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Abstract: This paper focuses on a new comparison of the behavior of three Weighted Essentially Non-

Oscillatory (WENO) type numerical schemes for three different nonlinear fluxes, in the case of scalar 

conservation law. The analytical solution is provided for various boundary conditions. For the time 

integration we adopt the 4-6 stage Low-Dispersion Low-Dissipation Runge-Kutta method  (LDDRK 

4-6). The schemes were tested on piecewise constant function for non-periodical conditions. The 

assessment was performed because the specialized literature mainly presents cases favorable 

illustrating only to a particular method while our purpose is to objectively present the performance 

and capacity of each method to simulate simple cases like scalar conservation law problems. All the 

schemes accurately identify the position of the shock and converge to the proper weak solution for the 

non-linear fluxes and different initial conditions. The paper is a continuation of the efficiency and 

accuracy analysis of high order numerical schemes previously published by the authors [1,2]. 
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1. INTRODUCTION

Many fluid dynamics applications from turbulence or acoustics include propagation of 

nonlinear waves with a continuous or discontinuous distribution of the physical variables. 

Rarefaction fans, shocks or contact discontinuities are elementary waves that build the 

solution of Riemann problem for hyperbolic equations, like Euler equations. The solution of 

the Riemann problem with two initial states, for a scalar conservation law and a convex flux 

is either a jump or a fan [1-4]. The wave type is determined by the entropy condition. In the 

case of a conservation law with a non-convex flux function, the Oleinik entropy condition is 

used to select the only physically admissible solution [5]. Contrary from a convex flux 

function problem, in the non-convex case it is possible that, depending on the number of 

inflection points, the solution of the Riemann problem contains not only an individual wave 

but a combination of two or three of these simple waves. The aim of the present work is to 

perform, for the first time, a new comparison of the behavior of three WENO-type numerical 

methods (the classical WENO [6, 7], the mapped WENO [8] and the compact reconstruction 

WENO [9]) with respect to the exact explicit solutions of the problem of Buckley-Leverett 

[10, 11] and the problem proposed by Harten [6] for different boundary conditions. We have 

chosen WENO schemes of fifth order of accuracy because we use non-periodical initial 
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conditions and in this context we need just two appropriate boundary closures at each end of 

a domain. Let us consider the initial value problem of the one-dimensional scalar 

conservative equation 0,t x  R : 

 
0

( , ) ( , ) 0, ( ,0) ( )
u f

x t u x t u x u x
t t

 
  

 
, (1) 

where ( , )u x t  is a conserved quantity, [ ( , )]f u x t  represents its flux and 
0
( )u x  is the initial 

condition. The numerical solution is obtained by discretizing the equation in space and time. 

Discretizing the spatial derivative for each corresponding point , 0,
j

x j x j N   , the 

following conservative finite difference scheme yields: 

1/2 1/2
ˆ ˆd

0.
d

j j j
u f f

t x

 


 


 

(2) 

Thus, we get a system of ordinary differential equations for ( ) ( , )
j j

u t u x t . The term 

1/2
ˆ

j
f


 is the numerical flux satisfying the consistency requirements 

1/2
ˆ ˆ ( ,..., )

j j r j s
f f u u
  



and ˆ ( ,..., ) ( )f u u f u . 

Following Shu and Osher [7], such a function is defined implicitly as 

 
/2

/2

1 ˆ( )d

x x

x x

f x f
x





  
 

, 

1/2 1/2
ˆ ˆ( , ) ( , )]

j

j j

x x

f x t f x tf

x x

 






 
. 

(3) 

The solution of the conservative finite difference formulation of eq. (1) written in the 

semi-discrete form, eq. (2), consists of two steps: spatial discretization and time marching, 

respectively. 

2. SPATIAL DISCRETIZATION 

In the frame of spatial discretization, we are interested in the approximate reconstruction 

with a desired order of accuracy, ˆ( ) ( ) O ( )kf x f x x    , by using a polynomial with 

undetermined coefficients. Substitution of this polynomial into eq. (3) leads to a system of 

equations where the time integration can be performed. 

