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Abstract: The paper presents the stability analysis of the equilibria in a longitudinal flight of an 

unmanned aircraft with constant forward velocity. The motion of the aircraft is described using delay 

differential equations with constant delays, the delay being considered in flight control compartment. 

The goal is to study the effects of the delays for the stability of the equilibrium points. It is eventually 

proved that a Hopf bifurcation appears. 
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1. INTRODUCTION 

Due to various domains of application, unmanned aerial vehicles (UAVs) are the subject of 

intense research. One of the active areas for this type of aircraft, refers to the longitudinal 

flight with constant velocity. Since a human factor to react in real time for this type of 

vehicle is missing, a special attention is given to the landing phase and the final approach of 

the UAV, controlled by an automatic flight control system (AFCS). Due to the fact that the 

velocity variation of the state variables depends on their past and present values, the 

differential equations associated with this model are differential equations with time-lag 

argument. The mathematical modeling of delayed processes is relatively recent and has 

become necessary with increasing interest in the development of complex automated systems 

in some areas such as aerospace, robotics and telecommunications. It has also been used to 

understand complex phenomena in areas such as biology, medicine, ecology and economics 

[1]. In aerospace, the cause of these delays results from the high order system complexity 

and in case of digital systems, from the inherent sampling time. Digital control systems are 

attractive due to the high computing power, which enhances the complexity of the flight 

control system. The delays have a significant effect on the longitudinal and lateral-

directional flight [1]. 

2. THE MODEL 

Automatic Landing Flight Experiment (ALFLEX) is an unmanned aircraft built by 

NASDAQ, Japan. 

 This vehicle is a reduced scale model of an unmanned reusable orbiting spacecraft, H-II 

Orbiting Plane (HOPE) [2]. The existence of equilibrium points for the unmanned ALFLEX 
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reentry vehicle when the automatic flight control system fails was studied in [2]. The 

Automatic Flight Control System helps the aircraft to have quick responses to commands. 

For this research we focused on the case of a steady longitudinal flight of ALFLEX, 

with constant forward velocity, in case the automated control system is decoupled. Assuming 

that the angles of attack and sideslip,   and  , are small and the forward velocity V  is 

constant we recall the following mathematical model of the ALFLEX from [2, 3, 4]. 
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 The state vector consists of the angle of attack  , sideslip angle  , roll rate p , pitch 

rate ,q  yaw rate ,r  Euler pitch angle  , and Euler roll angle  . 

The constants zyx III ,,  where used to describe the moments of inertia about the 

 yx ,  and z axes. 

xzI  represents the product of inertia, g  is the gravitational acceleration and m  is the 

mass of the aerial vehicle. 

 NMLZY ,,,, , the external forces and moments are functions of the state variables. The 

control parameters are a  the aileron angle, e  the elevator angle and r  the rudder angle. 

For the external forces and moments we have the following expressions [2, 3, 4]. 
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Assuming 0,0,0,0,0  rarp  in system (1), we obtain the system 

that governs the longitudinal flight of the unmanned ALFLEX reentry vehicle. 
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Here the state variables are q,  and  , e  is the longitudinal control parameter. 

Consider for it the following form, with a delay  [s]. 
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]cos)([cos 010  tkee   

The following system of delay differential equations describes the longitudinal flight of 

an unmanned aircraft on the lines in [2]. 
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3. THE STABILITY STUDY 

Solving the equations 3,1,0),,(  iqfi  we obtained the equilibrium points for system 

(2). 
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 The equilibrium point for (1) has the form ),0,( 00  . 

 Let 
3,1,

)(



jiijaA  be the matrix of the first derivatives of the system with respect to 

q, and   calculated in the equilibrium point. For the same equilibrium point, we also 

consider the following matrix containing the derivatives with respect 

to )(  t ,
3,1,

)(



jiijij bB . 

