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Abstract: This article presents principles of similarity modeling, dimensional analysis, and the 
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1. INTRODUCTION 

Many technical problems lead to mathematical equations that are difficult to solve. To do it, 

some of the equations could be brought by approximations to forms which have known 

solutions. Others prefer especially numerical solutions. It is always a good practice to seek an 

experimental verification. But now another problem arises: how to perform this experimental 

verification? The first idea is to verify the original object(s), denoted here Or in real 

conditions. However, it is not always possible to do it; rather it is always impossible. Therefore 

we have to build the object(s) at a different scale and then to test them in certain conditions 

which show some similarity for the real ones. So we follow the idea that there is a certain 

similitude between the real and the experimental phenomena [1]. 

We will call model (Mo) the experimental object, and simply original (Or) the initial body 

we are interested to test. The idea is that between Mo and Or must be a certain correspondence. 

Then we must find some principles of invariance, so that both Mo and Or are governed by 

similar laws. 

A model is usually defined [2] as “An abstract or material system which, being put in 

correspondence with another system previously given, can serve to indirect study of the 

properties of this complex system (the original) and with which the model shows a certain 

analogy”. 

Some models coincide perfectly with the original, for instance two spheres made of the 

same material but with different radii. So there is a one-to-one correspondence between the 

Or and Mo. Another example: two beams made of different elastic materials and built at 

different scales. For a certain bending load of a beam (Or), there is a similar bending load of 

the second beam (Mo) so that their deflections are similar. In this case, there is only a partial 

correspondence between Or and Mo. For example, they can behave differently when they are 

subjected to fatigue. 

In this article we treat the case of similarity modeling. In passing we mention that the term 

“modeling” has a broader meaning: 
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- there is a modeling by analogy, for example: the elastic membrane analogy, slide rule 

analogy, clocks of any type, planetaria, electromecanic analogy devices and analog computers, 

etc. 

- the more complex theoretical analogies, such as the one made by Rutherford between 

the atom and the solar system: he inferred from the well known attributes of the solar system 

some probable attributes of the atom. 

To get a similarity model one must obtain at least one of the next conditions: 

- geometric similarity; 

- static similarity which coincides with the geometric similarity for rigid models but 

includes elastic similarity in case of elastic models; 

- kinematic similarity; 

- dynamic similarity. 

The geometric similarity is intuitively understood and known from the theoretical 

geometry. It is always used for wind tunnel tests. For example: 

2modmod
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l
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In the above equation, l is a reference length of the Or, S is an area of the Or, the index 

‘mod’ signifies the model (reference length, surface, etc.). In (1) kL stands for the length [L] 

scale. Obviously, the angles of the Or and Mo are equal. 

The static similarity means both the geometric similarity, but also the similarity of the 

external forces F and the weights G, the similarity of the positions of the gravity centres (xCG, 

yCG, zCG). 
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These are available for the rigid models. If the model is considered elastic, we must have 

in addition: 

The elastic similarity which means that the force scale kF has been chosen such that the 

homologous forces produce similar linear displacements (δ). On the other hand, homologous 

moments produce equal angular displacements (ε). So, we have to build the model at a linear 

scale kL, than to calibrate the force scale (kF ) so that the linear/angular displacements respect 

the geometric similarity condition: 
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
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mod ;Lk  (3) 

The kinematic similarity means first of all that Mo and Or have both the same degrees of 

freedom. For example, the wing- flap mechanism model. Then we need a time scale, a speed 

scale, an acceleration scale: 
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The dynamic similarity is achieved when all the forces and moment acting on the parts of 

the model and original are similar. To get a dynamic similarity we must obtain simultaneously 

geometric (1), static (2) and kinematic similarity (3). Moreover, we need a similarity of the 

masses and moments of inertia of the moving parts. As in the case of the elastic similarity, 

there are correlations between these scale numbers. 



39 Similitude Criteria for Aeroelastic Models 
 

INCAS BULLETIN, Volume 7, Issue 1/ 2015 

2. DIMENSIONAL ANALYSIS AND SIMILITUDE 

We call “fundamental dimensions” or “primary quantities” each of the seven quantities: length 

(L), time (T), mass (M), temperature (Θ), current intensity (I), luminous intensity (J) and 

amount of substance (Q). 

Then any physical quantity A has the following dimension: 

    QJIMTLA  (5) 

In (5) α, β, γ, ... ν are rational numbers. If α = β = γ = ... = ν = 0, A is called dimensionless. 

In what follows we will deal only with qantities B that involve the following dimensions: 

L, T, M: 

   MTLB  (6) 

In the above formulae L, T, M are regarded as primary quantities. However, we could use 

other basis, for example L, T, [F]. So we can replace M with [F], because F = ma, and it 

contains M. This was the case of MKS (meter, kilogram, second) system. Here, [F]=1kilogram 

(force unit). 

