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Section 2 – Flight dynamics simulation  

Abstract: The paper is a continuation of the efficiency and accuracy analysis of different high order 
numerical schemes previously published by the authors [1-3]. After the analysis of advection equation 
and the scalar conservation equation for different initial conditions and for different convex and  non-
convex conservative fluxes, we further investigated the one-dimensional conservation equation. This 
paper focuses on a new comparison of the behavior of the most known Weighted Essentially Non-
Oscillatory (WENO) type numerical schemes for shock tube problem. We consider nine different 
Riemann Problems. Analytical solutions are provided for almost all different initial Riemann 
conditions. A third-order TVD Runge–Kutta (TVDRK3) scheme was adopted for advancing the 
solution in time. The motivation of this assessment is related to filling a gap in the specialized 
literature characterized by the bias towards presenting only cases favorable to a certain method. Our 
purpose is to present objectively the capacity of each method for solving one-dimensional 
conservation law problem. Unfortunately, not all the schemes identify accurately the position of the 
shocks or rarefaction waves and some of them even do not converge to a solution for different 
Riemann initial conditions. 

Key Words: Conservative law, Riemann Shock tube problem, WENO-type schemes, Runge-Kutta 
schemes  

1. INTRODUCTION 

Many fluid dynamics applications ranging from turbulent flows to acoustics include 
propagation of nonlinear waves with continuous or discontinuous distribution of the physical 
variables. Rarefaction fans, shocks or contact discontinuities are elementary waves that 
build-up the solution of Riemann problem for hyperbolic equations (e.g. Euler equations [4-
5]). The aim of the present work is a new comparison of the behavior of the 5th-order 
WENO-type numerical methods, namely classical WENO-JS [6-9], mapped WENO[10], 
compact reconstruction WENO[11] and WENO-Z [12-13]. Let us consider the initial value 
problem of the one-dimensional vector conservative equation 0,t x∀ ≥ ∈ R : 

( )
0, ( , 0) ( )x x

t x
=

∂∂
+ =

∂ ∂
F UU 0 U U , (1) 
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where ( ),x tU  and ( ( , ))x tF U  are the conservative variables and respectively the 
conservative flux vector defined by: 

( ) ( )2, , , , , ( )
ttu E u u p u E pρ ρ ρ ρ ρ ρ= = + +U F  (2)

 

and 0 ( )xU  is the initial condition. Density ρ , velocity u , pressure p  are related to the total 
energy E  by the calorically perfect ideal gas equation of state 

( ) ( )2 / 21 E up k ρ −= −  (3) 

where k is the constant ratio of specific heats and equal to 1.4. 
The numerical solution is obtained by discretizing the equation in space and time. The 

outcome of discretizing the spatial derivative for each corresponding point , 0,jx j x j N= ∆ = , 
is the following conservative finite difference scheme: 

* *
1/2 1/2d

0.
d

j j j

t x
+ −−

+ =
∆

U F F
 (4) 

Thus, we get a system of ordinary differential equations for ( ) ( , )j jt x t=U U . The term 

1/2j+F  is the numerical flux at cell boundaries computed by a Riemann solver
* Riemann

1/2 1/2 1/2( , )L R
j j j+ + += U UF F . 

The solution of the conservative finite difference formulation of eq. (1) written in the 
semi-discrete form, eq. (2), consists of two steps: spatial discretization and time marching, 
respectively. 

2. SPATIAL DISCRETIZATION AND TEMPORAL DISCRETIZATION 
In the frame of spatial discretization, we are interested in two essential steps in solution 
procedure: reconstruction of the physical fields to find the values at the left-and right-sides 
of cell boundaries, and evaluation of the numerical fluxes at cell boundaries that are needed 
in the Finite Volume Method (FVM) formulation to update the cell-integrated values for next 
time step. 
 For the first step, four different reconstruction schemes were analyzed: the original 
Weighted Essentially Non-Oscillatory (WENO) scheme, Mapped WENO (WENO-M), 
Compact Reconstruction WENO (CRWENO) schemes proposed by Ghosh and Baeder [11] 
and WENO-Z scheme proposed by Borges and al. [12]. The main interest of this paper is 
limited to present comparisons of numerical tests. Interested readers are guided towards the 
cited articles for theoretical background. 
 The evaluation of the numerical fluxes at cell boundaries is needed for updating the cell-
integrated values for next time step and for solving the exact Riemann problem at the cell’s 
boundary in the FVM formulation. 