The linear approximation for a numerical flux may be insufficient, especially when the 

solution has non-smooth behavior (such expansions, shocks or contact discontinuities). 

Therefore, numerical schemes based on linear approximation often produce spurious 

oscillations and overshoots near discontinuities. These nonphysical representations are 

known as weak or nonlinear instabilities. 

A class of methods which satisfy nonlinear stability conditions in the sense that the 

magnitudes of any oscillations decay at ( )kx , where k  is the order of accuracy are WENO 

schemes [6-10]. 

We present briefly the basics of these schemes. A combination of stencils/polynomials 

of equal order and hence equal number of stencil points are used for any 0, 1r k  : 

   
1 1r i-r i-r+ i-r+k -

S i = f , f ,…, f . However, the stencil points used have different levels of upwind 

and downwind bias. In smooth regions, a weighted combination of all stencils is used. For 
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ENO methods, where oscillations are detected, one member of the family of stencils is used. 

The least oscillatory is selected. For WENO, at oscillations the full family is used through 

the convex combination of interpolated values 
1/2

r
i

f


: 

1

1/2 1/2

0

( )

k

r k
i r i

r

f f O x



 



      , 0, 1r k  , (4) 

where, for each stencil 
1

1/2

0

k

r
i rj i r j

j

f c f



  



 , , 0, 1r j k   (5) 

and rj
c  can be found in [7, 10]. The weights r  are defined as 0, 1r k   

1

0

/

k

r r l

k

a a





   , / ( ) p
r r r

a d   ,  (6) 

where the tiny parameter   ( 610  ) is introduced to avoid the denominator to become 

zero. The ideal weights, r
d , assure that in smooth regions the value 

1/2i
u


 is approximated to 

order 2 1( ) kO x    and present a non-oscillatory behavior near discontinuities, [10]. However, 

in the vicinity of the critical points (where the first or higher derivatives vanish) the solution 

strongly depends on the assumed value of  , even for smooth data. 

The smoothness indicator 
r

 , 0, 1r k  , is given by: 

1/2

1/2

21

2 1

1

d
d

d

i

i

xk m
rm

r m
m x

p
x x

x











  
 
 
 

  , (7) 

rp  being the interpolation polynomial over the interval 
1/2 1/2

[ , ]
i i i

I x x
 

 . 

For example, for WENO5, 3k   yield: 

   

   

   

2 2

0 1 2 1 2

2 2

1 1 1 1 1

2 2

2 2 1 2 1

13 2 / 12 3 4 3 / 4,

13 2 / 12 / 4,

13 2 / 12 4 3 / 4.

i i i i i i

i i i i i

i i i i i i

f f f f f f

f f f f f

f f u f f f

   

   

   

      

     

      







 (8) 

with the ideal weights 
0 1 2

3 /10, 3 / 5, 1/10.d d d    

The WENOM scheme (Henrick et al. [8]) introduces, M
r

 , mappings of the weights, that 

converge faster to their optimal values r
d : 

2

0

/M
r r i

i

    , ( )
r r r

g   , 0,2r  , (9) 

where: 

2 2

2

( 3 )
( )

(1 2 )

r r r

r

r r

d d d
g

d d

    
 

  
. (10) 
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The WENOM scheme recovers the optimal order of convergence for smooth problems 

with critical points but the primary drawback of the mapping is the additional computational 

cost of the mapping function. High order WENO schemes using non-compact interpolation 

require large stencils that may lead to loss of accuracy and oscillatory solutions. In addition, 

they suffer from poor spectral properties. 

Therefore, in Compact Reconstruction Weighted Essentially Non-Oscillatory 

(CRWENO), proposed by Ghosh and Baeder [9], the candidate stencils are compact with 

implicit interpolation. There are k  candidate compact stencils at an interface for a k -th order 

interpolation. 

Optimal weights exist for each stencil such that their combination yields a (2 k -1)-th 

order compact interpolation. 