We emphasize that: 

 The first condition that must be met by the equations used in geometry and physics is 

the dimensional homogeneity. 

 The second condition that must be met by a physical equation refers to the fact that 

we cannot have, for example Lπ, Te, 2M  since the exponents are irrational, etc., but 

L0. T-1, M2, L3/2, L-2/3 are all available. 

 The third condition a physical equation must fulfill is that it is never possible to have 

a dimensional quantity as argument of a function. So it is wrong to write sin(3t), but 

it is correct sin(ωt), with ω=3s-1and [t]=s. 

Some Examples of Dimensional Analysis 

1. Consider a rectangular triangle a, b, c and <A=π/2. Then: 
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2. Consider the example of the example of the Bernoulli’s equation (see, for example 

equation (2.69), pg. 72, [3]), in compressible isentropic flow: 
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 (8) 

We have used the classical notations: V is the fluid speed, p is the pressure and ρ is the 

fluid density. 

The index 0 signifies the stagnation values, and γ is the adiabatic constant. One can see 

that the formula is homogenious: 
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One can easily see that both Π1 and Π2 are dimensionless; they are the same for all unit 

systems. 

3. Consider now another formula containing a differential equation ([3], pg. 121, eq. 

(5.4)): 
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This is the Hugoniot formula of the flows through pipes. Here σ signifies the pipe section 

area and a is the local sound speed. The equation contains terms with no dimensions. It is not 

correct to write (10) with  



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
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d
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because [σ] = L2. Instead we can write 
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, where σ0 is a reference section area. This transformation is available for 

the speed as well: 
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Again Π1 and Π2 are dimensionless and are the same whatever unit system we use. 

4. Now consider the case of a harmonic oscillator with elastic coefficient k, viscous 

damping coefficient n and an external force F(t). It is governed by the equation: 

)(tFkxxnxm    (12) 

One can see that the dimension of each term is LT-2M, i.e a dimension of a force. Consider 

a reference length lref and a reference time, Tref. We make a change of variable and function: 
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Then, the motion equation becomes: 
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 t 321
  (14) 

In the above equation, we put: 
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We observe again that the vector matrix elements are dimensionless and ξ(τ) and its 

derivatives are all dimensionless as well. Our equation of motion can now be interpreted 

simply as differential equation, the same one regardless the unit system we use. 

We can now give the fundamental theorem of the dimensional analysis: 

The Buckingham (Π) Theorem 

Consider the equation that is relevant in a given problem, 

  0,...,, 21  nqqq  (A) 

where q1, q2,...,qn are physical quantities. Then, equation (A) can be written as: 

  0,...,, 21  m  (B) 

In the above equation, m = n - p, where p is the number of primary quantities involved in 

(A). 

In the first case we have a simple metric equation between 3 lengths:a, b, c. We have only 

1 primary quantity, L. So, in the first case there are 3-1=2 dimensionless numbers: Π1 and Π2. 

We can see that, in the second case, we have 5 physical quantities: V, p, ρ, p0, and ρ0. The 

primary quantities involved in these quantities are L, T, and M, that is 3 primary quantities. So 

the pysical phenomenon is described by 5 – 3 = 2 dimensionless quantities, Π1 and Π2. 

In the third case, we have 4 physical quantities: a
d

dV
V ,,,


 and 2 primary quantities: L 

and T. Then we have only 2 dimensionless quantities Π1 and Π2.  

For the fourth case, we will prefer to write the dimension matrix: 
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So, we have 6 – 3 = 3 values for Π. 

The Π vector is not unique, but the vector dimension is the same (n – p = m). For example, 

in the fourth case, we obtained the Π values so that the coefficient of   in (14) is 1. It is also 

poosible to impose a value (usually 1) to the coefficient of  (or  ). 

We will present now a different problem solved using the Buckingham theorem: 

Find the drag force D of a sphere of radius R in a stream. What are the physical quantities 

that can influence the drag? We identify all the interest data:    ,,,,, pURD , that is 6 

numbers. We choose the 3 basic dimensions (L, T, F). We can determine 6 – 3 = 3 ”Pi groups”. 

For example: 
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Then the sought after equation will be of the form     ,or    ,0,, 321321  fF
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The first term slighty modified, is the drag coefficient, Π2 is the Reynols number, while 

Π3 slighty modified too, is the pressure coefficient at infinity. 

In conclusion, if we have metric relationship (involving only lengths L) or, more 

generally, a physical formula (involving two or more fundamental dimensions) represented by 

equation (A), we can express it as an another equation (B) that contains m = n - p “Pi groups” 

m ,...,, 21 , which are dimensionless. 