In this paper, for the second step we use the following typical numerical fluxes: the Roe 
flux, the HLL (Harten–Lax-van Leer)flux [5], the Lax–Friedrichs flux [9], the HLLL 
(Harten–Lax-van Leer-Linde) flux [14] and the AUSM flux [15]. As shown before, the 
numerical solution of the scalar conservation law amounts to solve the system of ODEs (eq. 
4). The time discretization will be implemented using a third-order TVD Runge–Kutta 
(TVDRK3) developed by Shu and Osher [10]. 
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3. NUMERICAL TESTS 
In this section, we present the numerical results of some typical benchmark shock-tube tests 
for 1D Euler equation with different Riemann initial condition. The target is to verify the 
schemes for resolving the shock wave, contact discontinuity and rarefaction wave in 
compressible gas flows. 

The shock tube problem considers a long, thin, cylindrical tube containing a gas 
separated by a thin membrane. 

The gas is assumed to be at rest on both sides of the membrane, but it has different 
constant pressures and densities on each side. At time 0t = , the membrane is broken, and the 
problem is to determine the ensuing motion of the gas which generates a nearly centered 
wave system that typically consists of a rarefaction/shock wave, a contact discontinuity and a 
shock/ rarefaction wave. 

The middle wave is always a contact discontinuity while the left and right (non-linear) 
waves are either shock or rarefaction waves. 

Therefore, according to the type of nonlinear waves there can be four possible wave 
patterns [5]. This physical problem is reasonably well approximated by solving the shock-
tube problem for the Euler equations. 

The solution to this problem (known as Riemann problem) consists of a shock wave 
moving into the low pressure region, a rarefaction wave that expands into the high pressure 
region, and a contact discontinuity which represents the interface. 

For the most of the numerical tests, the computational domain is taken as [0,  1]  with 
zero gradient boundary conditions. Any different conditions will be specifically mentioned. 

3.1 Sod’s shock tube problem (expansion-contact-shock) 

The initial condition for the Sod problem [5] is 

( )
(1,0,1), 0 0.5

, ,
(0.125,0,0.1), 0.5 1

x
u p

x
ρ

≤ <
=  ≤ ≤

 (5) 

and the final computation time is 0.15t = . 
 

  

  
Fig. 1a  Numerical results for the density for Sod’s shock tube problem at t = 0.15 
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Fig. 1b  Numerical results for the density for Sod’s shock tube problem at t = 0.15(details)  

  

  
Fig. 1c  L1-error of the density for Sod’s shock tube problem up to t = 0.15 

The grid resolution is 400 cells and the time stepping condition is CFL = 0.3. Figures 1a-b 
illustrate well the resolved shock and contact solutions. 

Predictions given by the WENO-type schemes are indistinguishable at the given scale. 
Nevertheless, the numerical solution displays a gradual departure from the analytical 
solution in the regions with sharp slopes. Quantitative information regarding the global error 
is given in Fig. 1c in terms of the L1-error for the density. The minimal global error is 
obtained by the reconstruction with classical WENO5, WENOM and WENOZ in 
combination with the AUSM flux and shows that the error is around 0.001. CRWENO gives 
better results in combination with ROE flux. The combination CRWENO-Lax flux exhibit 
slight oscillations in the vicinity of the contact wave, hence poor results. 

3.2 Lax’s shock tube problem (expansion-contact-shock) 

The initial condition for the Lax problem [5] is 

( )
(0.445,0.698,3.528), 0 0.5

, ,
(0.5,0,0.571), 0.5 1

x
u p

x
ρ

≤ <
=  ≤ ≤

 (6) 

and the final time is 0.12t = . Figures 2a-b show no spurious oscillations at any shock or 
contact discontinuity and the evolutions given by all WENO-type schemes are similar at the 
represented scale. 
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Fig. 2a  Numerical results of the Lax’s shock tube problem for density at t = 0.12 

  
Fig. 2b  Numerical results of the Lax’s shock tube problem for density at t = 0.12 (details) 

Nevertheless, the numerical solution displays a gradual departure from the analytical 
solution in the regions with sharp slopes. Quantitative information regarding the global error 
is given in Fig. 2c which presents the L1-error for the density. 

The minimal global error is obtained by the reconstruction with classical WENO5, 
WENOM and WENOZ in combination with the flux AUSM, exhibiting an error around 
0.001. 

