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Abstract: Civil aircraft flight control clearance is a time consuming, thus an expensive process in the 

aerospace industry. This process has to be investigated and proved to be safe for thousands of 

combinations in terms of speeds, altitudes, gross weights, Xcg / weight configurations and angles of 

attack. Even in this case, a worst-case condition that could lead to a critical situation might be 

missed. To address this problem, models that are able to describe an aircraft’s dynamics by taking 

into account all uncertainties over a region within a flight envelope have been developed using Linear 

Fractional Representation. In order to investigate the Cessna Citation X aircraft Eigenvalue Stability 

envelope, the Linear Fractional Representation models are implemented using the speeds and the 

altitudes as varying parameters. In this paper Part 2, the aircraft longitudinal eigenvalue stability is 

analyzed in a continuous range of flight envelope with varying parameter of True airspeed and 

altitude, instead of a single point, like classical methods. This is known as the aeroelastic stability 

envelope, required for civil aircraft certification as given by the Circular Advisory “Aeroelastic 

Stability Substantiation of Transport Category Airplanes AC No: 25.629-18”. In this new 

methodology the analysis is performed in time domain based on Lyapunov stability and solved by 

convex optimization algorithms by using the linear matrix inequalities to evaluate the eigenvalue 

stability, which is reduced to search for the negative eigenvalues in a region of flight envelope. It can 

also be used to study the stability of a system during an arbitrary motion from one point to another in 

the flight envelope. A whole aircraft analysis results’ for its entire envelope are presented in the form 

of graphs, thus offering good readability, and making them easily exploitable. 

Key Words: Eigenvalue Stability, Aeroelastic Stability, Flight Control Clearance, Robustness 

Analysis 

NOMENCLATURE 

A, B, C, D = State space matrices 

P = Positive Definite Matrix 

ℝ = Real number field 

ℂ = Complex number field 

ℕ = Integer number field 
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𝐴𝑇 = Transposition of  matrix A 

𝐴−1 = Inverse of matrix A 

𝐴∗ = Transconjugate of matrix A 

Θ = The variation range of each uncertainty 

1. INTRODUCTION 

The certification of an aircraft is an important and essential step in the process leading to its 

first flight. To prove that an aircraft is ready to fly, it must meet several criteria required by 

various agencies such as Transport Canada (TC), the Federal Aviation Administration 

(FAA), or the European Aviation Safety Agency (EASA); a multitude of flight combinations 

in terms of center of gravity position, mass, speed, altitude and angle of attack are used. In 

the same way as in any aircraft design or production process, the Flight Control Laws (FCL) 

have to be qualified, cleared and certified [1]. 

Over the last decades, much research has been done to identify the FCLs’ clearance 

criteria [2]-[4]. 

Some of these criteria have been reformulated as robustness criteria [5]-[10]. The target 

criteria for the Airbus team, for example, correspond to the aeroelastic stability, turbulence, 

comfort and maneuver criteria. 

All of these criteria have to be evaluated in the full flight envelope, and for all weight 

and Xcg configurations [11]-[12]. 

Flight control clearance criteria have become the focus of many studies conducted by 

universities and industries in the Group for Aeronautical Research and Technology in 

EUROPE GARTEUR project [1], [13]. 

These studies were performed mainly on three aircraft fighter models, the High 

Incidence Research Model with feedback control HIRM+ which is a generic model, the Aero 

Data Model In Research Environment ADMIRE, and high performance short take off and 

vertical landing aircraft model called HWEM, which are both realistic models. 

However, the flight control clearance criteria analysis results were mainly published for 

the HIRM+ generic model [1], and suggested adaptations of these criteria to Cessna Citation 

X civil aircraft. 

Due to the lack of access to real flight control clearance data and the availability of the 

level D Research Aircraft Flight Simulator at our LARCASE laboratory, we have been 

motivated to investigate its flight control clearance. 

Due to the high volume of the flight clearance criteria tasks, the “eigenvalues stability” 

criterion [14] was selected to be investigated during this present research. 

This criterion is applied for a robustness analysis which has been investigated at the 

LARCASE laboratory on both civil and military aircrafts: the Hawker 800XP, and the HIRM 

by using the weight functions method [15]-[16]. 