The fifth-order CRWENO scheme is constructed by identifying three third-order 

compact interpolation schemes at a given interface: 

1/2 1/2 1

1/2 1/2 1

1/2 3/2 1

ˆ ˆ2 / 3 / 3 ( 5 ) / 6,

ˆ ˆ/ 3 2 / 3 (5 ) / 6,

ˆ ˆ2 / 3 / 3 ( 5 ) / 6.

j j j j

j j j j

j j j j

f f f f

f f f f

f f f f

  

  

  

  

  

  







 (11) 

Each equation from (11) is multiplied with optimal weights 1c , 2c  and 3c , respectively. 

The weighted sum of these interpolation schemes becomes: 

1 2

1/2 1/2 1/2 1/2

3 31 2

1/2 3/2 1 1 1

ˆ ˆ ˆ ˆ(2 ) ( 2 )
3 3

ˆ ˆ(2 ) ( 5 ) (5 ) ( 5 ).
3 6 6 6

j j j j

j j j j j j j j

c c
f f f f

c cc c
f f f f f f f f

   

    

   

       

 (12) 

and must be equal with results in a fifth-order accurate compact interpolation scheme: 

1/2 1/2 3/2 1 1

3 6 1 1 19 10ˆ ˆ ˆ .
10 10 10 30 30 30

j j j j j j
f f f f f f
    

      (13) 

The new optimal weights result as 
1 2 3

0.2, 0.5, 0.3.c c c   The CRWENO5 scheme is 

obtained by replacing the optimal weights 
k

c  in (12) with nonlinear WENO weights k  

(n.b. optimal WENO weight 
k

d  is replaced by the new optimal CRWENO weight k
c ). It is 

obtained a tri-diagonal system: 

 1 2 1/2 1 2 3 1/2

2 1 1 2ˆ ˆ( ) [ ]
3 3 3 3

j j
f f
 

          

 1 2 31

3 3/2 1

51 ˆ

3 6 6
j j j

f f f
 

   
    

2 3

1

5

6
j

f


  
 

(14) 

The numerical flux 1/2
ˆ

j
f

  is obtained by the WENO-type reconstruction schemes. For 

stability, it is important that up-winding is used in constructing the flux. An easy and an 

inexpensive way to achieve up-winding is the Lax-Friedrichs splitting method, in which 

 ( ) 0.5[ ]f u f u u     and  max
u

f u  . 
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3. TEMPORAL DISCRETIZATION 

As shown before, the numerical solution of the scalar conservation law is semi-discretized in 

the spatial domain using a discrete set of points and after the spatial partial derivatives have 

been replaced with appropriate finite differences in jx , we get a system of ODE: 

d
( ( ))

d
L t

t


u
u , 

   1/2 1/2
( , ) ( , )

( )
j j

j

f u x t f u x t
L u

x

 


 


, (15) 

where the discrete operator L is used to solve each ODE in time. Here, we associate the time 

dependent vector ( )tu  with ( ) ( , ), 0,
j j

u t u x t j N  . 

In order to improve the dissipation and dispersion errors for different wave number, the 

time marching scheme employed in the present paper is the 4-6 Low Dispersion and 

Dissipation Runge-Kutta (LDDRK) proposed by Hu et al.[12]. The 4-6 notation signifies a 

two-step marching cycle. Thus, a Standard Runge-Kutta with four stages classical (SRK4) is 

used for the odd time step and a six stage LDDRK6 for the even time step in the cycle. 

An explicit low storage p-stage Runge-Kutta can be expressed as follows: 

(0) nu u , 

( ) ( 1)( ), 1,...,s n s
s

c tL s p   u u u , 

1 ( )n p u u  

(16) 

where nu  represent the solution at time 
n

t . The first four coefficients 
s

c  for SRK4 and 

LDDRK6 are 
1 2 3 4

1, 1/ 2, 1/ 3, 1/ 4c c c c    , and last two coefficients for LDDRK6 are 

5
0.1874412,c   

5
0.169193539.c   

According to Hu [12], the scheme is a fourth-order accurate scheme in time for a linear 

problem and second-order accurate for a nonlinear problem. Alternating these schemes, the 

dispersion and the dissipation errors can be reduced and higher order of accuracy can be 

maintained. 