An unexpected good accuracy (i.e. around 0.035) is obtained by the combination 
between the reconstruction with classical WENO5, WENOM and WENOZ and the Lax flux. 
The fluxes HLL and HLLL give identically numerical results for almost all reconstructions 
methods, excepting CRWENO. 

CRWENO gives better results in combination with ROE flux. The combination 
CRWENO-Lax flux gives high oscillations in the vicinity of the contact wave and therefore, 
not acceptable results. 

An unexpected good accuracy (i.e. around 0.035) is obtained by the combination 
between the reconstruction with classical WENO5, WENOM and WENOZ and the Lax flux. 

The fluxes HLL and HLLL give identically numerical results for almost all 
reconstructions methods excepting CRWENO. CRWENO gives better results in combination 
with ROE flux. 
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Fig. 2c  L1-error of the density for the Lax’s shock tube problem up tot = 0.12 

3.3 Strong shock tube problem (expansion-contact-shock) 

The initial condition for the strong shock tube problem[16] is 

( )
10(1,0,10 ), 0 0.5

, ,
(0.125,0,0.1), 0.5 1

x
u p

x
ρ

 ≤ <
= 

≤ ≤
 (7) 

and the final time is 62.5 10t −= ⋅ . This initial condition creates a supersonic shock associated 
with extreme jumps in velocity and pressure, see Fig. 3a. It is well known that purely non-
conservative schemes fail to compute strong shocks due to their intrinsic inability to 
calculate correct shock speeds. The combination CRWENO-Lax flux gives high oscillations 
in the vicinity of the contact wave and therefore, not acceptable results. 

  
Fig. 3a  Pressure and Mach number for the strong shock tube problem at t = 2.5 10-6 

Fig. 3b shows there are density overshoots in results but correct shock calculation. We have 
also remarked that AUSM scheme does not converge in most of the cases. The only case 
where it worked (n.b., but not very accurate), is with the CRWENO method. Instead, Lax 
flux gives high oscillations in the vicinity of the contact wave. Figure 3c shows selected 
relevant details from Fig. 3b. Quantitative information regarding the global error is given in 
Fig. 3d, in terms of the L1-error for the density. 
The minimal global error is delivered by the reconstruction with WENOZ method and is less 
than 0.0035 for all combinations of fluxes. 
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Fig. 3b  Numerical results of the strong shock tube problem for density at t = 2.5 · 10-6 

 

  

Fig. 3c  Numerical results of the strong shock tube problem for density at t = 2.5 · 10-6(details) 

  

  
Fig. 3d  L1-errorof the density for the strong shock tube problem up to t = 2.5 10-6 
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Fig. 4a  Pressure, Mach number, entropy and temperature evolution for of the Mach 3 shock tube problem  

at t = 0.09 
 

 

  
 

  

Fig. 4b  Numerical results for density of the Mach 3 shock tube at t = 0.09 
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The Mach 3 shock tube experiment [17] uses the following initial conditions,  
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and the final time is 0.09t = . Figure 4a shows no evident spurious oscillations at any shock 
or contact discontinuities. Although not represented, the only exception of poor behavior is 
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the combination with Lax flux. In all cases we notice  a small wavelet at shock discontinuity, 
see Fig. 4b and Fig. 4c. The L1-error given in Fig. 4d revealed once again that WENOZ 
method with all fluxes combinations gives the best accuracy. We chose to ignore the error of 
Lax-Friedrichs flux as it yielded huge errors. We also remarked that using HLLL flux in 
almost all reconstructions gave smaller errors in comparison with other fluxes. 

 

  
Fig. 4c  Numerical results of for density the Mach 3 shock tube at t = 0.09 (details). 

  

  
Fig. 4d  L1-error of the density for the Mach 3 shock tube up to t = 0.09 
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Numerical solution using WENO-M method is given in Fig. 5a. An unexpected result 
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Figure 5c presents in detail the evolution of density for WENO-JS and WENO-M 
method which looks very similar in both cases. 

Nevertheless, the evolutions of L1-error with respect to density presented in Fig. 5d 
show that WENO-M combination yielded better results than WENO-JS. We notice that in 
this case, at high Mach numbers, AUSM behaves much better than in the previous cases. The 
results are similar to those produced by HLL or Roe fluxes. 

