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Abstract: In the sixth part of this series, we continue our study started in the previous article, i.e., we 

present the basis of the method for calculating the unsteady airforces on oscillating non-lifting bodies. 

The method proposed here is a panel one. As it is proved in the previous paper, the potential and 

velocity induced by a constant source planar panel is composed of two kinds of terms: some of them- 

the steady terms, can be expressed by the elementary functions; other terms- the unsteady terms 

cannot and should be calculated numerically. The present paper illustrates how the method proposed 

here can be used in conjunction with the preceding results. 

Key Words: Flow about bodies, lifting surface, integral equation, harmonic oscillations, generalised 

airforces, flutter, oscillating bodies 

1. INTRODUCTION 

This article is the sixth in a series that deals with the unsteady flow about wings, bodies and 

their combinations, [1]-[5]. This article brings some clarifications on the principles that were 

the basis of the foregoing one, [5]. It is also presented an immediate application of the panel 

method given in the same paper. The purpose is to obtain the pressure distribution and the 

velocity perturbation fields that are generated by an isolated fusiform body oscillating 

harmonically about a mean (equilibrium) position. 

In the previous paper [5] we showed that the problem of estimating the unsteady 

aerodynamics of elongated bodies performing harmonic oscillations of small amplitude, has 

been the subject of several studies appeared over time. In 1923 Munk developed the concept 

of “flow in the transverse plane”, [10] available for steady flow case; it applies to very 

elongated bodies. It assumes that in the transverse plane, the flow is mainly two-

dimensional. For the case of the unsteady flow, Stewartson developed a method which also 

applies to the elogated bodies [11]. It implicitly assumes the same hypothesis of the 

transverse plane flow. Closer to our days, important contributions to the theory of unsteady 

flow about the revolution bodies had Wu, Garcia - Fogeda and Liu, [12], [13]. Their works 

exceed the narrow theory of the elongated bodies, so that they apply to the demands of 

modern configurations of missiles. However, their method cannot be applied to the bodies 
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having non-circular sections; they cannot be used to wing-body combination as well. This 

last case is presented in [14] and it will be analyzed in a further paper when we will discuss 

the unsteady aerodynamic interference problem. 

The present article resumes and enhances some original ideas the author firstly treated in [6]-

[9]. In the meanwhile, he has made some improvements regarding the numerical approach 

and mathematical presentation. The method allows the calculation of the distribution of 

pressure on non-lifting bodies of any aerodynamic shape. As we will see, the non-lifting case 

raises specific problems that are distinct from those found in the case of lifting surfaces. The 

resulting method can be extended to the applications concerning the combinations of wings 

and bodies that perform harmonic oscillations. 

2. FORMULATION OF THE PROBLEM 

Let us consider an elongated body such as an isolated fuselage of any cross section. The 

body is located in an infinite domain of fluid which flows with constant subsonic speed at 

infinity (fig. 1). On the other hand, the body performs small harmonic oscillations. Our 

purpose is to find the unsteady pressure on the body surface.  

 
Fig. 1 Elongated body in subsonic stream that flows from right along Ox axis 

Let us consider the surface of the body )( 0 when it is at rest with respect to its own frame 

and )(  the oscillating surface of the same body. Then we can write the body surface 

parametric equations in the two situations, at rest and when it performs oscillations of small 

amplitude, 
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Here,  TzyxP 


 is a point on )( 0  or )( , the parameter 10   is the local 

non-dimensional amplitude factor,   is the angular frequency of the oscillations and 
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 where l is a reference length, here the body length and F = body 

max. diameter /l. 
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Consider the velocity potential of the form: 

    tiezyxzyxxUtzyx 
  ,,,,);,,( 10  (2) 

So, the velocity field is given by: 

tiezyxvzyxviUtzyxV  ),,(),,();,,( 10


   (3) 

The velocity fields 0v


 and 1v


 are given by: 

),,(grad),,(  ,  ),,(grad),,( 1100 zyxzyxvzyxzyxv 


 (4) 

If 0n


 is the unit normal vector to the )( 0 , we can write the ”quasi-unit” normal vector to 

)(  as 

tieVUnVUnn  ),(),( 10


 (5) 

The demonstration for this formula and expressions for 0n


 and 1n


 are given in Appendix A; 

see also [1]). 

