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Abstract: It is well-known that every spontaneous process occurring in an isolated system is 

accompanied by increasing entropy. The goal of this paper is to show that if the system is made of 

several subsystems, the entropy production of some subsystems can be negative, without violating the 

2nd law. An analysis of the instantaneous entropy generation is presented, considering two simple 

cases of spontaneous processes, namely heat and mass transfer between two volumes of gases. The 

calculations show that, in the case of mass transfer, it is possible one subsystem to exhibit a negative 

entropy production, although the total entropy production of the whole system is positive, according 

to 2nd law. 

Key Words: entropy production, spontaneous process, non-equilibrium, order.

1. INTRODUCTION

The basic transport phenomena like heat conduction, diffusion or viscous friction are 

irreversible processes characterized by entropy rise, which is of type “generated entropy”. 

According to 2nd law, in the case of isolated systems, the entropy variation during a 

process toward the equilibrium is positive and can be calculated using the tools of classical 

Thermodynamics. In exchange, if there are several open subsystems included in an isolated 

system, the entropy variation at the level of each subsystem can be computed using equations 

which are specific to irreversible Thermodynamics. 

Such models include the general equation of transport (or balance) for the entropy with 

respect to a given control volume: 
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where dS/dt = total entropy variation rate, dSi /dt = entropy production rate, inS , outS  = rate 

of transported entropy along the fluid mass in/out of system, )(k
eQ  = flux of heat exchanged 

with surroundings at some fixed temperatures Tk. The above equation can be expressed 

briefly: 
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where dSe /dt = rate of entropy exchanged with the surroundings. 

 It is important to point out that in the case of closed and isolated systems, the entropy 

production rate dSi/dt must be positive, in order to satisfy the 2nd law of Thermodynamics 

([1], [4], [5], [6]). Many authors extend this condition for the case of open systems too, but 

we will show by calculation that this is not always mandatory. 

 For the sake of simplicity let’s consider an isolated system made of two subsystems 

denoted as [  ](1) and [  ](2). Initially, those subsystems are out of equilibrium, so that a 

spontaneous process toward the equilibrium will occur. According to (2), the equations of 

entropy balance for each subsystem will be: 

)2()2()2()1()1()1( ddd     , ddd ieie SSSSSS   (3) 

Since the whole system is isolated, the following constraint applies: 

)1()2()2()1( dd     , 0dd eeee SSSS   (4) 

As a consequence, by adding the equalities (3), the instantaneous entropy variation of whole 

system will be found, which has to be a positive quantity, according to 2nd law: 

0ddddd
)2()1()2()1(  iisyst SSSSS  (5) 

For example, there are situations when the subsystem [  ](2) can have a negative variation of 

entropy, such that 

0d )2( S     where    0d   , dd )1()1()2(  SSS  (6) 

without violating the 2nd law, since the total entropy variation of the system remains positive. 

This happens when, according to eq. (1): 
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In general, the biological systems enjoy this property. 

The following analysis shows that for some subsystems it is also possible to have a 

negative entropy production (i.e. dSi < 0) satisfying a similar condition as in (6): 

0d
)2(
iS     where    0d   , dd

)1()1()2(
 iii SSS  (8) 

It is already known ([2], [3]) that in the case of coupled irreversible processed, some of 

them can yield a negative source of entropy, which is also a local source of order. We will 

show that even in the case of simple irreversible processes involving mass transfer, a 

negative entropy production is also possible to occur. In the next paragraphs, two cases of 

basic irreversible processes will be analyzed, in which the evolution of each kind of entropy 

variation (internal and external) during the process will be described. These processes are: 

(1) Heat transfer between two volumes of the same gas, completely isolated from 

surroundings; 

(2) Mass transfer during pressure balancing between two volumes of the same gas, 

completely isolated from surroundings. 



29 Analysis of entropy production in some enclosed subsystems where spontaneous processes take place 
 

INCAS BULLETIN, Volume 8, Issue 3/ 2016 

2. HEAT TRANSFER 

Two volumes of the same gas are enclosed in an isolated box, having two different 

temperatures and pressures, according to fig.1: 
 

 

 

 

 

 

 

 

 

 

Fig. 1 Model of analysis for the heat transfer between two volumes of the same gas 

The initial temperatures of the gas in subsystems denoted as A and B are T1 and T2 

respectively, where T1 > T2. The separating wall is a diathermal one, permitting only the heat 

transfer between the subsystems. Since the whole system is out of equilibrium, a heat 

transfer will occur until the temperatures in both subsystems will be the same. Let’s denote 

the equilibrium temperature as Tf (final). 

