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Abstract: Using Lazăr Dragoş’s analytic solution for the electric potential we perform some 

numerical calculations in order to find the characteristics of a Faraday magnetohydrodymamics 

(MHD) power generator (total power, useful power and Joule dissipation power). 
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1. INTRODUCTION 

The magnetohydrodynamic (MHD) generators transform the thermal and mechanical 

(kinetic) energy into electricity. Unlike the traditional electric generators, they use hot 

electroconductive plasmas (ionized gases, liquid metals) and have no moving parts. 

References concerning the mathematical theory of the MHD power generators may be found 

in L. Dragoş’s book [1], Chapter 4. In the last years, new applications of MHD generators to 

hypersonic aircrafts have been considered (see for example the papers of Petit and Geffray 

[2] and those of Sheikin and Kuranov [3]). 

The generated electricity can be used to power electromagnetic devices on board or to 

the so-called MHD bypass (i.e. MHD acceleration of the engine exhaust flow). The basic 

elements of a simple MHD generator (the so-called continuous electrode Faraday generator) 

are shown in Fig. 1. 

In the domain bounded by the electrodes, a magnetic field of induction 0B  is applied 

transversely to the motion of an electrically conducting fluid flowing with velocity 0V  in an 

insulated duct. The motion of electrically conducting fluids in a duct was investigated in 

many papers (se for example the articles of Carabineanu et al. [4], [5], Tezer-Sezgin [6], 

Tezer-Sezgin and Bozkaya [7], [8], Çelik [9], Tezer-Sezgin and Han Aydin [10]). 

Electrically charged particles flowing with the fluid determine an induced electric field 

00V B  which drives an electric current in a direction orthogonal to 0V  and 0B . This 

current is collected by the electrodes and flows in an external load circuit. We denote by 

02L  the distance between the electrodes. The electric current flowing across the 

electroconductive plasma between the electrodes is the Faraday current. It provides the main 
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electrical output of the MHD generator. The Faraday current reacts with the applied 

magnetic field creating a Hall effect current perpendicular to the Faraday current. 

In this paper we present a simplified version of the MHD generators theory. Besides the 

simple geometry of the generator, we neglect the Hall effect and the effect of the Loretz 

force against the fluid flow, whence it follows the uniform flow of the plasma. Thermal 

effects, compressibility and viscosity are also neglected and the electromagnetic field is 

considered stationary. In order to calculate the MHD generator characteristics we use Lazăr 

Dragoş’s analytic solution for the electric potential and perform some numerical 

calculations. 

 

Fig. 1 – MHD generator 

2. MATHEMATICAL FORMULATION OF THE PROBLEM 

We shall use non-dimensional variables, by referring the electromagnetic field variables to 

0 0,L V  and 0B . Denoting by a the non-dimensional length of the electrodes and by , ,i j k  the 

unit vectors of the Cartesian axes, we deduce that the non-dimensional velocity and magnetic 

induction are: 

,
, .

0,

k x a
V i B

x a

 
  



 
(1) 

 

Denoting by J  the non-dimensional current density and by E  the non-dimensional 

intensity of the electric field, we use Ohm’s law 

 ,J Rm E V B    (2) 

where 

0 0,Rm L V  (3) 
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is the magnetic Reynolds’ number,   is the electrical conductivity and   is the magnetic 

permeability. 

From Faraday’s law 

0,curl E   (4) 

we deduce that there exists a function   (the electric potential) such that 

.E grad    (5) 

From the boundary conditions imposed on the insulating parts of the walls of the duct 

0, 0, 0,J n B n V n      
 

 (6) 

we deduce that the flow is plane-parallel and the functions we are dealing with, do not 

depend on the z  variable. 

In the sequel we shall calculate the potential of the electric field. From the continuity 

equation 

0div J   (7) 

from Ohm’s law and from (5) it follows that 

 , 0, , 1 1.x y x y         (8) 

The value of the electric potential is imposed on the electrodes: 

   ( ,1) , , 1 , ,w wx x x a a         . (9) 

The following relationships 

       1, 0, 1, 0, , , .x x x a a
y y

  
      

 
 (10) 

can be deduced on the insulating parts of the walls of the duct, from Ohm’s law, from (5) 

and from the boundary conditions (6). 

The condition 

lim 0.
x

grad 


  (11) 

is imposed at infinity. 

3. LAZĂR DRAGOŞ’S ANALYTICAL SOLUTION 

Since  ,x y  is a harmonic function, there exists its harmonic conjugate  ,x y , related 

by  ,x y  through the Cauchy-Riemann equations 

, .
x y y x

      
  

   
 (12) 
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We shall also introduce the complex holomorphic function 

( ) ( , ) ( , ), .f z x y i x y z x iy      (13) 

From the boundary conditions (10), one deduces the boundary conditions 

 ( , 1) , , ,x b x a       (14) 

 ( , 1) 0, , .x x a    
 (15) 

  is determined up to an additive constant and b  has to be calculated. 

With the conformal mapping 

 exp , ,
2

i z a i


      
 

(16) 

the strip 1 1y    is mapped onto the upper half-plane 0   with the following point-to-

point correspondence (Fig. 2): 

           

           

, 1 ' 0,0 , , 1 ' 1,0 , , 1 ' exp ,0 ,

, 1 ' ,0 , ,1 ' exp ,0 , ,1 ' 1,0 .