Normally the stability criterion has been performed on the longitudinal aircraft closed 

loop model to test the reliability of the flight control in the presence of uncertainties. This 

criterion seeks for eigenvalues with negative real parts in the aircraft envelope. 

To evaluate this criterion, the results have to be checked with those obtained for the 

natural stability of the aircraft; the eigenvalues for the longitudinal open loop system should 

therefore be investigated. 

Our study focuses on the Cessna Citation X eigenvalue stability analysis by using the 

data provided by a Level D Research Aircraft Flight Simulator (RAFS). These data were 
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used to develop both nonlinear and linear models of the airplane for its longitudinal and 

lateral motions [17], [18]. 

In article Part 1 the generation of 26 longitudinal LFR models for 12 Xcg and weight 

configurations were automated for the whole flight envelope by using a new GUI. 

The eigenvalue of the flight envelopes were analyzed in this article Part 2 using the 

robustness and stability analysis toolbox to assess the Cessna Citation X aircraft open loop 

stability. 

The paper is organized as follows: Firstly, presentations of the stability analysis and 

Lyapunov stability theories are given. 

Next, a description of the resolution method followed by a presentation of the stability 

analysis interface, and the paper ends with the aircraft stability analysis results discussion 

and conclusions. 

2. STABILITY ANALYSIS 

After the development and testing of the Graphical User Interface (GUI), the aircraft LFR 

models could be created easily. 

A stability analysis using this interface, that was developed by researchers at the 

University of Siena within the framework of the project “Clearance of Flight Control Laws 

Using Optimization” [13], [19], [20] was performed on the 26 LFR models generated for a 

longitudinal aircraft model for each weight and Xcg location. 

Before dealing with the stability analysis, some concepts are introduced on the 

determination of stability, based on linear algebra, and on the positive or negative condition 

of a matrix. 
A matrix 𝐴 ∈  ℝ𝑛𝑥𝑛 is defined as “positive” if for each vector 𝑥 ∈  ℝ𝑛, the quadratic 

equation (1) is positive [21]. 

𝑥𝑇𝐴𝑥 ≥ 0, ∀ 𝑥 ∈ ℝ (1) 

One of the properties associated with this definition is that the matrix can be defined as 

“broadly positive” if and only if all its eigenvalues are positive. 

If A is positive, then the values of the A spectrum set are all strictly positive. This 

strictly positivity can be written under the quadratic form as shown in eq. (2): 

𝑥𝑇𝐴𝑥 > 0, ∀ 𝑥 ∈ ℝ (2) 

2.1 Lyapunov Stability 

Next, the Lyapunov stability direct method is presented. Suppose that a system has an 

equilibrium point  𝑥𝑒. 

The system’s measured energy, noted by  𝑉(𝑥), always positive, is defined. The steady 

state is chosen as the origin of the system, i.e.,  𝑉(𝑥𝑒). 

If the energy evolution in the vicinity of this point is decreasing, 
𝑑

𝑑𝑡
𝑉(𝑥) < 0, it means 

that the system converges to a stable state. 

This notion of energy convergence is the basis of the Lyapunov stability theory [22]. A 

local equilibrium can thus be defined at the point 𝑥𝑒 that is associated with a stability 

condition, as shown in Figure 1. 
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Figure 1. Equilibrium condition 

For a system containing uncertainties, that are represented by a parameter vector 𝛼, the 

stability in the asymptotic sense is satisfied if there is a real-value function, and a 

continuously differentiable 𝑉(𝑥, 𝛼) such as [22]: 

1. 𝑉(0, 𝛼) = 0  

2. 𝑉(𝑥, 𝛼)‖𝑥(𝑡)‖→∞ → ∞ (3) 

3. 𝑉(𝑥, 𝛼) > 0, 𝑥 ≠ 0  

4. �̇�(𝑥, 𝛼) < 0, 𝑥 ≠ 0  

2.2 Quadratic Stability 

The challenge of this method is to determine the Lyapunov function with the aim to satisfy 

the system of four eqs. (3). Previous research shown in [23]-[27] focused mainly on the 

candidate functions shown in the next eq.: 

𝑉(𝑥, 𝛼) = 𝑥𝑇𝑃(𝛼)𝑥 (4) 

with 𝑃 > 0, ∀𝛼 ∈ Θ 

A system is represented by eq. (4) where Θ represents the variations range of each 

uncertainty, and where P is commonly chosen to be fixed. 