The boundary condition is obtained from (3) and (5). It splits in two equations, one for 

steady and the other for unsteady motions. They can be written as: 









0

0

01101

000

nPiknnv

nnv

x

x




 (6) 

In the above equations, 0n


, 1n


, 1P


 are calculated at the same point P0 on )( 0 , and  

xn0 = in

0 , xn1 = in


1 . 

On the other hand, 0v


, 1v


 are calculated at a point Q, in the neighborhood of the point P0 

(fig. 2): 

0  and  0   with  ,00  nPQ


 

 

Fig. 2 For the boundary condition 

The pressure coefficient is calculated in Appendix B. One founds that 

ti
ppp eccc  10  (7) 

For elongated bodies, 0pc  and 1pc  assume, within the framework of linearization, the 

appoximate forms 
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Let us write the steady and oscillatory potentials, ),,(0 zyx  and ),,(1 zyx . 

The flow about this single body can be represented (see Appendix B) by two simple layers 

(or source distributions) potentials of intensities ),;,,(  and );,,(0  MqMq . 
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Fig. 3 An elongated body (fuselage) and a curvilinear panel generated by the co-ordinate lines U=Ui, U=Ui+1 and 

V=Vj, V=Vj+1 on the body surface, (Σ0) 

The next property holds true: 

 MzyxMzyxMzyx ;,,)0;;,,();;,,(lim 011
0




 

That is the oscillatory potential converts itself into the steady one when 0 . The body 

surface ),(0 VUP


 is known; and so are M and ω. The body oscillation mode ),(1 VUP


  is 

given as well. We have reduced our aerodynamic problem to the Neumann problem 

(4)+(6)+(9) with 0q  and 1q  unknown functions. 
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3. THE NUMERICAL SOLUTION 

In order to solve numerically our problem, we must be able to calculate the boundary 

condition (6) and and the pressure coefficients (8). In other words, we have to: 

 Calculate the normalwash over the body surface )( 0  - for (6) 

 Calculate the potential and the Ox projection of the induced velocity- for (8). 

Consequently, we need a method to calculate numerically both the potential and the velocity 

field in space. 

Consider a certain parametric equation that describes the elongated body surface: 

VU,VRlz

VU,VRly

Ulx

sin)(

cos)(







 (11) 

where  1,0U  and   2,0V . 

We consider that our surface )( 0  is symmetrical with respect to the xOz plane. This is the 

situation of the majority of the applications in aviation and rocketry. 

Let us consider a number of M+1 and respectively 2N+1 sections through the body surface, 

i.e.    
12,11,1

,
 NjjMii VU  

They are in fact coordinate lines on )( 0  (figs. 1, 3). We choose the planes 

11  ,  NUlxUlx  very close to the body tips (fig. 1). The coordinate lines 121, NVV  

have the property that, for a certain U, they define the same point on the ventral position. 

The curvilinear panels are counted in rows between two sections i and i+1, from the ventral 

 1V  to the dorsal position  NV  of the right semi-body, then the next row, between i+1 and 

i+2. Knowing the curvilinear panel vertices 4,3,2,1,N kk , one can find the planar panel 

vertices kN , using the familiar rule of panneling the aerodynamic surfaces, [15],[16]. 

Consider a panel )( i . We define a point )( iQ   as the point at which we impose the 

boundary condition. For the steady case, it is recommended to use the null point of the 

tangetial velocity. As for the oscillatory case there is no such point, one can use one of the 

two ways: 

 To impose a position which has been found previously using numerical experiments; 

 To use the panel gravity centre, as some authors recommend for the steady case.  

