i.e.,  

Lamb waves: 

2 2 2

2 2 2

px z c

   
    

 
 (37) 

2 2 2

2 2 2

y y

y

s

H H
H

x z c

 
   

 
 (38) 

SH waves: 

2 2 2

2 2 2

z z
z

s

H H
H

x z c

 
   

 
 (39) 

The displacement equations Eqs. (33)-(35), can also be grouped, i.e., Lamb waves: 

y

x

H
u

x z


 
 

 (40) 

y

z

H
u

z x


 
 

 (41) 

SH waves: 

z
y

H
u

x


 


 (42) 

Note that only three potentials  ,  y zH H  are involved in Eqs. (37)-(42), since 0xH   

according to Eq. (36). The Lamb waves are represented by two potentials  , 
yH , and the 

SH waves are represented by a single potential 
zH . 

The stress components can also be grouped as follows. 
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Lamb waves: 

22 2

2 2
2 ( )

y

xx

p

H

c x x y


  

 
   

  
 (43) 

2

2yy

pc


     (44) 

22 2

2 2
2 ( )

y

zz

p

H

c z x z


  

 
   

  
 (45) 

2 22

2 2
(2 )

y y

zx

H H

x z x z
 

  
  

   
 (46) 

SH waves: 

2

2
( )z

xy

H

x
 


 


 (47) 

2

( )z
yz

H

x z
 


 

 
 (48) 

The solution for the Lamb waves is obtained by applying plate boundary conditions 

0zz z d    and 0xz z d    that yields the Rayleigh-Lamb characteristic equation for the 

wavenumbers [11]. The Lamb wave solution is the classical solution [10] and will not be 

repeated for the sake of brevity. 

For SH waves, the governing equation Eq. (39) can be solved for the shear potential zH  by 

using the separation of variables as 

1 2( sin cos ) i x

z s sH C z C z e     (49) 

where 
1C ,

2C  are constants, and   is the wavenumber in x  direction, and 2 2 2 2/s sc    . 

Substituting Eq. (49) into Eq. (42), (47), (48), the expressions of displacement and stress 

components become 

1 2( sin cos ) i x

z s su i C z C z e       (50) 

2

1 2( sin cos ) i x

xy s sC z C z e       (51) 

1 2( cos sin ) i x

yz s s si C z C z e         (52) 

The zero-traction boundary conditions apply at the top and bottom of the plate, i.e., 

0yz z d    (53) 
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Substitution of Eq. (52) into boundary conditions Eq. (53) yields 

1 2cos sin 0s sC d C d    (54) 

1 2cos sin 0s sC d C d    (55) 

Subtracting Eq. (54) from Eq. (55), the symmetric SH wave modes can be obtained and the 

characteristic equation corresponding to the symmetric modes becomes 

sin 0sd   (56) 

Adding Eq. (54) and Eq. (55), the antisymmetric SH wave modes can be obtained and the 

characteristic equation corresponding to the antisymmetric modes becomes 

cos 0sd   (57) 

The characteristic equations Eq. (56) and (57) obtained through the potential approach are 

the same as the solution of SH waves in terms of yu  [11] and subsequently the solutions for 

displacements and stresses should be the same. 

4.2 Manipulation of the gauge condition in Cartesian coordinates 

In this section, we give the rationale for taking 0xH   in Eq. (36) of the previous Section 0. 

At first we discuss the general case and then concentrate on the y -invariant case. 

Examination of Eq. (33), (34), (35) yields the following observations: 

a) xu  does not depend on shear potential 
xH   

b) yu  does not depend on shear potential 
yH  

c) zu  does not depend on shear potential 
zH  

d) xu , yu , zu  depend on pressure potential   

We notice that the pressure potential   contributes to all the displacement components. 

However, the shear waves may be divided into vertically polarized shear waves (SV waves) 

contained in the xz plane and horizontally polarized shear waves (SH waves) contained in 

the xy  plane (Figure 1). SV and SH waves may depend on all three shear potentials if 

coupling between them is expected in a physical problem. However, SV waves have zu  

particle motion that does not depend on 
zH  whereas SH waves have yu  particle motion that 

does not depend on 
yH . 

Since only two types of shear waves exist, it is apparent that SV waves must depend on 
yH  

and SH waves must depend on 
zH . Therefore, the wave equations Eqs. (30) and (31) may be 

associated with SV and SH waves, respectively. 