If such a function exists, then the system has a “quadratic stability” which is valid for all 

the uncertain parameters vectors. The robustness of the system is considered to be excellent 

in such a case. 

The Lyapunov function presented in equation (4) gives the required condition for a 

linear system to be considered “quadratically stable”. 

The Lyapunov stability criterion given in eq. (6) lies in the existence of a positive and 

symmetric definite matrix 𝑃𝑇 = 𝑃 > 0 [23]: 

�̇� = 𝐴𝑥 (5) 

𝐴𝑇𝑃 = 𝑃𝐴 < 0 (6) 

The matrix P is obtained by determining its 
𝑛(𝑛+1)

2
’ s coefficients. The eq. (6) belongs to 

the class of Linear Matrix Inequalities (LMI). Different toolboxes were developed to 

automate the resolution process of this type of equations, and to reduce the engineer’s task. 

In this paper, the toolbox called YALMIP [28] coupled with the solver SDPT3 ([29], 

[30]) will be used. 
 

Unstable equilibrium 

Stable equilibrium 

ex
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3. RESOLUTION METHOD 

In the literature, three different methods can be distinguished by the structure of the 

Lyapunov function that each one of them chooses. The first method focuses primarily on 

determining a Lyapunov function constant called Wang-Balakrishnan method [31], while the 

two other methods focus on dependent parameters functions to refine the solution search; 

these are Dettori-Scherer [32] and Fu-Dasgupta methods [33]. The Wang-Balakrishnan 

method was selected to perform the system stability analysis in this paper. The latter is 

detailed in the following system: 

�̇�(𝑡) = 𝐴(𝜃)𝑥(𝑡) (7) 

An uncertain system given by eq. (7) is considered, where x is the state space matrix, 

𝜃 ∈  ℝ𝑛𝜃 is the parameters’ vector, and 𝐴 ∈  ℝ𝑛𝑥𝑛 is the aircraft dynamics, and this system 

can be defined by equations (8) and (9) [19]: 

𝐴(𝜃) = 𝐴 + 𝐵∆(𝜃)(𝐼 − 𝐷∆(𝜃))−1 (8) 

where                                     ∆(𝜃) = 𝑑𝑖𝑎𝑔(𝜃1𝐼𝑠1
, … , 𝜃1𝐼𝑠1

) (9) 

An equivalent Linear Fractional Transformation (LFT) of eq. (8) is given by equations 

(10), (11), and (12) [19]: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) (10) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) (11) 

𝑢(𝑡) = ∆(𝜃)𝑦(𝑡)) (12) 

where 𝑢 ∈  ℝ𝑑, 𝑦 ∈  ℝ𝑑, 𝑑 = ∑ 𝑠𝑖
𝑛𝜃
𝑖=1 , and 𝐴, 𝐵, 𝐶, 𝐷 are real matrices of appropriate 

dimensions. 

Matrix A is assumed to be Herwitz type for the stability analysis of the LFR system. 

Where 𝜃 is an uncertain parameter vector, which belongs to Θ a hyper- rectangular with 

vertices of 2𝑛𝜃 as Ver [Θ], and �̇�(𝑡) = 0 the uncertain parameters that are time invariant. 

The system of equations is represented by equations (10), (11), and (12) and following 

conditions are mentioned: 

 If there exists a common quadratic Lyapunov function for all matrices 𝐴(𝜃), where 𝜃 ∈ 
Θ, then this function is quadratically stable 

 If 𝐴(𝜃) is Herwitz for all 𝜃 ∈ Θ, the system is robustly stable. 

