
 

Unified formulation for URANS and LES in DxUNSp code 
 

Catalin NAE 
INCAS – National Institute for Aerospace Research 

cnae@incas.ro 
 

Abstract 
 
The aim of this work is to find a unified and efficient implementation of a LES turbulence model in an existing URANS 
CFD code, initially based on unsteady RANS equations with a k-ε turbulence model. This code has the capability to be 
developed for nonreacting/reacting multifluid flows in research applications. The paper intends to present mainly three 
aspects of this implementation for unstructured mesh based solvers, for high Reynolds compressible flows: the influence of 
the numerical reconstruction scheme on the results for compressible LES, the influence of the compressible SGS modeling 
and the efficient implementation of a wall-law based approach for complex geometry. The results will be presented for a 
test case (3D flow over a square cylinder at Reynolds = 22.000 [0]) and compared with experimental data and other 
simulations. Some details for the computational efficiency and implementation on parallel computer cluster at INCAS will 
also be presented [0]. 
 
 
 

1. The Navier-Stokes equations for LES 
 
We consider a given domain D where we are 
interested to solve the flow filed. For this field we 
associate a space filtered field through a convolution 
with a filter function G. This filter function is 
dependent on a given metric quantity, the filter width 
Δ. For any given quantity in the domain D, the filtered 
value is : 
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It is important to mention that this simple approach 
can be generalized by using a multilevel 
decomposition of the flow variables using a set of 
different filtering levels, defined by mean of a series of 
low-pass Gn, which are characterized by their length 
scales Δn. Also, the filter operator of any level, when 
applied to the PDE set of equations, commute with 
time and we also will assume this is still valid for the 
space derivatives, even for non-homogenious grids. 
However, this is not very accurate, as indicated by 
Vasilyev and Lund [0]. 
Under these assumptions, we consider a simple 
decomposition for a field variable in the resolved and 
subgrid scales.  
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Because we are interested in compressible flows, the 
classical Favre averaging is introduced, using the 

density-weighted filter (we will use “ – “ for space 
filtering and  “~ “ for the Favre averaging).  
The set of Navier-Stokes equations and the 
constitutive relations are filtered in the physical space 
using a simple step decomposition based on a generic 
filter having the properties described above. The final 
version of the system is : 
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 We intend to keep the same structure of an 
existing solver (RANS using 2 equation turbulence 
model) for the continuity, momentum end energy in 
order to induce a minimum of changes in the 
implemented version of the code. The presented set 
of equations are for the single fluid case; details for 
the multifluid formulation will be presented later as a 
short comment. Also, all new variables introduced by 
the LES approach are to be matched as close as 
possible to the existing ones. This leads to a 
generalization of the pressure and temperature as 
macro parameters, depending on the SGS modeling . 
The definitions and the constitutive relations used are 
(presented in an equivalent formulation to the 
classical RANS formalism) : 
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 Several variations in the present equations are 
also possible, by including or neglecting some SGS 
terms. Also, several levels of SGS modeling are 
possible, based on various assumptions for the flow to 
be analyzed. It is a common practice to use the system 
as presented above, for compressible flows, with a 
general restriction for the Mach SGS number MSGS. It 
is important to know when some SGS terms can be 
neglected and to have an indicator for these 
simplifications. It is possible to show that Dij 
contribution can be neglected for low Mach 
compressible flows and for monoatomic gases (where 
γ = 5/3), and with a certain error in all other cases, if 
the following criteria is satisfied : 
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 The formal changes due to spatial filtering 
induced in the code structure are limited to a change in 
the effective viscosity term in the energy equation and 
we expect that turbulent viscosity μt and turbulent 
Prandtl number  Prt to be defined and computed using 
dedicated routines. 
 

2. The SGS modeling 
 
The SGS modeling is related to the spatial filtering and 
the assumptions made for the high Reynolds 
compressible flow conditions. This is done in close 
correlation with the spatial discretization scheme (the 

β-γ scheme will be analyzed), and the level of 
diffusion and dissipation in the scheme, combined 
with the time discretisation. The Smagorinsky model 
is simple enough for this analysis and also provides 
the required extensions for a more complex level of 
future SGS modeling (i.e. dynamic models or one 
equation SGS models). It is important to mention the 
filter definition influence on the results. The various 
definitions of the equivalent filter length will be 
analyzed for unstructured grids, where there are not 
so many well documented published results 
(definitions based on the h-height, l-length and 
volume of the tetrahedra sharing a common vertex). 
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This model is the simplest extension of 
Smagorinsky’s model to a compressible case using 
Favre averaging. The value of the Kolmogorov 
constant Ck = 1.4 gives a value of CS = 0.18 for the 
Smagorinsky constant. Several other values for the CS 
were proposed, ranging from 0.1 (Arnal & Friedrich 
for back-step flow) to 0.2 (Deardorff for isotropic 
turbulence simulation).  
 