The process of heat transfer in an irreversible one since it is spontaneous, so that it obeys the 

2nd law, which means that the entropy of the system increases continuously until it gets a 

maximum value when the equilibrium is reached.  

The equilibrium temperature can be found easily by means of classical Thermodynamics, 

using the balance of internal energy. It is given by the formula: 
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where M1, M2 denote the masses of each volume of gas. 

The classical Thermodynamics permits also to compute the entropy variation of the 

whole system until the equilibrium is reached. Using constant specific heats on the 

temperature range [T1, T2] and considering the isochoric processes of each volume, this 

entropy variation is given by the expression: 
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where cv = specific heat at constant volume. 

By denoting 
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and using the formula (9), the expression of entropy variation (10) can be re-written as: 
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It can be shown that the above quantity is always positive as x  [0, 1]. 

It is worth to note that the calculation of entropy variation during each isochoric process has 

p1, T1 p2, T2<T1 

Q 
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used the hypothesis of reversible (quasistatic) path, although the whole spontaneous process 

is irreversible. 

In the next, the heat transfer from subsystem A to B will be analyzed using the equation 

of entropy balance, which considers the entropy flux and the entropy production. For the 

subsystem A, this equation reads: 

   
AiAeA SSS ddd   (13) 

where, under the assumption of local equilibrium: 
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The temperature TA is the actual temperature of the gas in subsystem A at a given 

instant, while Tref is a reference temperature needed to estimate the entropy flow from A to 

B. This temperature needs to be the same for A and B subsystems and independent of the 

actual temperatures TA and TB. 

Since near equilibrium feqref TTT  , we will consider this temperature to be constant and 

having the value Tf. With this remark, the entropy balance gets the form: 
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The initial temperatures are T1 > T2, so that the heat flow will be only from A to B, the actual 

heat transferred being denoted as  
AeQ . 

According to the sign convention, a heat which is released has a “minus” sign: 

  0
AeQ  (16) 

On the other hand, the actual temperature in A subsystem will be always higher than the 

equilibrium temperature: 
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As a result, the entropy production expressed by eq. (15) will be a positive quantity along the 

whole process toward the equilibrium. 

A similar analysis can be done for the subsystem B. The corresponding equations are: 
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It can be observed that 

      0     , 
BeAeBe QQQ  (20) 
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and also 

fB

fB
TT

TT
11

     ,   (21) 

Finally, the entropy production in subsystem B given by eq. (19) is also a positive quantity 

as in the case of subsystem A. 

 Thus, we have shown that in the case of heat transfer between two subsystems enclosed 

in an isolated system, each subsystem exhibits at every instant a positive entropy production 

which yields a positive global entropy variation. 

More than that, the analysis of entropy variation using irreversible Thermodynamics 

allows computing the components of instantaneous entropy variation (internal and external) 

and, by integration, the cumulated values of these components for each subsystem, which 

classical Thermodynamics doesn’t permit. 

 If we refer to the subsystem A, by applying the 1st law to an isochoric process, one can 

write: 

  AvAe TcMQ d1   (22) 

and introducing in (15), one yields: 
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By integrating this equation between the limits T1 and Tf, the total entropy production for the 

subsystem A is obtained: 
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A similar expression can be found for the subsystem B: 
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These quantities are both positive, based on the algebraic inequality: 

  0       1ln  xxx  (26) 

The total entropy production for the whole system A + B can be computed by adding the 

last results. 

Since the internal energy of the system remains unchanged, the following equation is 

satisfied: 

    02211  TTcMTTcM fvfv  (27) 

so that 
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and 
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This is the same expression as the total entropy variation for the whole system till the 

equilibrium is reached. 

The above result was expected, since the process of heat transfer in an isolated system 

exhibits an entropy variation which is only of “internal” type (no entropy exchange with the 

surroundings take place). 

By integrating the equations (14), the external component of total entropy variation for 

either subsystem A or B can be determined. The overall picture of entropy variation looks 

like below: 
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One can see that the total entropy variation for subsystem A is negative, since the 

entropy flux is negative due to heat release and it is higher than the entropy production 

(which is positive). 

However, the entropy rise in subsystem B is higher, so that the entropy variation for the 

isolated system A + B is positive, according to the 2nd law. 

The above formulas allow us to give also a graphical representation of the evolution of 

both kinds of entropy for each subsystem (fig. 2, 3 and 4). 
 

 

 

 

 

 

 

 

 

 

 
         Fig. 2 Variation of entropy components in the                   Fig. 3 Variation of entropy components in the 

                     subsystem A during the heat transfer                                  subsystem B during the heat transfer 
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Fig. 4 Variation of entropy for whole system (A + B) during the heat transfer 

The graphs were plotted based on following data:  x = 1/2  (M1 = M2), T1 = 800 K,  

T2 = 300 K, Tf = 550 K, using the notation vMcSS / . 