3.1 Wang-Balakrishnan Method [31]: 

The system expressed by eqs. (13), (14), and (15) presents a “quadratic stability”, because its 

dynamics is given by a symmetric matrix defined as positive: 𝑃 ∈  ℝ𝑛𝑥𝑛, 𝑃 = 𝑃𝑇 > 0 and 

𝑀 ∈  ℝ𝑑𝑥𝑑, 𝑀 = 𝑀𝑇 > 0  as seen in [31]: 

[
𝐴𝑇𝑃 + 𝑃𝐴 + 𝐶𝑇𝑀𝐶 𝑃𝐵(𝜃) + 𝐶𝑇𝑀𝐷(𝜃)

𝐵(𝜃)𝑇𝑃 + 𝐷(𝜃)𝑇𝑀𝐶 −𝑀 + 𝐷(𝜃)𝑇𝑀𝐷(𝜃)
] < 0 (13) 

where                                               𝐵(𝜃) = 𝐵∆(𝜃) (14) 

and                                                  𝐷(𝜃) = 𝐷∆(𝜃) (15) 
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Thus, the existence of such matrices can prove with certainty the stability of a system. 

An alternative to this theorem that uses parameter-dependent Lyapunov functions is given by 

eqs. (16) and (17); and the demonstration of this theorem is given in detail in [32]: 

𝑉(𝑥) = 𝑥𝑇𝑄(𝜃)−1𝑥  (16) 

with                                          𝑄(𝜃) = 𝑄0 + ∑ 𝜃𝑗
𝑛𝜃
𝑗=1 𝑄𝑗 (17) 

4. STABILITY ANALYSIS INTERFACE 

In order to accomplish the aircraft eigenvalue stability analysis, a Graphical User Interface is 

used, which eases and greatly facilitates the analysis task. It offers a wide choice of 

resolutions via three methods from published research found in [31], [32], and [33]. Figure 2 

shows the window with which the user interacts; a brief description of how to manipulate the 

GUI for the stability analysis is given in the following paragraph. There are two main 

sections in the GUI, the first one is “Analysis” contains the LFR models in “Model”, in 

“Method” three methods for resolution are given, “Region definition”  the region that will be 

analyzed, and “Approach” which contains all functions called during the analysis as “ 

Progressive” or “Adaptive” and the type of “Lyapunov Functions”. The second is the 

"Results" stores the results data. Furthermore, the GUI has access to the LFR Toolbox, and 

to the YALMIP SDPT3.7. 

 

Figure 2. Robust Stability Toolbox 

To perform the stability analysis, the obtained LFR model is firstly selected, and secondly 

one of the analysis parameters methods Fu-Dasgupta (FD), Dettori-Scherer (DS), and Wang-

Balakrishnan (WB) is used. The theory of the Wang-Balakrishnan (WB) method is chosen, 

as it regards the normalization of the selected region. Other options exist such as the choice 

of the discretization number, the Lyapunov functions’ shape. After these parameters are 

validated, the stability analysis can be done for the selected region of the flight envelope. 
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5. ANALYSE OF RESULTS 

5.1 LFR Results Validation 

The results generated by LFR models must be evaluated [13]. To assess the accuracy of 

these results outside our interpolated points any number of points can be randomly 

generated, we have chosen 40 as an example, were randomly created from our interpolations, 

and they were compared with our reference points (representing the four (4) vertices of the 

region), for the 26 regions, we obtained 40 points for each of region. 

It can be ensured that the interpolated points have a relative proximity with those 

references points, and remain in the area formed by these reference points. Figure 3 shows 

the eigenvalues results (imaginary versus real eigenvalues) for a given Xcg location and for 

9 medium altitudes (regions 10 to 18), while Figure 4 gives the eigenvalues results for the 

highest altitudes (regions 24 and 25), while the results obtained for the other regions are 

given in Appendix. Only the positive side of the imaginary axis is shown in these 

symmetrical figures. Each pole pair is represented by a cross and circles. 

The color “blue” is associated with the points used as reference points, and the “red” 

color indicates the randomly-generated interpolated points. 

It can be observed that the quality of the interpolations is satisfied for the whole flight 

envelope, with the exception of the two regions (24 and 25) where it might be a problem for 

some Xcg locations. Indeed, at high altitudes, as shown in Figure 4, the interpolation of 

points seems to be more delicate and the pole pairs associated with the randomly-generated 

matrices appear to show some signs of disparity with the reference points, as indicated in 

Figure 4. 

 

Figure 3. Comparison of eigenvalues for interpolated flight points with the reference values for medium altitudes 

(between 15,000 ft and 30,000 ft) 
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(a)                                                                     (b) 

Figure 4. Comparison of eigenvalues for the interpolated flights points with the reference values at the highest 

altitudes (between 35,000 ft and 40,000 ft) 

This dissimilarity is most critical for region 25, which has isolated poles represented by 

circles and red crosses, especially in its lower right corner and on its pure real axis in Figure 

4(b). Regarding region 24 shown in Figure 4(a), two poles seem isolated from the rest of the 

poles. 