2 2 2 2

2 2 2 2

y y y

y

s

H H H
H

x y z c

  
    

  
  (SV waves) (58) 
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2 2 2 2

2 2 2 2

z z z
z

s

H H H
H

x y z c

  
    

  
  (SH waves) (59) 

The third potential 
xH  has contributions to both yu  and zu  particle motions as indicated by 

Eq. (34) and (35). 

In straight crested guided wave propagation through plate-like structures, SH and SV waves 

may be treated separately; SV waves combine with pressure waves to form Lamb waves [5] 

whereas SH waves remain independent. Depending on the initial and boundary conditions, 

the Lamb waves and SH waves can either exist alone or coexist in the elastic body. The 

problem where only one of these waves exists is much easier to deal with. In a problem 

where both waves coexist, they can be treated separately and then superimpose on each 

other. The gauge condition of Eq. (32) may be considered as a superposition of Lamb wave 

gauge (
LW ) and SH wave gauge (

SH ); hence, it can be resolved into two parts as follows 

( ,LW SH f r        (60) 

This partition of the gauge condition does not violate the classical solution; rather, it 

simplifies the problem. Considering that xH  is part of Lamb waves (eventually, xH  

becomes zero for the y -invariant case), the gauge condition Eq. (32) may be written as 

( ,
yx

LW

HH
f r

x y



  

 
  (Lamb wave gauge) (61) 

( ,z
SH

H
f r

z



 


  (SH wave gauge) (62) 

where ( , ( , ( ,LW SHf r f r f r      , with ( ,LWf r   and ( ,SHf r   being responsible 

for Lamb wave gauge and SH wave gauge, respectively.  

For the y -invariant problem, we may choose the simplest gauge ( , 0LWf r   . Hence, Eq. 

(61) becomes 

0
yx

HH

x y


 

 
 (63) 

Since the problem is y -invariant, Eq. (63) yields 

0xH

x





 (64) 

Integrating Eq. (64) gives 

xH C  (65) 

where C  is a constant or a function of z . The simplest selection is 0C  . Thus, Eq. (65) 

becomes 

0xH   (66) 
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and Eq. (36) is thus justified. 

We have thus seen that the application of gauge condition in this simple y -invariant 

problem has yielded the shear potential 
xH  to be zero. This illustrates how the gauge 

condition has made the problem much simpler. Our result is similar to the solution of elastic 

waves in rods by Gazis [5] where one of the potentials was made zero using the gauge 

invariance property. 

5. APPLICATION OF GAUGE CONDITION TO CIRCULAR CRESTED 

GUIDED WAVES IN A PLATE 

The governing equations in cylindrical coordinates (Figure 2) are much more involved than 

in Cartesian coordinates. We can simplify the governing equations using the axisymmetric 

assumption, / 0   . For the present analysis, we will consider the axisymmetric problem 

and will demonstrate that the proper choice and manipulation of the gauge condition yields a 

much simpler formulations. Our solution will be compared with existing classical solutions 

[5] [11]. 

5.1 Axisymmetric circular crested guided waves in a plate 

Under axisymmetric assumption / 0   , the governing equations Eqs. (17), (18) in can be 

written in cylindrical coordinates as 

2 2 2

2 2 2

1

pr r r z c

    
     

  
 (67) 

2 2 2

2 2 2 2

1 1r r r
r r

s

H H H
H H

r r r z r c

  
     

  
 (68) 

2 2 2

2 2 2 2

1 1

s

H H H
H H

r r r z r c

  
 

  
     

  
 (69) 

2 2 2

2 2 2

1z z z
z

s

H H H
H

r r r z c

  
    

  
 (70) 

The gauge condition takes the form 

1
(r z

r

H H
H f r

r r z


 
    

 
 (71) 

Upon manipulation of gauge condition we make 0rH   (see Section 0) and the governing 

equations Eqs. (67)- (70) can be grouped as follows. 

Lamb waves: 

2 2 2

2 2 2

1

pr r r z c

    
     

  
 (72) 



Md Yeasin BHUIYAN, Victor GIURGIUTIU 22 
 

INCAS BULLETIN, Volume 8, Issue 3/ 2016 

2 2 2

2 2 2 2

1 1

s

H H H
H H

r r r z r c

  
 

  
     

  
 (73) 

SH waves: 

2 2 2

2 2 2

1z z z
z

s

H H H
H

r r r z c

  
    

  
 (74) 

The displacement equations may also be grouped as follows. 

Lamb waves: 

r

H
u

r z


 
 

 (75) 

z

H H
u

z r r

 
  
 

 (76) 

SH waves: 

zH
u

r



 


 (77) 

The stress components can also be grouped as follows. 