The value of 0.18 was successfully used for free-
shear flows and channel flows in combination with 
wall-laws. A value of 0.1 will be used in the present 
computations. 
 
This basic model was extended by Germano [0] in the 
so-called dynamic model, where one tries to find 
better values for the Cs constant and the Prt number. 
The Cs constant is formally replaced by  and 
all the procedure will use this parameter. Briefly, the 
procedure consists in applying a test filter with a 
larger width than the original filter to the governing 
equations.  

2
SCC =

 
As a result, a sub-test stress tensor appears in the 
momentum equation, which can be modeled as a SGS 
stress tensor and it is also possible to show that the 
SGS tensor and the sub-stress tensor are related by 
the following relations : 
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 So, a least squares method can be used in 
order to determine the dynamic parameter , 
having as a plus the advantage of a better numerical 
behavior due to the inclusion of the filter length in the 
definition, thus avoiding any possible 
indeterminations. 
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 A similar procedure is valid for the energy 
equation, where we find Prt from a similar least square 
approach using the following relations: 
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Thus we can compute all the SGS terms in the set of 
governing equations and we now focus on the 
influence of the numerical scheme used on the results, 
trying to use a well tested upwind scheme for LES, 
even if it is a common practice to use centered 
schemes.  
The reason for doing this is that we are interested to 
preserve the properties of the upwind scheme for 
compressible flows and to have an estimate of the 
errors induced on the LES due to the upwinding. 

 
 

3. The beta-gamma scheme 
 
 The numerical scheme used for spatial 
integration is a β-γ  one, based on the classical Roe 
scheme, with a MUSCL like extension for higher 
order spatial accuracy [0]. Similar results can be 
provided for an Osher scheme. Also, we will consider 
that no limiter is required (for the test case). 
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For a general spatial discretisation on a regular grid 
of the Friederichs-Keller type, under the assumption 
of equispaced nodes, the approximated solution for 
the Navier – Stokes system is the exact solution 
obtained by solving the equivalent differential 
equations using the β-γ scheme. The values of β and γ  
have a strong influence on the diffusion and the 
dissipation of the scheme and we are interested to 
find the limits for using such a scheme for LES of 
compressible flows. 
This can be proved by a 2D example for the 
advection equation : 
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The beta parameter influences the diffusion and a 
value of β = 1/3 gives a scheme which is of order 3 
and if γ is zero, then we have 4th order spatial 
accuracy [0]. The product βγ influences the 
dissipation and we must insist for a compromise in 
using low values for this product for preserving the 
properties of the Roe scheme for high Reynolds 
compressible flows [0]. 
The influence of the beta and gamma parameters on 
the LES simulations is crucial, and several studies 
were carried out in order to determine the limits for 
the β and the βγ product, still preserving the upwind 
properties of the scheme. For this purpose, a special 
indicator is constructed and will be presented later. 
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In order to have a comparable accuracy for the time 
integration, the time integration scheme is deliberately 
taken explicit, using a 4th order optimized Runge-Kutta 
formulation with global time step strategy. An implicit 
formulation is also possible using GMRES and ILU 
preconditioner, but detailed analysis studies proved 
that CFL must be limited to 10. Using larger CFL 
numbers proved to have a time filtering effect on the 
numerical solution. 
 

4. The wall laws implementation 
 
An important aspect in CFD for engineering flows is 
related to the use of wall-laws in a LES simulation. It 
is not yet conceptually clear if the wall-laws developed 
for time-averaged k-ε turbulence models can be 
implemented in the spatial filtered models. Due to the 
high resolution requirements for correct solving the 
LES model close to solid walls, the idea of using a 
similar approach as in RANS, or even coupling with 
RANS solver in this region, is very interesting. The 
present approach will use a complete and well tested 
generalized wall law already implemented in a k-ε 
turbulence model. 
We use the general formulation for the wall-laws 
where we decompose the generic wall-law function in 
two parts as : 
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The first part is the nonlinear Reichard wall-law 
equation and the second proposed function contains 
the corrections for pressure and convection effects (we 
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Then quation (15) is solved using Newton method 
with some requirements for the initial starting values. 
It is important to mention that one can apply also the 
so-called two-layer approach (one equation model for 
kinetic energy transport and dumping functions ), for 

the low-Reynolds region defined using an apriori 
value for y+ (150...200 are usual values) and then the 
wall-laws as above. 
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Such techniques have been successfully tested in the 
k-ε turbulence model based RANS solver.  
In the LES approach we test the possibility of a 
similar formulation on the test case and the 
computational efficiency of such combination (mesh 
resolution requirements and convergence speed for 
the Newton method). 
 

