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This book is addressed to all professionals engaged in research 

& design, education, ranging from PhD students to graduates 

as well as students from Engineering Sciences (Aerospace, 

Mechanics, Power, Applied Sciences, Automotives, Medical 

Applications and Biotechnical Systems), Mathematics and 

Physics. Its large amount of information, thoroughly explained 

within a 715 A4 size pages volume, is structured in 2 parts: 

FUNDAMENTALS (Chapters 1÷6) and APPLICATIONS 

(Chapters 7÷12). The topics are the mathematical modeling 

and numerical simulation of complex and intricate problems of 

fluid dynamics. Fully details are given for the hereby 

presented mathematical models expressed by partial 

derivatives equations or partial derivatives equations systems 
 

that allow us to study different cases of fluid flows, such as: 

the steady and non-steady regimes, incompressible and 

compressible flows (developed for subsonic, transonic and 

supersonic velocities), laminar and/or turbulent flows, for  

inviscid as well as viscous fluids.   

A thorough study of the Partial Differential Equations PDE’ is presented in Chapter 

1; the approach consists in presenting real phenomena with their associate mathematical 

model expressed by PDE’s. A classification based on physical properties (§1.2) followed by 

the study of first order partial differential equations (§1.3), first order linear differential 

systems (§1.4) and first order non-linear differential equations (§1.6), first order non-linear 

differential systems (§1.7), as well as the explanation of the properties of non-linear 

hyperbolic systems (§1.8), the detailing of the hyperbolic, parabolic and elliptic equations 

within §1.9, integral representations of solutions (§1.10) for the Laplace equation and 

Prandtl-Glauert equation, introduces the reader to these topics and enables a better 

understanding due to the very good organization of the material, according to criteria and a 

sharp logic & argumentation. Following this approach, the authors express more clearly the 

appropriate modeling of fluid flows and body-flow interactions, in case of intricate geometry 

for both solid bodies and boundaries. The non-linearity and non-steady feature of the flow 

considered by the authors, allow an improved mathematical model of the real study cases. 

 Chapter 2 is dedicated to the Finite Differences Methods FDM’; the basics: explicit & 

implicit finite differences and coordinates are presented in §2.1, which allows the 

discretization of the partial differential equations into finite difference equations (§2.2); fully 

details are provided for the study of the consistency (§2.4), stability (§2.5) and convergence 

(§2.9), with significant examples that have been chosen, such as the convective transport 
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equation and equation of diffusion. There also have been expressed out details about: 

boundary and initial conditions, matrix representation of finite differences scheme, explicit 

versus implicit schemes, multidimensional problems, when associated to the Von Neumann 

method (§2.6), matrix method (§2.7) and method of modified equation (§2.8). There are 

presented comparatively many schemes and possible means of their improvement, for the 

linear convection equation (§2.10 – the explicit and implicit Euler schemes, upwind, Lax, 

Leapfrog, Lax-Wendroff, Mac Cormack, Beam-Warming and third order schemes) and the 

equation of diffusion (§2.11 – Crank-Nicolson, Richtmyer & Morton, DuFort-Frankel 

schemes); for the multidimensional problems (§2.11) the numerical solution can be obtained 

by using either the alternating-directions implicit ADI method, the alternating-directions 

explicit ADE method or the Keller’s box method. 

Chapter 3 deals with the Finite Elements Methods FEM’; basics of the weighted 

residuals method (§3.1 – collocation, method of moments, Galerkin), are presented by 

comparison, with complete details and significant examples provided by the authors; a 

prodigious description regarding the application of the algorithm (§3.4) for one-dimensional 

(§3.6), two-dimensional (§3.7) and three-dimensional (§3.8) finite elements is also given; the 

convergence is studied in §3.9, while in §3.10 several propagation issues are presented, such 

as the diffusion equation and the wave equation. 

Within Chapter 4 the Boundary Elements Methods BEM’ are presented; theirs 

application requires the presentation of the integral equation weighted by the fundamental 

solutions of the partial derivatives equation (i.e. the Laplace equation) to be solved, followed 

by the discretization of the domain’s boundaries; the interpolating functions allow us to 

obtaining the numerical solution of the equations system. 

 Chapter 5 is focused on the Finite Volumes Methods; basic notions of the 

conservative discretization (§5.2) such as the numerical sources, numerical flux and 

convergence are introduced; the integral approximations (§5.3) represented by the Helmholtz 

equation, finite volume schemes (§5.4) and the diffusion equation (§5.5) are studied; a 

thorough analysis of the stationary convection-diffusion equation (§5.6) is given, with a 

detailed presentation of numerical schemes: centered space, upwind with artificial viscosity, 

exponential, hybrid, power law, Patankar, QUICK and multidimensional. 