 For the equilibrium point ),0,( 00  , the matrices A  and B  have the form: 
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The characteristic equation associated with the linearization of the system around the 

equilibrium point is given by 

0)det( 3  BeAI   

The characteristic equation has the form 

0sin])([sin))(( 012112111021212211   kbaakbeaaaa  (4) 

Consider the case in which the characteristic equation has the following form: 

0 bea  (5) 

The following result comes from [5], [6] and [7]: 

Theorem 1.([6], page. 593) All roots of equation (5) have negative real parts if and only 

if: 

(i) 1a  
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(ii) 0 ba  

(iii) ,222  ab  

where   is the unique root of ,tan a  .0   

Remark 1. If ,0b  then the conditions reduce to 1a  and 0 ba . 

Proposition 1. Assume that the following conditions hold: 
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Then equation (4) is stable for .0  

Proof: For 0  equation (3) becomes: 
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In order for the roots of equation (7) to be in the left half-plane, the Routh-Hurwitz 

criterion leads to (6). The proposition is proved. 

To simplify the next calculations, we introduce the following notations: 

1a 1122 aa   

2a 221121 aaa   

3a 021 sin a  

0124 sin  kba  

01211021115 sinsin  kbaakba  

 

The characteristic equation becomes: 

0)( 5432
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Consider the general form of the characteristic equation: 

0)()(  eQP  (9) 

Theorem 2. ([8], Theorem 1) Consider equation (9), where P  and Q  are analytic 

functions in a right-half plane ,Re   ,0  which satisfy the following conditions. 

(i) )(P  and )(Q  have no common imaginary zero. 

(ii) ),()( iyPiyP   ),()( iyQiyQ   for real y  

(iii) .0)0()0(  QP  

(iv) There are at most a finite number of roots of (9) in the half-plane when .0  

(v) 
22

)()()( iyQiyPyF   for real y , has at most a finite number of real zeros. 

Under these conditions, the following statements are true. 
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a. Suppose that the equation 0)( yF  has no positive roots. Then, if (9) is 

stable at 0  it remains stable for all ,0  whereas if it is unstable at 

0 , it remains unstable for all .0  

b. Suppose that the equation 0)( yF  has at least one positive real root and 

that each positive root is simple. As   increases, stability switches may 

occur. There exists a positive number *  such that the equation (9) is 

unstable for all  * . As   varies from 0 to * , at most a finite number of 

stability switches may occur. 

 In order to study the equation (8) we use Theorem 2. We define 
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 Note that conditions (i)-(v) from the theorem are satisfied. 

 The stability of equation (8) depends on the roots of the equation: 
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We have to find the positive roots of (13). 

4. HOPF BIFURCATION 

Consider the case 0  again. We recall that the characteristic equation is: 
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In the first case, if we have stability for 0 , a Hopf bifurcation will appear when   

exceeds *  (see [9]) 

Proof: We prove the proposition by using Theorem 2 stated earlier. 

Equation 
22

)()( iyQiyP   has at least one simple positive real root and thus equation 

(14) will have a pair of purely imaginary roots. This means that there is a value *  at 

which there might be a change in stability. The value *  at which stability switches might 

occur results from the fact that equation (14) has iy as a solution if and only if: 
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According to [8], the sign of s  determines the direction of crossing the imaginary axis. 

The proposition is proved. Remark (see [8]) that 
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5. NUMERICAL SIMULATIONS  

Equations (3) give the equilibrium point (8.18; 0; 6.123313307151168). For the 

configuration of parameters found in [2, 4] we notice that, by (6), the equilibrium point is 

stable for 0 , see Figure 1. 

 

Figure 1. Behavior of solutions starting near equilibrium point 
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Equation (14) is stable for 0  and is changing stability at 559.2*  . As 0s , the 

pair of purely imaginary roots cross the imaginary axis from left to right. The equation 

switches from a stable state to an unstable state end oscillations will appear. This can be seen 

in Figure 2 and Figure 3. 