A A B a B C a C a

D D E a E a F a F





       

        
 

 
Fig. 2 – Conformal mapping, boundary correspondence and boundary conditions 

The boundary value problem (8) – (11) was reduced to the following Volterra-Signorini 

problem: find a holomorphic function    ( ) , ,f i         in the upper half-plane 

0  , with the following boundary conditions: 

         ,0 0, , exp exp , , ,0 , 1,1 ,a a b               
 (17) 

       ,0 , exp , 1 , ,0 , 1,exp .w wa a               
 

(18) 
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The solution of the Volterra – Signorini problem, is given by a formula which may be 

found for example in [11], and it is ([1], Chapter 4): 

 
    

  

2 2
exp

exp 2 2

exp2 1
,

exp2 1

a

a

a d
f

a





     


    


 


 


 
(19) 

where 

 
   

 

, exp , 1 1,exp ,
.

, 1,1

w a a

b

   
 



   
 

   

(20) 

From condition (11) we deduce that lim 0
df

d 
 , whence, taking into account (19) and 

(20) it follows that the constant b  must satisfy the equation 

     

1 exp

1 12 2 2 2
2 .

exp2 1 exp2 1

a

w

d d
b

a a

 


     


 
   

 
 

(21) 

4. NUMERICAL RESULTS 

We use the Gauss quadrature formulas for continuous functions ([12], Appendix F): 

.,,1,
2

)12(
cos,)(

1

)(

1

1

1 2
n

n
xxF

n
dx

x

xF n

















 

(22) 

Hence 

 
 

1

2

'( ), '( ) 2w

I a
b b a b a

I a
  

 
(23) 

with 

 2 2
1

1
.

exp2

n

I a
n a x 









 

(24) 

We shall also use the Gauss quadrature formulas in order to calculate the integral from 

the right hand part of (21). 

To this aim we consider the change of variable 

exp 1 exp 1

2 2

a a 
 

 
 

 

(25) 

and obtain 
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   

     

     
).(

3exp1exp1exp31exp

12

3exp1exp1exp31exp

1

1
2

12exp

1

1

1

1 2

exp

1 22

aI
axaaxan

aaaa

d

a

d

n

a
















 

















 
(26) 

In Fig. 3 we use a continuous line to give the graphical representation of b’ (a). We also 

use stars ‘*’ to represent 2a versus a and notice that 

'( ) 2 .b a a
 

(27) 

 
Fig. 3 – b’(a) and 2a versus a 

In the points  ,p sx y  of a certain grid we calculate 

     
   

, ,
exp , ,

2 2

p s p s ps

ps ps p s ps ps

x y x y dfi
i z a z x iy z

x y d

   
 



 
      

   

(28) 

We take into account that 

   

  

 

  

2
exp

exp2 2 2 2

2 1 exp2

exp2 1 exp2 1

aps psps

a
ps

ps ps

adf d

d a a





     

       


 


   


 

    

    

2 2
exp

2exp 2 2

exp2 1
.

exp2 1

aps ps

a

ps

a d

a





     

    


 


 


 

(29) 
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For calculating 
 psdf

d




 we have to numerically compute the integrals 

       

1 1

21 12 2 2 2
, ,

1 exp2 1 exp2ps ps

b d b d

a a

 

        
     
 

 
(30) 

       

exp exp

21 12 2 2 2
, ,

1 exp2 1 exp2

a a
w w

ps ps

d d

a a

    

            
 

 

(31) 

       

exp exp

21 12 2 2 2
, .

1 exp2 1 exp2

a a
w w

ps ps

d d

a a

    

            
 

 

(32) 

For calculating the integrals from (30) we use the Gauss quadrature formulas (22) and 

for calculating the integrals from (31) and (32) we perform the change of variable (25) and 

then use the Gauss quadrature formulas (22). 

We use (2), (5), (28) and (29) to calculate the current density in the grid points. In Fig. 4 

we present the current density field /J Rm for 1/ 2a   and 1w  . 

 
Fig. 4 – Current density field 

5. THE CHARACTERISTICS OF THE MHD GENERATOR 

The non-dimensional power on the unit of length developed by plasma in the motion against 

the electromagnetic field is 

 
   

 
   , 1,1 , 1,1

A V J B dxdy J V B dxdy
       

       
 

(33) 
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and it represents in fact the power dissipated by the Lorentz force with changed sign. 

Taking into account the relations (1), (5), (9), (10) and Ohm’s law (2) we get 

   

     
, 1,1

1 ,1 , 1 2 4 1
a

w
a

a a

A Rm dxdy Rm x x dx a Rm
y


  


  

 
            

 
 

(34) 

and also 

   , 1,1

J
A J E dxdy Q W

Rm
   

 
     

 


 

(35) 

where 

   

2

, 1,1

0
J

Q dxdy
Rm

   

 
 

(36) 

stands for the Joule dissipation power and 

   , 1,1

W E Jdxdy
   

  
 

(37) 

is the useful output power of the generator. 

From (5), from the continuity equation (7) and from the boundary conditions imposed 

on the insulating walls, one deduces that 

 
   

   
, 1,1

, 1 , 1
a

w
a

W div J dxdy J n ds J x J x jdx  


   

             
 

       , 1 ,1 2 , 1 ,1 2
a a

w w
a a

Rm x x dx Rm x x dx
y y x x

   
 

 

     
           

     
 

 

         , 1 , 1 ,1 ,1 2 2 2 .w wRm a a a a a Rm a b                

 

(38) 

We notice that, from (34) and (38) it follows 

   22 4 2 2 ' 4 2 .w w w wQ A W Rm b a a Rm b a a           

 

(39) 

Since ' 0b   and the discriminant  216 8 ' 8 2 ' 0,a ab a a b       we verify again 

that 0.Q   

In Fig. 5 we represent the useful output power, the total power, the Joule dissipation 

power (divided by Rm ) and the useful power/ Joule dissipation power ratio against the 

electrode length a  and electric potential w . 
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Fig. 5 – MHD generator power 

These graphical representations may be helpful in designing a MHD generator and 

optimizing its characteristics. 
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