Lamb waves: 

22 2

2 2
2rr

p

H

c r r z


  

  
    

   
 (78) 

2

2

1 1
2

p

H

c r r r z





  

 
    

  
 (79) 

22 2

2 2

1
2zz

p

H H

c z r z r z

 
  

   
     

    
 (80) 

2 22

2 2 2

1
2rz

H H H H

r z r r r r z

    
    

     
     

 (81) 

SH waves: 

2

2

1
2 z z

r

H H

r r r
 

  
   

  
 (82) 

2

z
z

H

r z
 


 

 
 (83) 
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The Lamb wave expressions for displacements and stresses are the same as for the classical 

solution [11]. 

The Rayleigh-Lamb equation is obtained from the plate boundary conditions; the complete 

Lamb wave solution will not be repeated for the sake of brevity. The SH wave solution in 

terms of potentials is discussed next. 

The governing equation Eq. (74) can be solved for shear potential zH  by using separation of 

variables, i.e., 

1

1 2 0( sin cos ) ( )z s sH A z A z H r     (84) 

where 
1A ,

2A  are constants,   is the wave number in the r  direction, 2 2 2 2/s sc    , and 

1

0 ( )H r  is the Hankel function of the first kind and order zero. 

The traction free boundary conditions apply at the top and bottom of the plate i.e. 

0z z d    (85) 

Substituting Eq. (84) into Eq. (83) gives 

1

1 2 0( cos sin )( ( )) 'z s s sA z A z H r        (86) 

Substitution of Eq. (86) into boundary conditions Eq. (85) yields 

1 2cos sin 0s sA d A d    (87) 

1 2cos sin 0s sA d A d    (88) 

Subtraction and addition of Eq. (87) and (88), yields the symmetric and antisymmetric SH 

wave modes; the characteristic equations corresponding to the symmetric and antisymmetric 

modes are 

sin 0   (symmetric) ;       cos 0   (antisymmetric) s sd d    (89) 

The characteristic equations indicated by Eq. (89) are the same as the classical solutions of 

SH waves; subsequently, the solutions for displacements and stresses are also same. Hence, 

the potential approach has been shown to be easily implemented through the manipulation of 

the gauge condition. 

5.2 Manipulation of the gauge condition in cylindrical coordinates 

In this section, we give the rationale for taking 0rH   in Section 0. We follow similar 

analogy that has already been discussed in Section 0 to allocate the potential functions to the 

Lamb waves and the SH waves. 

In cylindrical coordinates, pressure waves must depend on  ; SV waves must depend on 

H ; and SH waves must depend on 
zH . 

The third shear potential, 
rH  may have contributions to both SV and SH waves. However, 

when solving Eq. (68) and (69) by separation of variable methods, we notice that the shear 

potentials 
rH  and H

 follow the same order (order 1) of Hankel function. 

On the other hand, the shear potential 
zH  has a different order (order 0) of Hankel function. 

The pressure waves and SV waves group up to generate Lamb waves whereas SH waves 
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remain as independent. Separating the gauge condition Eq. (71) into Lamb waves and SH 

waves yields: 

1
( ,r

r LW

H
H f r

r r



  


  (Lamb wave gauge) (90) 

( ,z
SH

H
f r

z



 


  (SH wave gauge) (91) 

where, ( , ( , ( ,LW SHf r f r f r      . 

For the axisymmetric problem, we may choose the simplest gauge ( , 0LWf r   . Hence, 

Eq. (90) becomes 

1
0r

r

H
H

r r


 


 (92) 

Using the differential product rule, Eq. (92) yields 

1
( ) 0rrH

r r





 (93) 

Integrating Eq. (93) gives 

1rH C  (94) 

where 
1C  can be a constant or a function of z . The simplest selection may be 

1 0C  . Thus, 

Eq. (94) becomes 

0rH   (95) 

This is similar to the y -invariant problem discussed for Cartesian coordinates in Section 0. 

Its application simplifies the axisymmetric guided wave propagation solution as discussed in 

Section 0. 

6. CONCLUSION 

The gauge condition originated in elastodynamics from the Navier-Lame equations upon 

application of Helmholtz theorem. The proper choice and manipulation of the gauge 

condition may simplify the problem and permits straight forward analytical solution. The 

gauge condition provides the necessary conditions for the complete solution of the elastic 

waves in plates by the potential function approach. The gauge condition may be considered 

as the superposition of separate gauge conditions for Lamb waves and SH waves, 

respectively. Each gauge condition contains a different combination of the shear vector 

potential components. 