3. MASS TRANSFER 

The second irreversible process to be analyzed consists of a mass transfer between two 

volumes of the same kind of gas, with the same temperature but different pressures. Let p1 > 

p2 be the initial pressures. These volumes are supposed to be separated by a porous wall, 

which allows the mass transfer between the rooms denoted as previously with A and B. One 

neglects the other dissipations while transferring the gas from A to B (fig. 5). 

Assuming that initially the mass transfer is blocked and suddenly it is allowed, the 

process of mass transfer from the higher pressure room A to the lower pressure room B will 

be analyzed, till the pressure becomes uniform throughout the whole system. 

 

 

 

 

 

 

 

Fig. 5 Model of analysis for the mass transfer between two volumes of the same gas 

Like in the case of heat transfer, the overall entropy variation during the process of 

reaching the equilibrium will be calculated first. This will be done using the classical 

Thermodynamics, namely by considering the evolution of each mass of gas enclosed initially 

in rooms A and B (control mass method). 

By applying the equation of mass balance along with the law of ideal gas, the final 

(equilibrium) pressure can be found: 
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where M1, M2 are the initial masses of gas, R = gas constant, V1 and V2 are the geometric 

volumes of the rooms A and B and pf is the final pressure (at equilibrium). It follows that: 
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For the isothermal evolution of each gas mass from the initial pressure to the final one, 

the corresponding entropy variation will be given by the classical formulas: 
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Hence, the entropy variation for the whole system will be: 
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and it can be shown that the above expression is always positive. This confirms that the 

process of pressure balancing is irreversible and since the system is isolated, the entropy rise 

is of  “generated entropy” type. 

However, since p2 < pf < p1, the entropy variation for the individual masses M1 and M2 will 

have opposite signs: 

0   , 0 21  SS  (37) 

In the next, the instantaneous entropy variation for each subsystem will be analyzed, by 

using this time the tools of irreversible Thermodynamics. The subsystems will be defined as 

the actual contents in each room A and B, so that one works with MA, MB, SA, SB rather 

than M1, M2, S1, S2 (control volume method). Only at the beginning of the process, the 

equalities MA = M1, MB = M2 are satisfied. 

Using the equation of entropy balance (1) for each subsystem, the following relations can be 

written, under the assumption of local equilibrium: 

 
AiAAA SMsS ddd   (38) 

 
BiAAB SMsS ddd   (39) 

where an entropy flux from A to B is transferred along with the mass of gas which flows 

from the higher pressure to the lower one. The actual specific entropy of the gas in 

subsystem A was denoted by As . 

The instantaneous entropy variation for the subsystem A can be computed using formula 
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Introducing in (40), one yields: 
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It is important to note that the parenthesis is positive (pA < p1, s1 > R) while the pressure 

is decreasing (dpA < 0), so that the instantaneous entropy variation in A is always negative. 

On the other hand, by comparing equations (38) and (40) which contain the term (dSe)A = sA  

dMA, the expression of the internal entropy variation can be derived: 

  AAAAi p
T

V
sMS ddd 1   (44) 

Since dpA < 0 along the whole process, it follows that the entropy production rate in 

subsystem A is always positive, as expected for an irreversible process. 

Similarly, the instantaneous entropy variation in subsystem B is described by the 

equation: 

BBBBB sMMsS ddd   (45) 

where sB is the actual specific entropy (per unit of mass) of the gas in subsystem B: 
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and MB is the actual gas mass in room B: 
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The equation of mass balance yields: 

0dd    , const.  BABA MMMM  (48) 

and from (42) and (47), the following equation is derived: 
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By replacing this in (47), one finds: 
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Introducing all these in (45), the equation of instantaneous entropy variation of subsystem B 

becomes: 
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A brief overview on the signs of the terms in above equation shows that dSB > 0. The rate of 

entropy production in subsystem B can be determined using the equation (39): 

  AABBi MsSS ddd   (52) 

which, after some algebra, yields: 
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This is an interesting result, since the parenthesis can be either positive or negative, 

depending on the pressure ratio in subsystems A and B. Thus, the following cases arise: 
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It has to be noted that first case appears only if  
1

2

1

ep

p
 , which means that for slight 

pressure differences between the rooms A and B, the entropy production rate in B is negative 

along all the process. 