In case we do not know the (A) equation, identify the important independent variables 

nqqq ,...,, 21 . Express the independent variabiles in terms of the fundamental dimensions. 

Determine the number of fundamental dimensions involved, say p. For example use the 

dimension matrix (16). Then find the m = n - p “Pi groups” m ,...,, 21 . Then express 

 mf  ,..., 321 , where Π1 is quantity of the most interest. So, even if we did not find 

the functional dependence of the independent variables nqqq ,...,, 21 , we found at least the the 

”Pi groups” m ,...,, 21 that play a role in the phenomenon. It is then easier to find this 

function experimentally, or otherwise, the “Pi groups” could help us try a theoretical approach. 

3. A CLASS OF SIMILAR PHENOMENA 

Let us examine again the four cases presented before. In our first example, the rectangular 

triangles that have equal Π1 and Π2, (Π1 > 0, Π2 > 0) are similar rectangular triangles. In the 

(Π1, Π2 ) coordinate system all the similar rectangle triangles are located on a segment on the 

line Π1 + Π2 = 1. Consider a point (Π1, Π2 ) = (3/4, 1/4); it represents all the rectangular 

triangles with < B = 600 and < C = 300. 

In the second example, the Bernoulli’s equation (fig. 2), all the flow cases are located on the 

bisector Π1 - Π2 = 0. 

 

Fig. 1 Rectangular triangles, with the example 

when <B=600 and <C=300 

 

Fig. 2 Bernoulli’s equation as a function of  the Pi 

group Π1, Π2 
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Fig. 3 Tube flow formula; the left branch (M < 1);  

the right branch (M > 1); Π2=1-M2 

The third case is represented in fig. 3. The flow in a tube is expressed by the rectangular 

hyperbola (11). The left branch of the curve (equilateral hyperbola) represents the subsonic 

flows, while the right branch represents the supersonic flows. 

So a certain point on these diagrams correspond to a certain state of a physical system. 

The fourth case is a different one: here the time plays an important role. Actually equation 

(12) describes a phenomenon (a physical event=something taking place in time). The Pi 

coefficients determine the characteristic equation and so the nature of the solution of the 

differential equation. 

Suppose we have a mechanical system or mechanical phenomenon described by an 

equation written in the (A) form, i.e. as a function of independent variables nqqq ,...,, 21 . 

Consider that, using a certain method as those presented before, one obtaines the (B) form say 

 mf  ,...,, 321 . If we consider m ,...,, 21  as a class of constants, then the formula 

 mf  ,...,, 321  describes a class of similar mechanical systems or phenomena. 

We will present some applications of the above theoretical considerations in 

aeroelasticity. 

4. APPLICATIONS IN STATIC AEROELASTICITY 

The first example of applications in the field of aeroelasticity is the aeroelastic redistribution 

of airload on a wing. So we study an elastic mechanical system in equilibrium state. 

Consider a classical straight wing with the following characteristics: the dihedral angle is 

0, its aspect ratio is big enough to let us use the following theories of aerodynamics and 

elasticity: 

 The lift can be considered distributed along the ¼ chord line. 

 We assume the existence of an elastic axis; it will be used for the calculation of wing 

structure deformations. 

The wing twist effect on aerodynamic load redistribution is the most important; the wing 

bending effect is negligible. 

We will start with the aerodynamic forces. Let us denote by α the local angle of attack 

measured between the wind direction and the untwisted wing section zero-lift line. The local 

twist is θ(y). 

Then the spanwise distribution of the aerodynamic moment about the local elastic centre 

is given by [4], (7.10), pg. 491: 
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         0
2, mL CqcyyeycqCym    (17) 

where q is the dynamic pressure, LC  is the mean lift coefficient of the wing, 0mC  is the pitcing 

moment coefficient, c(y) represents the local chord and 

     yxyxye e 4/1  (18) 

In (17) we neglected the effect of the inertial forces. 

We will consider the wing as a cantilevered beam, (fig.4). 

 
Fig. 4 The right part of a wing approximated as a cantilevered beam; in this figure, only wing bending is 

represented; however wing torsion is the most important cause airload redistribution 

The torsion equation is (see [4], equation (3.33)): 
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In the above formula, GJ(y) represents the twist stiffness. 

Consider a reference length 2/blref   and also the reference stiffness refGI , which can 

be a mean stiffness, or better the maximum stiffness at y = 0. We introduce the dynamic 

pressure 
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In the above equation, the bars above the letters mean that the quantities are 

dimensionless. 
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Now we can write (19) as 
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So we have: 
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For two wings to be similar, they shall be governed by the same differential equation (22), 

so that the following conditions must be met: 

 The functions  JG ,     ,  ec must be the same; 

 The numbers Π and 0 mC  must be the same for the two wings. 