The gauge condition established a bridge between Lamb waves and SH waves. The gauge 

condition may decouple for the physical problems in which the Lamb and SH waves are 

expected to decouple. The decoupling of the gauge condition does not violate the classical 

Lamb wave and SH wave solutions; rather, it simplifies the problem. The gauge condition 

plays a vital role in the separation of Lamb waves and SH waves; thus, it transforms a 

complicated problem into two simpler problems. 
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In this article, the manipulation of the gauge condition has been illustrated on two well-

known problems of guided waves in plates in which the Lamb waves and SH waves can be 

physically decoupled. The next challenge for this approach would be to address a coupled 

problem (Lamb waves + SH waves) such as the non-axisymmetric guided wave propagation 

in a plate. 

FUTURE WORK 

The gauge condition may be further explored more to analyze more complicated non-

axisymmetric problems. The proper choice and manipulation of the gauge condition may be 

utilized to decouple the Lamb waves and SH waves in the non-axisymmetric problem and 

obtain the analytical solution by potential function approach. 

ACKNOWLEDGEMENT 

Support from Office of Naval Research grant # N000141410655, Dr. Ignacio Perez, 

Technical Representative is thankfully acknowledged. The authors would like to express 

their gratitude to the reviewers for their valuable comments and suggestions. 

REFERENCES 

[1] H. Helmholtz, Uber Integrale der Hydrodynamischen Gleichungen, Welche den Wirbelbewegungen 

Entsprechen, J. fur die reine und angewandte Mathematik, vol. 1858, no. 55, pp. 25–55, 1858. 

[2] H. Helmholtz, On Integrals of the Hydrodynamical Equations, which Express Vortex-Motion, Philosophical 

Magazine and Journal of Science, vol. 33, no. 226, pp. 485–512, 1867. 

[3] P. M. Morse and H. Feshbach, Methods of Theoretical Physics, New York, Toronto, London: McGraw-Hill 

Book Company, Inc., 1953. 

[4] D. C. Gazis, Three Dimensional Investigation of the Propagation of Waves in Hollow Circular Cylinders. I. 

Analytical Foundation, Journal of Acoustical Society of America, vol. 31, no. 5, pp. 568–578, 1959. 

[5] K. F. Graff, Wave Motion in Elastic Solids, Dover, Oxford University Press, 1991. 

[6] C. E. Baum, Vector and scalar potentials away from sources. and gauge invariance in quantum 

electrodynamics, Physics Notes, vol. Note 3, pp. 1–31, 1991. 

[7] J. D. Jackson and L. B. Okun, Historical roots of gauge invariance, Reviews of Modern Physics, vol. 73, no. 3, 

pp. 663–680, 2000. 

[8] F. Gronwald and J. Nitsch, The Physical Origin of Gauge Invariance, Electrical Engineering, vol. 81, pp. 

363–367, 1999. 

[9] T. R. Meeker and A. H. Meitzler, Physical Acoustics: Principles and Methods, New York, London: Academic 

Press, 1964. 

[10] H. Lamb, On Waves in an Elastic Plate, Proceedings of the Royal Society A: Mathematical, Physical and 

Engineering Sciences, vol. 93, no. 648, pp. 114–128, 1917. 

[11] V. Giurgiutiu, Structural health monitoring with piezoelectric wafer active sensors, 2nd ed. Elsevier 

Academic Press, 2014. 

[12] J. D. Achenbach, Lamb waves as thickness vibrations superimposed on a membrane carrier wave, Journal of 

Acoustical Society of America, vol. 103, no. 5, pp. 2283–2286, 1998. 

[13] J. D. Achenbach and Y. Xu, Wave motion in an isotropic elastic layer generated by a time-harmonic point 

load of arbitrary direction, Journal of Acoustical Society of America, vol. 106, no. 1, pp. 83–90, 1999. 

[14] F. Gronwald and J. Nitsch, The physical origin of gauge invariance in electrodynamics and some of its 

consequences, Physics Notes, vol. Note 3, pp. 1–14, 1998. 

 

 

 



Md Yeasin BHUIYAN, Victor GIURGIUTIU 26 
 

INCAS BULLETIN, Volume 8, Issue 3/ 2016 

Figure Captions 

Figure 1: Problem definition and displacement components in Cartesian coordinate system 

Figure 2: Problem definition in cylindrical coordinate system 
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