In what follows, we will refer only to the oscillatory case. The steady case is interpreted as a 

particular one of the unsteady case, as we have previously noted. 

Consider the potential and induced velocity fields at a point Q: 



 





 








)(

000

2

1

14
1

1

2

1 )(

0
14

1
1

);;,,()(

)](exp[
)(

j

pan

pan

j

dSMzyxWqQv

dS
R

RMxi
qQ

N

j

j

N

j

j


 (12) 

where panN  is the total number of panels over the half of the symmetrical surface )( 0 , and 

W


 is the induced velocity given by: 
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where 

kzjyrrixR


 000   ,   

Using the symmetry property of the body, we consider two such symmetrical panels with 

respect to the xOz plane: )(),( jj  . Then 







































 

 

 



 



)( )(

000000

1

14
1

1

1 )(

0

)(

0
14

1
1

);;,,();;,,()(

)](exp[)](exp[
)(

j j

pan

pan

jj

SdMzyxWdSMzyxWqQv

Sd
R

RMxi
dS

R

RMxi
qQ

N

j

j

N

j

j



 (14) 

In the above equations, 

)(  ;  2
0

2
0
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and the sign + is available for symmetrical oscillation modes with respect to xOz plane, 

while – is taken for antisymmetrical modes. 

On the other hand all the expressions like 
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can be calculated using the methods given in our previous article [5]. 

Consider now )( iQ   and let in0


 be the normal unit vector to )( i . We can write the 

boundary condition 
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In the above equation, 
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The matrix jiC  is called the influence coefficients matrix. As formulated here, at certain pair 

of numbers M and k, the problem has two coefficients matrices 


jiC  and 


jiC  one for 

symmetrical oscillation modes and other for antisymmetrical oscillation modes. 



9 Part 6: A Panel Method for Non-Lifting Bodies Oscillating in Subsonic Flow 
 

INCAS BULLETIN, Volume 9, Issue 1/ 2017 

Usually we are interested in several oscillation modes, both symmetrical or antisymmetrical. 

Therefore we prefer to solve the system (15) by inverting the matrix: 
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One can now write the pressure coefficient as 
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In the above equation, 
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So we found the pressure distribution on the oscillating body surface. We have a pressure 

distribution after each oscillation mode. 

Adopting the method already used in case of the lifting surface [2], we can calculate the 

matrix of generalized air forces acting on the body Qk,m, where the load is calculated with the 

mode m and with displacement after the mode k. 

4. A NUMERICAL EXAMPLE 

In the next article we will present a number of examples of flows about steady and 

oscillating bodies. Here we will limit ourselves to one simple case: an ellipsoid of revolution 

with a thickness ratio 1.0
l

diam
R . It oscillates harmonically after a rigid mode of 

pitchig about its centre, 

 klxP


5.01   

Consider now k=0.1 at M=0. 

For our simple example, we have used a small number of panels NPAN=4×18=72. We must 

mention that the diagram represents the real and imaginary parts of the function 
V

Cp

sin
 at 

different positions along x-axis. We took this function because, for elongated bodies of 

revolution, at U=const, Cp(V) is a sinusoid. 

Although the number of panels is small, the results are good when compared with 

Stewartson’s analytical method [11], represented as dot lines in fig. 4. 

The real parts of the pressure coefficient are so close that the curves practically coincide. 

Small differences occur only for the imaginary parts (dot lines on fig. 4). 

Much more examples will be shown in our further paper. 
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Fig. 4 Pressure coefficient distribution along the x-axis of an ellipsoid of revolution oscillating in pitch, k=1, 

M=0. 

5. CONCLUSIONS 

The paper describes a method for calculating the pressure distribution on non-lifting bodies, 

rocket bodies, fuel stores, bombs, airships. 