Even though the results obtained for the other Xcg locations are not presented here, 

these results are of a similar type for the remaining 11 weight/Xcg configurations. 

After analyzing all graphs, the quality of these results allows us to validate the 

interpolations made or our entire flight envelope for all Xcg locations, except for regions 24 

and 25 at the highest altitudes. 

Those results still need to be analyzed, but they will be considered “less reliable” if 

inconsistencies persist. 

5.2 Stability Analysis Results 

The interface allows the number of times that the region will be sub-divided to be freely 

selected in the analysis. 

Whenever a region is discretized, it is sub-divided in four smaller sub-regions; each sub-

region is analyzed, and possibly discretized at its turn, and so on until the 7
th
 order of 

discretization. 

This choice directly influences the results’ accuracy, but it also affects the execution 

time. 

A compromise between the quality and the quantity of results had to be found. We have 

chosen to discretize a single region having a very high instability. 

A first analysis was launched that allowed the maximum possible discretization, which 

was seven (7), which meant that the uncertainty domain (region) was going to be bisected 7 

times representing potentially 27 = 128 tiles per side. 

For a model with 2 uncertainties, the region (uncertainty domain) was meshed a number 

of 27x 27 = 16,384 tiles, which meant, that the region was subdivided in 4 sub-regions each 

time until reaching the 7 times, that was equivalent to ∑ 4k7
k=0 = 16,384 tiles, that were 

obtained in the worst cases (in the proximity of instability). The results analyses are 

presented in Figure 5 and Figure 6. 
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Figure 5. Results for the single region with 7th order discretization (altitude =35,000ft -40,000 ft and TAS= 390 – 

420 knots) 

 

Figure 6. Results of a completed stability analysis 

Figure 6 and Figure 8 show the results when a region’s analysis has been completed by 

7
th
 and 5

th
 order discretization, respectively. These figures obtained using the Matlab 

command summarize the information about the region; in fact the method selected, the 

candidate Lyapunov function, the approach, the order of discretization, and the bounds of the 

normalized uncertainties used in the LFR model are indicated. The results represent the 

Number of Optimizations denoted by NOPs that have been solved (they correspond to the 
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number of tiles attempted to be cleared, that is expressed by the sum of the number of the 

“green” plus the number of “red” tiles) [6], therefore to the time taken for the region 

analysis. These results are presented graphically in Figures 5 and 7, where they indicate the 

sub-regions where the analysis has been cleared; the stable sub-regions were in “green”, the 

unstable sub-regions were in “red”, and the unknown sub-regions were in “white”; when the 

sub-regions (tiles) are unknown so denoted in “white”, the aircraft cannot be trimmed for its 

corresponding altitudes h and TAS; the results were expressed in percentages (%) of the area 

of the analyzed region in Figures 5 and 7. The “Rate” value indicates the ratio of the cleared 

(the stable (green) plus the unstable (red)) part to the neutral “white” part of the region. 

 

Figure 7. Region with 5th order discretization  (altitude= 35,000ft -40,000 ft and TAS 390 – 420 knots) 

 

Figure 8. Results of 5th order discretization of the region 
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Four hours took to complete the computations need for the results analysis. The 26 LFR 

models defined by interpolation for 12 weight/Xcg configurations have been analyzed for the 

stability of the longitudinal aircraft model. These results indicated that it was not necessary 

to obtain a very high descretization order of the regions’ subdivisions. 7
th
 order discretization 

results were obtained for “2” uncertainties 27 = 128 maximum tiles per side. Given the fact 

that the largest region defined in Figure 5 is 80 knots wide and 5,000 ft high, and that a tile 

precision is represented by 0.625 knots and 39.06 ft, then a computation time of almost 57 

min is required to analyze the entire region, and to solve 4555 (NOPs) optimizations for this 

region (this number was computed by the Stability Analysis software which represents the 

sum of the stable and the unstable sub-regions or “tiles”). 