We will check now the entropy production rate for the whole system: 
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Replacing with the results (44) and (53), the following formula is found for the entropy 

production rate of the system: 
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It can be seen that   0d       , 0d 
systiABA Sppp , so that the 2nd law is satisfied for 

the whole system along the entire irreversible process of pressure balancing. 

 One has determined so far that a negative entropy production can occur in a process 

where a mass transfer is present, the same way as happens in the coupled processes where a 

stronger thermodynamic flux with positive entropy production can trigger another flux with 

negative entropy production, going apparently “against the nature”. 

However, the process analyzed hereby shows only one flux of matter, yet affecting two 

subsystems. 

 In order to plot the entropy variation for each control volume A and B, the finite entropy 

variation will be computed by integrating the expressions (43), (44), (51) and (53). Thus, by 

integrating (43), the cumulated entropy variation in the control volume A at any given instant 

is found: 
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 (58) 

The final entropy variation will be determined by replacing pA with pf: 

 
























111

111 ln1
R p

p

p

p

p

ps

T

Vp
S

fff

fA  (59) 



37 Analysis of entropy production in some enclosed subsystems where spontaneous processes take place 
 

INCAS BULLETIN, Volume 8, Issue 3/ 2016 

Similarly, the equation (44) yields: 
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For the control volume B, the calculations yield: 
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and 
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It can be checked that the total entropy production of the whole system is positive and has 

the same expression as given by equation (36): 
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The graphical representation of the evolution of entropy for each subsystem during the 

process of pressure balancing is presented in figs. 6, 7, 8 and 9. 

The system consists of two equal volumes of nitrogen (N2), having p1 = 5 bar, p2 = 1 bar 

and T = 298 K. The process extent is described by increasing pressure in subsystem B. 

In the following figures, the notation  11/ VpSTS   was used as a dimensionless 

entropy variation. 

For the sake of comparison, the diagram from fig.8 was repeated for two other cases: 

p1=5 bar, p2=0.2 bar (fig. 10) and p1=5 bar, p2=3 bar (fig. 11). 
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        Fig. 6 Variation of entropy components in the                 Fig. 7 Variation of entropy components in the 

                   subsystem A during the mass transfer                               subsystem B during the mass transfer  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

         Fig. 8 Variation of entropy for whole system                   Fig. 9 Variation of entropy production for the 

                     (A + B) during the mass transfer                                      whole system during the mass transfer 

                                                                                                                          (p1=5bar, p2=1bar) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      Fig. 10 Variation of entropy production for the                  Fig. 11 Variation of entropy production for the 

                 whole system during the mass transfer                               whole system during the mass transfer 

                          (p1=5bar, p2=0.2bar)                                                                (p1=5bar, p2=3bar) 

 It can be observed that while in the case where p2=0.2 bar the entropy production in 

subsystem B remains positive along all the process, in the last case (p2=3 bar), the entropy 

production in subsystem B in only negative. 

In the first case analyzed (fig. 9), the instantaneous entropy production in subsystem B is 

positive at the beginning and becomes negative during the last part of the process, so that the 
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final entropy production is negative. As such, one can conclude that the sign of entropy 

production in subsystem B depends on the initial pressure ratio of the given subsystems. On 

the other hand, in all cases, the entropy production for the whole system (A + B) is positive, 

as the 2nd / law requires. 

4. CONCLUSIONS 

(i) In the case of irreversible heat transfer, two closed subsystems were considered; the 

law of positive entropy production rate applies for each subsystem at any given instant. 

(ii) For the case of irreversible mass transfer, the considered subsystems are open and it 

was proved by calculation that the subsystem which exhibits a mass addiction yields an 

entropy production rate which can be negative as well, while the entropy production rate for 

the entire system is positive according to the 2nd law. 

(iii) Negative entropy production is possible not only in the case of coupled processes, 

but also in the case of some subsystems between which a mass exchange occurs. 

(iv) If the subsystems consist of a given system and the surroundings, only positive 

entropy production is possible for that system, since the entropy of the universe cannot 

decrease during natural processes; however, some systems can exhibit a negative entropy 

variation (this was observed at biological systems). 

(v) Negative entropy production during natural processes is possible for a system only if 

it is open and another system (with which matter and energy is exchanged) provides a higher 

positive entropy production. In other words, an order can be induced in a system only when 

interacting with another system wherein more disorder occurs, so that the 2nd law gets 

satisfied when both systems are considered. 

(vi) For the open systems, the postulate stating that “the entropy production must be 

positive during spontaneous processes” is not always necessary. Specifically, some unsteady 

spontaneous processes involving a mass addiction can exhibit a negative entropy production. 

However, for the steady processes, the condition of positive entropy production always 

applies. 
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