Consider an original wing and a model. We have 

           ;;; modmodmod  eeccJGJG  

where index mod stands for “model”. 

They also have approximately the same pitching moment coefficient
mmm CC 00   (their 

value difference is due to the Reynolds number effect). 
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From the above equation, we find that 
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We usually know all about the “original wing” geometry and structure. We also know the 

“model size”, the wind speeds both for the “original wing” and for the “model wing”, so that 

we can calculate Lk  and Vk . 

Then we find stifk  and then 
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     ,
mod refstifref GJkGJ   (25) 

This is the reference stifness of the model we have to build for experimental purposes. 

5. APPLICATIONS IN DYNAMIC AEROELASTICITY 

We will use the flutter equations of a cantilevered wing, as given by Fung in [6]. The 

figure below is from the same book. 

We draw attention to the fact that Fung used a different frame from the one given 

in fig. 4, as can be easily seen below. 
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Fig. 5 Notations for a cantilever wing, after [6], pag. 194, sec. 6.3 

Some quantities used in (26) are given in fig. 5: the deflection h, the elastic axis position 

xα, etc. Others were defined in the previous chapter. 

Newly introduced are: EI which represents the bending stiffness, m which is the unit 

length mass at the wing section y, [m]=ML-1, Iα is unit length momet of inertia with respect to 

the elastic axis at the same wing section y, [Iα]=ML2/L=ML. 

There remain L and M which mean the unsteady lift and pitching moment calculated with 

respect to the elastic axis (not to be confused with the dimensions of length and mass!). So we 

can write, after [6], formula (2), sec. 6.3, pag 194: 
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We proceed as in the previous case. Firstly, we choose some new non-dimensional 

quantities: 
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With these changes of functions and variables, system (26) becomes: 
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We will introduce the following notations for the non-dimensional quantities 
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So, the wing motion equations (29) become: 
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Consider now the “original” wing and its “model” wing- index “mod”. The similarity 

conditions for the “original” and “model” mean that the non dimensional functions 
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must be identical, and the Pi coefficients must be equal 

as well: 
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From the five equations in (32) we conclude that: 
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In the above equations, k numbers represent the scales: 
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Looking at (33), we find that the last two equations are identical, so that there remain only 

three equations: 
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Returning to the aeroelastic problem: to build an aeroelastic model of a wing in an 

incompressible flow, the next procedure seems to be reasonable: 

 Suppose that the “original wing” is completely known geometrically and structurally; 

 Suppose that the maximum wing speed Umax is known and the maximum admissible 

wind tunnel speed  
modmaxU is also known; we find 

 

max

modmax

U

U
kV  ; 

 Choose a model length scale Lk to match the size of the tunnel; 

 Now calculate the unknown scales in (33) and build the model; the “model” will 

withstand the static loads to which it is subjected in terms of similarity, because the 

“original wing” itself is supposed to withstand the “original condition loads”; 

 Test the model wing in the tunnel, starting from a small wind tunnel speed and 

increasing the speed up to its maximum value,  
modmaxU . If the flutter develops at

 
modfU  <  

modmaxU , then we can calculate the “original wing” flutter speed 

 

V

f

f
k

U
U mod . If the flutter does not develop in the speed range (Uf)m < (Umax)mod, 

then it is no danger for the original wing to meet the flutter conditions in real flight. 

6. CONCLUSIONS 

In this work are summarized the principles of similarity modeling, dimensional analysis, and 

the Buckingham (Π) theorem is reminded. The theoretical considerations are illustrated with 

some examples from geometry, fluid mechanics and mechanics. 

From these examples, the concept of similar mechanical problems/phenomena was developed: 

two states/phenomena are similar if they are described by equations (of any type algebraic, 

differential, integral, etc.) that can be brought to a form involving identical non-dimensional 

functions and equal Pi grup coefficients ( m ,...,, 21 ). 

The main applications of this general theory are in the field of aeroelasticity. The paper 

presents how, starting from the general equations governing the aerodynamic load 

redistibution (static aeroelasticity) and flutter (dynamic aeroelasticity), one can get equations 

involving Pi groups and identical non-dimensional functions. 

Equating the Pi terms for the ”original wing and flight conditions” with the Pi terms written 

for the ”model wing and wind-tunnel conditions”, one gets the algebraic relations between the 

scale factors. 

These relations are always monomials (in a broad sense, i.e negative powers are acceptable). 

A general procedure for the experimental study of the aeroelastic phenomenon of flutter is 

described. 
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