4. NUMERICAL TESTS 

In this section we test and compare three selected WENO-type schemes of fifth order 

(WENO5, WENOM5 and CRWENO5), for nonlinear flux function. Let us consider eq. (1) 

with Riemann initial condition. 

4.1 Convex flux 

First, we consider the inviscid Burgers equation, 2 / 2( )f uu  , with a piecewise constant 

initial conditions  ,0 1 ( 1) 2 ( 2), 0 6.u x H x H x x        We chose this Cauchy condition 

because the analytical solution has different forms depending on the interval of time. The 

exact solution is given analytically for three different periods of time: 

1, 1 ;

( 1) / , 1 2 ;
( , 1)

2, 2 1 1 ;

0, 1 1 ,

x t

x t t x t
u x t

t x t

x t

 

   
 

   

  








 (17) 



Alina BOGOI, Sterian DANAILA, Dragos ISVORANU 212 
 

INCAS BULLETIN, Volume 10, Issue 1/ 2018 

1, 1 ;

( , 4) ( 1) / , 1 2 ;

0, 1 2 ,

x t

u x t x t t x t

x t

 


     


 

1, 3 / 2;
( , 4)

0, 3 / 2.

x t
u x t

x t

 
  

 
 (18) 

Therefore it is important to see if the numerical methods predict in an accurate way the 

solution. For discontinuous initial conditions only the weak solution can be determined [13]. 

But the weak solution with discontinuities is not unique. 

For a convex function [ ( , )]f u x t , the weak solution of eq. (1), is either a shock wave or 

an expansion wave. To eliminate the physically less realistic solutions by the entropy 

condition, ( ) σ ( )
L R

f u f u    is imposed [14]. Here, ( )
L

f u  and ( )
R

f u  represent the speed 

of the wave to the left and to the right of the discontinuity and σ ( ( ) ( )) / ( )
R L R L

f u f u u u    

is the local velocity of the discontinuity. 

In this paper the interest is to test the accuracy of methods to predict the interaction 

between pure or combined waves. Therefore, we consider an example of two adjacent 

Riemann problems where we can obtain not only a pure wave like in classical Riemann 

problem, but an interaction of both shock and rarefaction waves after a finite time. Figs 1-4 

show the simulation results obtained for different time values: 0T  , 0.5T  , 2.25T   and 

4.5T  , respectively. 

The initial CFL is 0.5 for the grid of 400 points. Predictions given by the WENO-type 

schemes are indistinguishable at the scale shown. Nevertheless, the numerical solution 

displays a gradual departure from the analytical solution in the regions with sharp slopes. 
 

 

Fig. 1 Solution of Burgers equation at T=0 

 

 

Fig. 2 Solution of Burgers equation at T=0.5 

At 0.5T   the configuration is a succession of three constant values and between them a 

rarefaction fun and a shock. At 2.25T   the configuration is reduced to a combination of 

two waves, fun and a shock placed between constant areas. Finally at 4.5T  the 

configuration reduces to simple shock wave. 
 

 

Fig. 3 Solution of Burgers equation at T=2.25 

 

 

Fig. 4 Solution of Burgers equation at T=4.5 
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4.2 Non-convex flux 

The weak formulation of a nonlinear conservation law leads to a problem that allows for an 

infinite number of solutions. In the non-convex flux case, the entropy condition is not 

enough to guarantee uniqueness of weak solutions. For this reason, a stronger selection 

criterion is necessary to select the physically relevant discontinuous solution. One of these 

entropy criteria, which determine the unique entropy weak solution, is Oleinik’s jump 

entropy condition requiring that for all u  between ru  and lu : 

( ) ( ) ( ) ( ) ( ) ( )
l r l r

l r l r

f u f u f u f u f u f u

u u u u u u

  
 