 

  
 

  
Fig. 5a  Pressure, Mach number, entropy and temperature evolution for high Mach number shock tube problem at 

t = 1.75 10-4 

  
Fig. 5b  Numerical results of the high Mach number shock tube problem at t = 1.75 · 10-4 

 

  

Fig. 5c  Numerical results of the high Mach number shock tube problem at t = 1.75 10-4(details) 
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Fig. 5d  L1-error of the density for the high Mach number shock tube problem up to t = 1.75 10-4 

3.6 Two symmetric rarefaction waves (expansion-contact-expansion) 

The two symmetric rarefaction waves experiment [5] uses the following initial conditions 
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(1, 2,0.4), 0 0.5
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x
u p

x
ρ

− ≤ <
=  ≤ ≤

 (10) 

and the final time is 0.15t = . 
Fig. 6a reveals the unexpected fact that only two reconstruction methods: WENO-JS and 

WENO-M in combination with Roe flux are capable to provide a solution for this problem. 

  
Fig. 6a  Numerical results of the two symmetric rarefaction waves problem computed at t = 0.15 (details) 

  
 

  
Fig. 6b  Pressure, Mach number, entropy and temperature evolution for the two symmetric rarefaction waves 

problem at t = 0.15 

n

L1

50 100 150 200 250 300 350 400 450 500
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

HLL
LAX
ROE
HLLL
AUSM

WENO5-JS

n

L1

50 100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

HLL
LAX
ROE
HLLL
AUSM

WENOM5

x

R
ho

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

WENO5-ROE
WENOM5-ROE
EXACT

x

R
ho

0.44 0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52 0.53 0.54 0.55

.005

0.01

.015

0.02

.025

0.03

.035

0.04

WENO5-ROE
WENOM5-ROE
EXACT

x

p

0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

WENO5-ROE
WENOM5-ROE
EXACT

x

M
ac

h

0 0.2 0.4 0.6 0.8 1

-2

-1

0

1

2 WENO5-ROE
WENOM5-ROE
EXACT

x

S

0 0.2 0.4 0.6 0.8 1
-2

-1

0

1

2

3

4

WENO5-ROE
WENOM5-ROE
EXACT

x

T

0 0.2 0.4 0.6 0.8 1

0005

.001

0015

.002
WENO5-ROE
WENOM5-ROE
EXACT



Alina BOGOI, Sterian DANAILA, Dragos ISVORANU 64 
 

INCAS BULLETIN, Volume 11, Issue 2/ 2019 

  
Fig. 6c  L1-error of the density for the two symmetric rarefaction waves up to t = 0.15 (left). 

Relative error at t = 0.15 
 

  
Fig. 7.  The density profile of the stationary contact discontinuity at t =2 

The distribution profiles for all variables (density, pressure, temperature, entropy) are 
accurately obtained in the whole domain except in the vicinity of 0.5x = , where the results 
are completely erroneous. This result is confirmed in Fig. 6b for the rest of variables. 
Entropy must be constant everywhere but the results are wrong. In the neighborhood of 0.5 
(Fig. 6c), the relative error increases up to 75% for both reconstruction methods. L1-error 
suggests that WENOM5 gives better results than WENO5 for all time range of the 
simulation. 

3.7 Stationary contact discontinuity 

A stationary contact discontinuity [16] is initially established by setting the following 
conditions,  
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and the final time is 2t = . No motion at all is expected and the solution should remain 
frozen  at its initial state. As shown in Fig. 7, the initial jump in density remains at its initial 
condition. Other physical quantities (not shown here) remain constant. Figure 7 demonstrates 
that all schemes converge to the exact solution. 

3.8 Interaction of blast waves  

This problem, introduced by Woodward and Colella [18], involves multiple interactions of 
strong shock waves and other discontinuities. Initial conditions are,  
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and the final time is 0.038t = . 
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Fig. 8a  Solution for density of the interactive blast waves problem at t=0.038 

  
Fig. 8b  Solution for density of the interactive blast waves problem at t=0.038(details) 

  
 

  
Fig. 8c  Pressure, Mach number, entropy and temperature evolution for interactive blast waves problem at 

t=0.038 
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We considered reflective solid wall conditions for the boundary at 0=x  and at 1=x . 
Figure 8a and figure 8b demonstrate that all four schemes converge to the reference solution 
(n.b. ‘Exact’) computed by the WENO-M-HLL combination with   4000N =  points. 