 

Figure 2. Behavior of solutions starting near equilibrium point for 3.2  

 

Figure 3. Behavior of solutions starting near equilibrium point for 56.2  

We remark the appearance of a limit cycle due to a Hopf bifurcation. 
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6. CONCLUSIONS 

In this paper we used models that describe the motion of an unmanned vehicle with constant 

forward velocity to study the effect of the delay introduced in the control parameter. 

The stability of the equilibrium point was studied through the characteristic equation, 

and it was proved that a Hopf bifurcation appears. Numerical simulations show the 

oscillatory nature of the solutions. In future work we will study the stability of the limit cycle 

that appears due to the Hopf bifurcation. 

7. NUMERICAL DATA 

The following data were taken from [2] and [4]. 

84.73

2/

156.1

154.3

295.3

81.9

45.9

760

















V

Sk

c

b

g

S

m

 

4.10

1634

1366

407

16.9

18.8

3

0
0

0
0

0
0















xz

z

y

x

e

I

I

I

I  

007.0

016.2

1907.0

0657.0

1774.0

2387.0

6849.0

























lp

L

ry

n

l

L

y

C

C

C

C

C

C

C

 

0745.0

0134.0

006.0

004.0

6355.0

0

0032.0



















D

m

nr

lr

eL

yr

np

C

C

C

C

C

C

C

 

0266.0

1488.0









an

al

C

C
 

2714.0

0474.0





D

mq

C

C
 

099.0

0788.0









rn

rl

C

C
 

1019.0

2152.0









eD

em

C

C
 

 
00

0000

sincos

sincossincos









eDeLez

DDLLz

CCC

CCCCC
 

10058.111  zC
m

kV
a  92142.02

21  mCckVa  25936.32
22  CmqckVa  

34151.01  ezC
m

kV
b  79777.142

2  emCckVb  13285.0
V

g
 

ACKNOLEDGEMENT 

This article is an improved version of the science communication with the same title, 

presented in The 37
th
 edition of the Conference “Caius Iacob” on Fluid Mechanics and its 

Technical Applications, 16-17 November 2017, Bucharest, Romania, (held at INCAS, B-dul 

Iuliu Maniu 220, sector 6), Section 1. Basic Methods in Fluid Mechanics. 

REFERENCES 

[1] A. Ionita, Dinamica avionului cu intarzieri in comanda, Editura Academiei Tehnice Militare, Bucuresti, 2009. 

[2] St. Balint, E. Kaslik, A. M. Balint, Numerical analysis of the oscillation susceptibility along the path of 

longitudinal flight equilibria of a reentry vehicle, Nonlinear Analysis: Real World Applications, Vol. 11, 

No. 3, pp.1953-1962, Editor: Pergamon, 2010. 



29 Stability analysis for an UAV model in a longitudinal flight 
 

INCAS BULLETIN, Volume 9, Issue 4/ 2017 

[3] N. Goto, K. Matsumoto, Bifurcation analysis for the control of a reentry vehicle, Proceedings of the 3rd 

International Conference on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, Florida, 

USA, European Conference Publishers, pp. 167-175, 2000. 

[4] N. Goto and T. Kawakita, Bifurcation analysis for the inertial coupling problem of a reentry vehicle. In 

Advances in Dynamics and Control, pages 45–57. Chapman & Hall / CRC Press Company, UK, 2004. 

[5] R. Bellman, K. L. Cooke, Differential-Difference Equations, Academic Press New York, 1963. 

[6] K. Cooke, Z. Grossman, Discrete Delay, Distribution Delay and Stability Switches, J. Math. Anal. Appl., 86, 

592-627, 1982. 

[7] L. E. El’sgol’ts, S. B. Norkin, Introduction to the theory of differential equations with deviating arguments, 

Nauka, Moscow, 1971. 

[8] K. Cooke, P. van den Driessche, On Zeroes of Some Transcendentral Equations, Funkcialaj Ekvacioj, 29, 77-

90, 1986. 

[9] J. Hale, Theory of Functional Differential Equations, Springer 1977. 

 

 

 