  
, (19) 

where the values ,
r l

u u  are the local values at the sides of the discontinuity and must not to 

be interpreted either as the initial values of a Riemann ,
L R

u u . A shock is an admissible 

solution if it satisfies the Oleinik entropy condition. From the geometrical point of view, this 

condition is satisfied if and only if, the chord joining the points ( , ( ))
r r

u f u  and ( , ( ))
l l

u f u  

remains above the graph of f  for 
r l

u u  and below the graph for 
r l

u u . In the non-convex 

case, distinct from the convex one, it is possible for the solution of the Riemann problem to 

obtain a wave that is not only a single, individual, shock or fan but a combination of these 

two types of waves. Between such nonlinear waves we have considered two different non-

convex fluxes: one given by Buckley–Leverett [6, 13] with one inflection point (Fig.5) and 

the other gave by Harten [4, 5] with two inflection points (Fig. 6). The composite waves can 

be made up by the conjunction of either two or three elementary waves. 
 

 

Fig. 5 The Buckley–Leverett flux 

 

 

Fig. 6 The Harten flux 

Non-convex flux with one inflection point. The Buckley–Leverett problem. The 

classical Buckley-Leverett (BL) equation is an effective model for two-phase (oil-water) 

fluid flow in a porous medium. One important application area is secondary oil recovery, in 

which water (with some additives) is pumped down one well in an effort to force more oil 

out. In this case, 0 ( , ) 1u x t   represent the saturation of water ( 0u   pure oil, 1u   pure 

water). A less complicated non-convex flux is that associated with BL problem where the 

flux has only one inflection point and is often considered to introduce the idea of convex 

envelope, which is fundamental in the solution of non-convex Riemann problems, see, for 

more details [13, 15]. First, we tested all the WENO–type schemes on [ 1,1]x  , considering

2 2 2( ) 4 / 4 (1 )f u u u u     , Fig.5, with the initial condition: 

 ( ,0) 1 1u x H x   . (20) 
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All the simulations were ruled at 400N   grid points and for CFL=0.5. The solution 

profile consists in two different double composite waves: fan-shock, see Fig.7. 

 

Fig. 7 The Buckley–Leverett solution for initial condition (20) at T=0.4 and T=0.8 

The first wave consists of a fan, from left state 1
L

u   to an intermediate state, 

* 0.447213595499958
R

u  . 

This intermediate state is the abscissas of the point of tangency to the flux curve, from 

0
R

u   obtain by solving numerical: 

* * *( ) [ ( ) ( )] / ( )
R R R R R

f u f u f u u u    . (21) 

The fan wave is followed by a shock wave moving with the speed *( ) 1.61803398874989
R

f u  . 
 

 

 

 

Fig. 8 The Buckley–Leverett solution for second test at T=0.2 and T=0.4 

The analytical wave configuration at any time is represented by the expression 

  *

*

, / ( );

, ( / ), ( ) / ( );

, / ( ).

L L

L R

R R

u x t f u

u x t G x t f u x t f u

u x t f u



   









 (22) 

The second test corresponding to the initial condition ( ,0) ( 0.5) ( )u x H x H x    is a 

succession of two rarefaction-shock waves, see Fig.8. 

A fan going from the left state 1u  to an intermediate state *

1
u  (abscissas of the point of 

tangency to the flux curve, from
1

u ) and a shock from *

1
u  to the central state 

2
u  moving with 

the velocity 
*
1 2

1 *
1 2

( ) ( )1
( ) 1.05901699437495

2

f u f u
f u

u u


  



 
 
 

 where 
1

0u   and 
2

1u  . 

The results are compared with the analytically solution which has the expression: 
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1 1

1

1

1

2 2

*
2 1

*
1 1

0.5
, ( );

( )0.5 0.5
, ( ) ;

2

( )
( , ) , ( );

2

, ( ) ( );

, ( ).

x
u f u

t

f u nx x
G f u

t t

f u n x
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
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


 (23) 

The intermediate state *

1
u  is computed by solving the equation 

* * *

1 1 1 1 1
( ) [ ( ) ( )] / ( )f u f u f u u u     numerically. 