 The integration of conservation laws is studied in Chapter 6; the Burgers equation 

(§6.1), as well as the complete Burgers equation (§6.2) are considered as representative 

examples and analyzed. 

 Chapter 7 prepares the ground for the applications in the second part, being dedicated 

to the conservation laws; by the aid of the transfer theorem (§7.2), there are presented the 

mass conservation (§7.3), the momentum conservation (§7.4), the energy conservation (§7.5) 

and their appropriate logical deduction. 

 Large classes of mathematical models used in fluid dynamics are detailed within 

Chapter 8, such as: the Navier-Stokes model (§8.1), Reynolds Averaged Navier-Stokes 

RANS (§8.2), Euler model (§8.3), Boundary Layer model (§8.4), the potential model (§8.6) 

and the perturbation potential model (§8.7). The selection (of one or another) of these 

models to describe a real flow issue is done according to the desired numerical accuracy, i.e. 

with the appropriate consideration of work hypothesis; the less the number of simplifying 

assumptions, the more accurate numerical results, but this feature comes in pair with the 

increased effort during computations. The turbulence models described in §8.5 are necessary 

to complete the description of the flow issue considered as study case. The following 

chapters (9÷12) present with fully details the way of integration of different flow models; the 

work is reader-oriented, the topics are gradually introduced i.e. from the rather simpler (in 
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relative terms) flow model to the most complicate flow model. Therefore, the integration of 

the perturbation model is explained in Chapter 9; for such purpose, one can select either 

the panel method (§9.3) or the Murman-Cole method (§9.4); these methods can be proven 

significantly accurate for rather complex applications, like the two-dimensional 

incompressible steady flows, three-dimensional supersonic steady flows and the three-

dimensional compressible unsteady flows. 

 The integration of the potential model is presented in Chapter 10; the model 

discretization is focused in §10.2 on the subsonic regime and in §10.3 on the transonic flow. 

The authors provide detailed comparisons for the numerical formulations (e.g. the finite 

difference formulations versus the finite volume formulations, both used for subsonic flows); 

in case of transonic flows, there have been introduced new concepts: artificial flux, artificial 

compressibility and artificial viscosity; The authors present efficient techniques purposed for 

solving the algebraic system of equation (§10.5), like: the successive line over-relaxation 

methods and alternating directions methods. 

A thorough attention for the details is given in Chapter 11, dedicated to the integration 

of Euler model. The mathematical properties of the Euler model are exposed in a large 

extent in §11.2, for both integral and conservative differential formulations; the most 

frequently used schemes are presented as follows: centered spaces schemes (§11.3), upwind 

schemes with vector flux splitting (§11.4), Godunov type upwind schemes (§11.5), second 

order upwind schemes (§11.6 – TVD, MUSCL), TVD schemes for Euler system (§11.7 – for 

one-and two-dimensional cases), ENO and WENO schemes (§11.8); the last but not least are 

the boundary conditions, whose implementation has been explained in §11.9, for 

multidimensional cases. The Euler model contains non-linear terms of the convective 

transport of the fluid’s energy and includes the effects of the compressibility; for these 

reasons, the Euler model can be used with convenient accuracy for describing real issues, as 

the shock waves flows. The limitations of the Euler model are due to the omission of the 

viscous terms (that are responsible for generating the dissipation of energy); at wall vicinity 

and for restricted but significant areas with discontinuities, it is important to consider the 

viscous terms, for which the Euler model is not appropriate. 

 The integration of the Navier-Stokes model, the most complex of all models used in 

Fluid Dynamics for the numerical solving of intricate problems, is analyzed in Chapter 12. 

The discretization in compressible regime is fully detailed in §12.3, focusing the numerical 

explicit schemes (Mac Cormack, vector flux splitting, Runge-Kutta) and implicit schemes 

(one time step, first and second order convective flux splitting) and the LU factorization. The 

formulation of Navier-Stokes equations with pseudo-compressibility and the pressure field 

correction based methods introduce in a more direct way the discretization in incompressible 

regime (§12.4). A large References list with more than 300 entries provides thus a thorough 

documentation and knowledge. 

This book represents a major accomplishment, proven by its structure and organized 

information; both the theoretical frame and applications as worked examples presented in 

full details, introduce the reader and prospective user to complex issues (such as aircraft and 

inner flow aerodynamics) of significant interest from the Fluid Dynamics.  
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