The flow of an incompressible electroconductive fluid past a
thin airfoil. The parabolic profile

Adrian CARABINEANU*"

*Corresponding author
*University of Bucharest, Department of Mathematics
Str. Academiei 14, Bucharest Romania
acara@fmi.unibuc.ro
L“Caius lacob — Gheorghe Mihoc™ Institute of Mathematical Statistics and Applied
Mathematics of Romanian Academy
Calea 13 Septembrie 13, Bucharest, Romania

DOI: 10.13111/2066-8201.2014.6.S1.5

Abstract: We study the two-dimensional steady flow of an ideal incompressible perfectly conducting
fluid past an insulating thin parabolic airfoil. We consider the linearized Euler and Maxwell
equations and Ohm's law. We use the integral representations for the velocity, magnetic induction and
pressure and the boundary conditions to obtain an integral equation for the jump of the pressure
across the airfoil. We give some graphic representations for the lift coefficient, velocity and magnetic
induction.
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1. INTRODUCTION

The motion of a wing in an electoconductive fluid was investigated in the second half of the
past century, when the researchers were interested in studying the aircraft flow in special
meteorogical conditions or at high altitude in an ionized athmosphere. In the papers
dedicated to this subject, the lift, drag and moment coefficients were calculated. Recent
technological advances claim also for the study of the velocity and electromagnetic fields.
We mention two examples: the plasma actuators for aircraft flow control (see [3]) and
concealing aircrafts from radar using the interaction between the ionized gas and the
electromagnetic radiation. In the present paper we study the steady two-dimensional flow of
an ideal perfectly conducting incompressible fluid around a thin insulating parabolic airfoil.
We consider the linearized partial differential equations of magnetohydrodynamics
consisting of Euler's and Maxwell's equations and Ohm's law.

In [2] we calculated the corresponding fundamental matrix and obtained integral
representations of the velocity, the magnetic induction and the pressure fields for arbitrary
thin airfoils. We notice that every integral representation has an elliptic as well as a
hyperbolic part, the last one being determined by the presence of simple waves bounded by
straight characteristics (weak shocks). From the integral representation of the velocity and
the boundary conditions (linearized slipping condition and the continuity of the magnetic
induction) we rediscover the singular integral equation for the jump of the pressure across
the airfoil (see [2],[4], [6], [7])-

We consider the particular case of the parabolic profile for which the solution of the
integral equation is analitically calculated. Then we calculate the lift coefficient and perform
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some numerical integrations to calculate the velocity and the magnetic induction in the
points of a two-dimensional grid. We provide graphic representations for the velocity and
magnetic induction fields and for the lift coefficient.

2. FUNDAMENTAL MATRIX OF THE LINEARIZED SYSTEM FOR THE
TWO-DIMENSIONAL INCOMPRESSIBLE FLOW OF PERFECTLY
CONDUCTING FLUIDS

The results presented in Sections 2-4 were obtained in [2]. We assume that the plane-parallel
motion occurs in the Oxy plane and we denote by i and j the versors of the Ox and Oy axes.
Let v,b and p designate the nondimensional perturbations of the velocity, magnetic induction
and pressure, respectively, determined by the presence of a thin insulating airfoil whose
equation is

y=h.(x), xe[0,1], |h,(x)|<<1,

h, ()| <<1. 1)

At infinity upstream, we assume that the unperturbed motion is uniform and parallel to the
Ox - axis and that there exists a homogeneous magnetic field whose nondimensional
expression is

BO:(aX,ay), aX:COSa,ay:Sina,0<a<7z. (2

04— Magnetic ind Elinn ]
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Figure 1: Airfoil and velocity and magnetic induction at infinity
As it is shown in [4], section 5.2, the nondimensional intensity of the electric field is
E=(a,i+a,j)xi.
V= (vx,vy),b = (bx, by) and p satisfy the following system of linear partial differential
equations obtained by means of the small perturbations technique:
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oV d ay [ oD, ob
Frae(3-5)=0

ox X oy

aVy 6p Oy aby abx

WJFW—T(W—W =0,
avx (7Vy_ 3
LAY} ®)
abx 6by —
=+5=0,

b, +av, —a,v, =0.

with A=1/ x/ﬁ - Alfvén's number ( Rh is the magnetic pressure number).