Analyzing the results presented in Figs. 7-8, we can conclude that WENO-type schemes 

converge to the correct analytically entropy solution and they give sharp shock profile. Note 

that, around discontinuities, all schemes predict approximately the same evolution. 

Non-convex flux with two inflection point. The Harten problem. The problem 

proposed by Harten [6] is defined by a fourth-order polynomial,   2 20.25( 1)( 4)f u u u   , 

Fig.6, and has two inflection points because of the expression: 2( ) 3 2.5f u u   . The 

numerical tests are performed for two different initial Riemann conditions 2, 2
L R

u u    and 

3, 3
L R

u u   , respectively. 

The exact solution in this case is 

   

*

* *

*

, / ( );

, / , ( ) / ( );

, / ( ),

L L

L R

R R

u x t f u

u x t G x t f u x t f u

u x t f u



   









 (24) 

where the intermediate state *
L

u , *
R

u  are obtained solving numerically:

 * * *( ) [ ( ) ] / ( )
R R R R R

f u f u f u u u    , * * *( ) [ ( ) ( )] / ( )
L L L L L

f u f u f u u u     and the self-similar 

weak solution satisfies  
1

G f


 . 
 

 

 

 

Fig. 9 Solution of Harten problem, 2, 2
L R

u u    at 0.5T   and 1.0T   
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The occurrence of two inflection points implies that the solution in both cases is a 

mixture comprising three pure waves in the two different configurations. The first pattern for 

a triple wave, given by the first initial condition is obtained by the combination of a shock 

followed by a fan and a second shock, see Figs 9-10 at 0.5T   and 1.0T  . 

  

Fig. 10 Errors 
1

L  and L


 for Harten problem solutions, 2, 2
L R

u u    at 1.0T   

  

Fig. 11 The Harten problem solution for 3, 3
L R

u u    at 0.08T   and 0.15T   

The last initial condition produces a wave configuration; referred to two external 

rarefactions with a single jump located in between, see Figs 11-13. We carried out the 

computation up to 0.15T  . 

  

Fig. 12 The 
1

L  and L


 error Harten problem solution for 3, 3
L R

u u    at 0.15T   

The exact solution in this case is 

 
 

 

1

2

, / ( );

/ , ( ) / ( );
,

/ , ( ) / ( );

, / ( ),

L L

e
L L

e
R R

R R

u x t f u

G x t f u x t f u
u x t

G x t f u x t f u

u x t f u



  


  











 (25) 

where e
L

u , e
R

u  are the points in which a single straight line is tangent to the flux curve in two 

points simultaneously to obtain a convex envelope for the flux curve[12]. Functions
1

G , 
2

G

verify the condition  
1

G f


 . 
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Fig. 13 The detailed Harten problem solution for 3, 3
L R

u u    at 0.15T   

5. CONCLUSIONS 

The most known fifth order WENO-type schemes presented in the previous section are 

simultaneously analyzed for the first time. Their behavior, in terms of accuracy and 

convergence properties, was studied for one convex and two non-convex conservative 

fluxes. Thus, the Buckley-Leverett and the Harten problems are two examples of non-convex 

flux with one and respectively two inflection points. The schemes were tested on piecewise 

constant function for non-periodical conditions. The exact solution for each problem is 

provided in analytical form. Sometimes, the specialized literature is biased towards cases 

that are favorable to a certain method. Our approach tried to objectively present the 

performance of each method for simple cases like scalar conservation law problems. All the 

schemes identify accurately the position of the shock and converge to the proper weak 

solution for non-linear flux and different initial conditions. However, for real fluid 

simulations, we would suggest the use of WENOM5 scheme as a good compromise between 

WENO5 and CRWENO5, even if CRWENO scheme gives more accurate results but at 

higher CPU costs.  
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