The method used here is based on the linearised solutions of the unsteady flow in subsonic 

regime. Moreover, the unsteady flow is assumed to be hamonic. In these conditions, the 

velocity potential equation can be brought to the Helmholtz equation whose solution is 

known. It is expressed as a sum of two types of solutions: a simple layer potential and a 

double layer potential. The double layer potential is used in the theory of lifting surfaces. In 

our case, we use only the simple layer potential. The paper presents the method by which the 

previous mathematical solution is applied to the flow about the elongated bodies. Using a 

panneling scheme and a previous article of this series, the problem of the flow about the 

oscillating bodies is solved. 

APPENDIX A 

UNIT NORMAL VECTOR TO THE OSCILLATING SURFACE (Σ) 

Consider the body surface equation at rest in one of its parametric form: 

),,( :)( 00 vuPP


  (A1) 

Similarly, consider the displacement of a point of parametric coordinates  v,u  as 

  .,1
tievuPP 


 (A2) 

The parameter 1.but  0   

Then the instantaneous equation of the oscillating body is: 

      .,,  : 10
tievuPvuPP 


 (A3) 
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The velocity of a point on the body surface is given by 
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The normal vector of    is then 
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Let us divide (A5) by 
v

P

u

P
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
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 00
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 and we get: 
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This is the Fourier expansion of the ”quasi-unit” normal vector n


. One can see that the last 

term can be neglected. In the above equation 0n


 is the unit normal vector of  0 . The term 

“quasi-unit” is justified by the fact that its module is slightly different by 1: 

  0 as 1   ,),(),( 10   OneVUnVUnn ti


 (A7) 

This last expression for n


 will be used in the main text of the article. 

APPENDIX B 

VELOCITY POTENTIALS AND PRESSURE COEFFICIENTS 

The velocity potential and pressure distribution are assumed to be of the form: 
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On the other hand, for steady flow 0  and p  (see for example [1]) satisfy the following 

equations: 
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For the oscillatory flow, the following relationships for   and p  hold true: 
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We remark that if ω=0, the equations (B3) transfom into (B2). 

Then we make a change of function, 
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 (B4) 

This change of function introduced in the first equation in (B3), brings it to the simpler form: 
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In addition to the foregoing formula, a change of variables 
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will simplify (B5) to the next form: 
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which is known as the Helmholtz equation. Here, 
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Let    be the closed surface of our body. The integral form of the solution of (B7) is: 
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In the above equations, 
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On the other hand, the body surface can be written in its parametric form as 
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The proof of the previous solution (B9) can be found in the works dealing with the equations 

of mathematical physics (see, for example [17]). In the above equations, the function s  is 

called the simple layer potential, while d  is called the double layer potential; 
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
 where n


 represents the outward unit nomal vector to   . 

The double layer potential is used for the lifting surface theory, which is not the object of our 

study. So in what follows, we will consider only the simple layer potential, i.e. 

           .,, and ,,,0,,0,,   (B12) 

Returning to the initial function  zyx ,, , we can write: 
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Using (B4) again, we find that 
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Then, taking into account (A13), we find that 
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It is now time to return to the old variables (x,y,z). Let us consider from (B13) the integral 
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In the above equations,  

 zyx
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. The normal vectors to    and    are: 
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Similarly, 
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Then, giving up the variables (x’,y’,z’) we find 
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So, (B13) becomes: 
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Since 
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we can write the solution as 
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where 
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is the strength of the simple layer or source sheet. 

One can see that the integral is calculated over the steady surface  0  rather than    since 

the differences between them are very small (see Appendix A). This approximation is also 

used in the unsteady lifting surface theory. 
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If we put ω=0 in (B19), we get the steady flow case: 
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In the above equation, 
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Therefore it is a good practice to use (B22) for both oscillatory and steady cases. 

Let us focus our attention on the pressure coefficient: 
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From (B2-II) we find that 
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Similarly, from (B3 II) 
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Finally, the total pressure coefficient becomes: 

ti
ppp eccc  10  (B29) 
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