The first two equations are Euler's equations, the third is the equation of continuity, the
fourth equation is Gauss' law for magnetism and the last one is Ohm's law. We introduce like
in [1] and [2] the fundamental matrix of the linear system (3):

Vil) V(yl) bil) bil) p(l)
v v b b p® "
V)((3) V§3) b)((?’) b§3) p(3) ’
v£4) v§4) bi“) b§4) p(4)
whose components are the fundamental solutions of the systems
o) D ay a0l (D
et +T(T_T)=5115(X:y),
ovth (i) a, ap(h b)((j)
G-t = 5,5(xy),
D al ®)
Bt E =00 (%),
NORNND
S+ 2-=6,,6(xY),
(i (i (i _
b’ +a v’ —a v, =0,
where &(X, ) is Dirac's distribution and
1 j=i
0, j=i
In [2] the following components of the fundamental matrix are calculated
o8 X by Y
2T X +y° 2w X°+Yy
(6)

Ac,, 0 a, A Ad,, 0 a, A
~SAH| =2y Sy |- R H| -y -2y |
[ ||] oL [ 8 %HJ
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y 27 XP+y? 2w X2 +y?

Ac,, 0 Ad,, 0 a, A
+o B H| X my =y e S | x-2y -y
[ |q %y ( o, “JwJ

2a OX a, a, y

X a
ay y

b® = o v +ayV§2) —g% H (X—&V—AMJ,

@_ @ %O Gy A% Oy oy A
P =V o (x yy Iyl] T xayy aylyl,

1, x>0
H(X):{o X<0

is Heaviside's function and

_ R(A2) _ 2A%a,a,
e T yC W T yC (e PANTE
ai(AerlJrszf) _ 2axa§

Co0 = owiza)a Y0 = TR e

2A%0,a, b = (A +1-20)
A = l+2A2(1 2a ) Al 21T _l+2A2(l—2af)+A4 '
ZaXaY(AZ—af) aﬁ(Az-#l—Zaf)

Co = L2A (120 et T T2 - L2A% (1202 )+ A*

3. INTEGRAL REPRESENTATIONS

(7)

(8)

(9)

(10)

(11)

In thin airfoil theory the linearized boundary conditions are usually imposed on the segment

[-1,1] and the functions we are looking for are defined on R*\[-1,1].

Since v,,v,,b b and p are integrable functions, they may be regarded as regular

y 1 My
distributions.
Taking into account the boundary conditions ([4], Chapter 5)

[b](x)=0, v, (x,20)=h,(x), xe[-11],

we obtain the following linearized system for the distributions v,,v,,b,,b, and p :
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x+0p+ay(0b a_bx):(): 1

w5
St B -2) =[Py =
S+ =[N]6 1y =i )

where [b](x) and [p](X) represent the jumps of b and p over the segment [-1,1] and
[p]é‘[—l,l]’[h’]é‘[—l,l] are simple layer distributions. We may easily verify that

4 4
v, :ZVQ) ®f, v, :ZV§” ®f,
j=1 =1
. . (14)
b,=>bP®f, p=>pY®f,
-1 )

where & stands for the convolution product. We shall consider, for the sake of simplicity,
the case of zero thickness wing, i.e. h (x)=h (x). Hence f,=f,=f,=0 and

v, =V ®[p]5 1y v, =V ©[ Py
b, = biz) ®[p]5[71,1]7 p= p(Z) ®[p]5

(-1

In [2] the convolutions were calculated and the following integral representations were
obtained:

a, X—¢& b, _
v, (x,y)= ﬂj [p ](i)mdé+2 [ [p ](5)—()( oyt
Sl ](f)H( f—%y—aﬁwﬂdé—
Ale a X A
2y L [PENH L—S—Z—y—a—lled&
_ Ay X—¢& b, B
—zﬂj_l[p](é)—(x_é)zwzd:+2 [ [p ](5)—(X ey
—iz(cﬂa -dyo, —d, A= J
2a,( T M
[Pl(x—2y—2]y) for [x—y—2]y| <1, (15)
0 for x—j—;y—a—’*y|y”>l,

vy (X, y) =
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2% _xg g b, oy
S RO 0 2 [Pl e

+A(C30a —dy, — A A= J
2a; Y]

[P](x—2y—&|y)) for [x—2y—2|y| <1,
X

0 for

x—j—:y—a—’*y|y” >1,
bX(X, y) = axvx (X’ y) +ayvy (X! Y) -

A [[PI0=2y=2y) for e—2y—2[y|<1
——x

2 0 for

X—g y—a—‘\y|y|‘ >1,
P(X, y) =—V, (X, y) +

y TPl y =2l for pe—gey—£fy <1,
+_

2]yl 0 for

X—Z—:y—a—’\y|y”>1.