The system discretization was reduced from the 7
th
 order to a 5

th
 order as shown in 

Figure 7, which means that a maximum resolution of 2.5 knots and 156.25 ft per region was 

applied. This discretization reduced highly the computing time for the region from 57 min in 

its 7
th
 order of discretization (Figure 6) to almost 8 min in its 5

th
 order of discretization, the 

time that takes to analyze the entire region, and to solve 509 (NOPs) optimizations (this 

number was computed by the Stability Analysis software which represents the sum of the 

stable and the unstable sub-regions or “tiles”)  as shown in Figure 8. The results produced by 

the 7
th
 order discretization are of course better than those obtained from a 5

th
 order 

discretization, especially in terms of “Rate”. 

The rate of 6.06% is obtained in the 7
th
 order discretization while the rate of 21.87% is 

obtained in the 5
th 

order discretization, which means that the unknown area in the region with 

5
th
 order descretization is larger than in the region with 7

th
 order of discretization. The 

computing time was used to choose between these two orders of discretization. The studies 

considering discretization of up to 25 = 32 elements per variation range of each uncertainty 

(h, and TAS) were carried out, and seemed to be a very good compromise for the Cessna 

Citation X stability analysis due to its “very good natural stability”. 

5.3 Results of the Longitudinal Flight Envelope Stability Analysis 

Figures 9 and 10 show the stability analysis results obtained for two different weight and 

Xcg positions using the Wang-Balakrishnan method based on the Lyapunov constant 

functions, and the 5
th
 order discretization. 

 

Figure 9. Stability analysis of a longitudinal model for rd weight/Xcg configuration (24000lbs/30%) 
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Figure 10. Stability analysis of a longitudinal model for 7th weight/Xcg configuration (28000lbs/30%) 

Firstly, the continuity between regions is found. Indeed, the instability zone, located for 

low altitude and average speed that is shown in Figure 9 covers two distinct regions, and 

therefore two different interpolated models. The “red” area stops at the border between the 

two models, and this is marked for unstable regions. Figure 10 illustrates this fact by 

revealing a peak discretization on the back of the flight envelope and along the stall limit 

from the lowest to the highest altitude. Secondly, some conflicts are discussed that appear in 

the superposed regions. The results of these recovering areas are not consistent, and are 

sometimes contradictory. The regions are not only built by interpolating, but also by 

extrapolating data for the left upper and the right lower peaks. In all cases, “incoherence” is 

caused by extrapolation; the model does not describe the reality accurately. Therefore, the 

area(s) presenting an extrapolation situation must be neglected. 

6. CONCLUSION 

The aim of the clearance process was to demonstrate that a set of selected criteria expressing 

desired stability and handling requirements was fulfilled in the presence of all possible 

sources of uncertainties. The stability criterion can be reformulated to be a clearance 

criterion, as mentioned by Airbus and can be classified in four classes: 1) the aeroelastic 

stability, 2) turbulence, 3) comfort, and 3) maneuvers criteria. Only the eigenvalue stability 

known as (aeroelastic stability) envelope criterion was presented for the longitudinal Cessna 

Citation X business aircraft in the open loop system, which was the basis for any Cessna 

Citation X flight controller design validation and clearance. 

The longitudinal eigenvalue stability (open loop system without a controller) has been 

made for the 26 interpolated regions, and it was also a very good tool for validating the LFR 

models generated by the LFR GUI in Part1. The analysis indicated the regions reliability in 

representing the aircraft dynamics in its whole envelope for all its uncertainty parameters 

values. This analysis highlighted the importance of the work that was performed for the 

exploitation of results in this research. The only disadvantage of this method was that it was 

still requires a relatively long time calculation, of almost four hours for the entire flight 

envelope. However, practical aspects of this study were considered in the aircraft stability 

analysis, by using the low order discretization’s. In this paper, 5
th
 order discretization was 

applied. Future work will evaluate the eigenvalue stability of the Cessna Citation X 



57 Cessna Citation X Business Aircraft Eigenvalue Stability –Part2: Flight Envelope Analysis 
 

INCAS BULLETIN, Volume 9, Issue 4/ 2017 

longitudinal closed loop aircraft model by using H-infinity, and optimal controllers 

developed during earlier researches [8],[34]-[36] to show if the interaction of the flight 

controller with the Cessna Citation X would induce any instability. 
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