Once again we can remark that flux AUSM and Roe are not capable to solve this 
problem. As before, WENO-M and WENO-Z show an improved convergence with respect 
to WENO-JS and CRWENO, due to their smaller dissipation for the same fluxes. In Fig. 8c 
entropy and Mach number are better predicted than entropy and temperature for both fluxes 
HLL and HLLL. 

3.9 SHU-OSHER test 

This case is proposed by Shu and Osher [19]. A one-dimensional Mach 3 shock wave 
interacts with a perturbed density field generating both small scale structures and 
discontinuities. 

Hence it is selected to validate shock-capturing and wave-resolution capability. The 
initial condition is given in the domain [ 5 ],  5− as  

( ) (27 / 7,4 35 / 9,31/ 3), 5 4, ,
(1 0.2sin 5 ,0,1), 4 5

xu p
x x

ρ
 − ≤ < −= 

+ − ≤ ≤
 (13) 

and the final time is 2t = . 
The reference “exact” in the legends of Figs. 9 refers to a solution obtained by the fifth-

order WENO-schemes with   4000N = . 
Figure 9a and 9b show that all schemes combined with all fluxes are capable of 

successfully capturing the acoustic waves with shocklets. 
However, any WENO combination with AUSM flux gives poor accuracy even for 

N=4000 points (see Fig. 9c). 
 

  
 

  

Fig. 9a  Solution for density of the Shu-Osher shock–density wave interaction at t=2 
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Fig. 9b  Solution for density of the Shu-Osher shock–density wave interaction at t=2 (details) 

  
Fig. 9c  Solution for density of the Shu-Osher shock–density wave interaction at t=2 for N=4000 

4. CONCLUSIONS 
The purpose of this article is to give a general perspective and to present objectively the 
capacity of each WENO method to solve the shock tube problem with different initial 
conditions. These benchmark tests are relevant in  order to check and identify accurately the 
position of the shock, contact and rarefaction waves in each situation. 

For the first two classical shock tube problems, the predictions are indistinguishable at 
the illustrated scale. However, looking more closely, the quantitative information regarding 
the global shows that not all combinations of reconstruction methods and fluxes produce 
accurate solutions in time. Thus, for Sod’s problem the flux AUSM with WENO5, WENOM 
and WENOZ gave best results while for the Lax’s problem, the combinations of Lax-flux 
with WENO5, WENOM and WENOZ were the most accurate. CRWENO-Roe gives good 
numerical results. For the Strong shock tube problem the AUSM scheme does not converge 
in most cases. The only case where it works (n.b. but not very accurate) is with CRWENO 
method. Instead, Lax flux yielded high oscillations in the vicinity of the contact wave. The 
minimal global error is provided by the reconstruction with WENOZ method exhibiting an 
error less than 0.0035 for all combinations of fluxes. For the Mach 3 shock test we notice in 
all cases a small wavelet at shock discontinuity. The L1-error revealed once again that 
WENOZ method with all fluxes combinations gives the best accuracy. We chose to ignore 
the error of Lax-Friedrichs flux as it was huge. We also remarked that flux HLLL in almost 
all reconstructions cases gives smaller errors in comparison with other fluxes. Continuing 
with the High Mach flow test we discovered that CRWENO and WENO-Z method did not 
converge at all and only WENO-JS-AUSM and WENOM-AUSM gave reasonable numerical 
solutions to this problem. The Two symmetric rarefaction waves test reveals that only two 
reconstruction methods: WENO-JS and WENOM in combination with Roe flux are capable 
of reaching a solution for this problem. All the variables like density, pressure, temperature, 
entropy are accurately obtained everywhere, except in the vicinity of 0.5x =  where the 
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results are completed erroneous. L1-errors suggest that WENOM gives better results. The 
Stationary contact discontinuity case demonstrates that all schemes converge to the exact 
solution. For the Interaction of blast waves test and for SHU-OSHER test the reference 
solution (n.b. ‘Exact’) is computed by the WENOM-HLL combination with   4000N =
points. Once again we can remark that AUSM and Roe fluxes are not capable of solving this 
problem. As before, WENOM and WENOZ showed an improved convergence with respect 
to WENO-JS and CRWENO, due to their smaller dissipation for the same fluxes. Finally, we 
can conclude that the combination WENOZ-AUSM works very well for reasonable 
discontinuities in pressure, velocity and density and extreme jumps in velocity and pressure. 
WENOZ works similarly for all fluxes, except for the Lax and AUSM. 
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