(16)

17)

(18)

4. THE INTEGRAL EQUATION FOR THE JUMP OF THE PRESSURE

Using the Plemelj formulas and the linearized boundary conditions (12), we get from (16)

the integral equation for - 1< x < 1:

30 y_d30 X
h'(x) =V, (x,+0) = aSopvj [p(g)] ( aZocz a)[p(x)],

which is equivalent to

where

k=A+1-2a, B=a,(1+A)A" and y=2(4a]+A*-A’).

As itis shown in [1], [2], [6] and [4], chapter 5, the solution of equation (20) is
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ﬁz  ky (1=xY o (1l+é G
[P ](X) M) (ﬂ2+k2)(1+xj p'v'-[—l(l—f] g—X

N 2Csinfr
(1- x)l_e (1+ x)‘9 ’

We may take C=0 if we impose Kutta-Joukovsky's condition. Other choices of the constant
C were considered by Stewartson [7].

(21)

tan(972'=£, 0<O<1.
B

5. THE PARABOLIC AIRFOIL
In this case, h(x)=¢&(l—x?), h'(x)=-2&x and

2e8yx  2ekyx (1-xY o (1+&Y dé
[]()_ 8;(4_ ERY ( ijJ‘_l(—Ja

Bk x(B+K) L+ x 1-¢
(22)
2¢ky  (1-x 1+¢&
d
72'(,32+k2)(1+Xj I—l{l 5] &
Taking into account that
1+6Y 1 . x| (1+xY
pVv I [ j xdé_sinen{l (1_)(] cosébz}, (23)
and
v(1egY . 2q0
-[-1(1—5] 0 = S0 9
we get:
 2¢y 1-xY
[p](X)—W(X 2‘9)(1“(}- (25)
The lift is ([4], 5.2.6)
L=—| [p](x)dx
From (24) and from the relation
(128 e 2700 2
I—l[ugJ 0= G0 )
it follows
Lo 4715;(192 . 27)
k
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Figure 2: Lift coefficient versus Alfvén's number

In Figure 2 we present the lift coefficient against Alfvén's number A for various values of the
angle o made by the directions of the magnetic induction and the velocity at infinity

upstream. We notice that for a strong magnetic field ( A— 0) the lift coefficient may have
negative values.

6. THE VELOCITY AND THE MAGNETIC INDUCTION
From (15), (16) and (21) we get
v (x,y)= 24

W['s(x, y)+2615(x, y)]+%[ls(x, y)+201,(x,Y)]
4 V4

2 1k
A
_E(cﬂay ~de, — d21Aﬁ}<

y

(28)
[p](x—2y—2|y]) for [x—2y—2]y| <1,
0 for

X

X— —A|y”>1
vy(x,y):—%[l s (X, y)+261,(x,y)]- #\/%[%(x, y)+261,(x,Y)]

A
+ a, —Uya, —dy A=
2%( Ty Ij (29)

[P](x =y —2]y) for [x—2y-2]y] <1
0 for |x

X

_ax _ A|y”>1
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1 (1- ¢ N
I(ﬁj POy, dE = S WF (0 y.L),

where
AT (N+60+1)I'(N-6+1)

[(N+)1] P ()P (t,)

P (t,), P\ (t,) are Jacobi polynomials and t,,k =1..,N are the roots of

the Jacobi polynomials P\"” (t, ). We considered ¢ = 0.2.

In Figure 3 we present the velocity field for various values of Alfvén's number and
the parabolic profile. We observe the waves generated by the magnetic field and
notice that the normal component of the velocity on the profile vanishes. In Figure 4
we present the magnetic induction field for various values of Alfvén's number and
the parabolic profile. We notice that the condition for continuity of the magnetic
induction across the insulating profile is satisfied.
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