5. Other correlation 
 
In order to have an estimation on the interaction 
between numerical viscosity and the SGS modeling, 
an indicator is build based on the numerical scheme 
used and the turbulence model. We will compare the 
dissipation due to the numerical viscosity with the 
one due to SGS model used.  
The total flux of the convective terms on a cell 
around each node is divided in the centered part and 
the total upwind part.  
This second part can then be used in order to compute 
the numerical dissipation related to the upwinding. 
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The SGS dissipation is computed using the definition, 
like ijijSGS PT ⋅=ε  .So one can use the ratio between 
these two terms in order to investigate the induced 
influence at every node inside the domain, like a local 
indicator. 
 
This ratio is a function of the gamma parameter as 
well as of the SGS modeling and also the domain 
discretization, so one might expect to have all the 
required influences in order to have a better control 
over the numerical simulation. 
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This estimator will be used through statistical analysis 
on the computational domain. It is important to know 
the distribution on every vertex, the mean value and 
the dispersion of the values, and complex correlation 
with global parameters of the simulation (lift, drag, 
Strouhal number, etc.) will be presented. 
 
Another important aspect is related to the dynamic 
procedure used for SGS constants evaluation. The 
presented procedure often leads to local instantaneous 
negative values for the constants and this is very bad 
for the numerical stability. In order to avoid this 
phenomena, a two step approach is used. In the first 
step, a smoothing is performed locally. This can be 
done by a common technique like : 
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Smoothing is combined with the time integration 
scheme. It is still unclear if this smoothing can be 
performed at every time step, or if it is necessary even 
for every substep in the RK time integration scheme. 
Also, the smoothing may be applied more then one 
time, so a smoother distribution will result. An 
efficient implementation is usually based on 3 to 5 
smooting cycles and no smoothing in the substeps. 
The second step is a clipping one. This is necessary 
only in a limited number of cases, where negative 
values still exist. As a result, all negative values are 
automatically set to zero, and if requested, also a 
maximum value can be imposed. In the end, the 
algorithm generates a rather smooth field for the SGS 
constants, with no negative values and no peeks above 
a given limit. 
 
In the case of multifluid non/reacting formulation, 
SGS modeling is very delicate. When spatial filtering 
is applied to the transport equation for a species mass 
fraction, the resulting equation has the form : 
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where ScY is the molecular Schmidt number for 
species Y, formation/consumption of Y through 
combustion is accounted for by chemical source term 
ω(x,t), and the subgrid scale flux of Y can be 
approximated as : 
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Same dynamic procedure for the SGS constant can be 
used, but the real difficulty in the modeling process 
came from the source term. As a consequence, LES 
for multifluid reacting flows have to provide special 
solutions for SGS modeling of this term. 
 

6. The test case 
 
The test case presented is for a 3D square cylinder at 
Reynolds = 22.000, a well documented by 
experimental reports [0]. We will use a reference 
Mach = 0.15 for the external flow, higher than the 0.1 
value used currently. The reason for this is that we 
intend to also see a compressibility correction in the 
wall-laws formulation, which is triggered at a local 
Mach number higher than 0.25. The geometry of the 
domain is as indicated in the ERCOFTAC Test Case 
LES2, i.e. –4.5D to 20D in the flow direction, -7D to 
7D in the normal direction and 4D in spanwise 
direction, even if it seems that a larger domain might 
have been more appropriate. The computational effort 
is deliberately taken from 500.000 up to 1.5 million 
nodes. 
The domain is discretized as follows. A 2D 
unstructured mesh is first build for the given 
configuration. Then this grid is naturally extended 
spanwise. The final grid is consisting of tethraedra 
and is uniform in the spanwise direction. The basic 
2D mesh is generated using a Delaunay 
triangularization algorithm, based on initial 
distribution of points on the solid surface and the 
external boundaries. A regularization algorithm is 
used in the final stage. In order to have some 
requirements for regularity close to the solid surface, 
an initial structured qudratical grid (stretched to the 
surface and the corners with the same ration of 1.05) 
was build in this region and then it was triangulated 
naturally. This is a simple approach to the grid 
optimization problem when we are not interested in 
high adaptation degrees [0]. Also, due to a 
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geometrical symmetry, the initial domain was 
discretized for the upper half, using a given 
distribution for the downstream symmetry line. In this 
way one can have a control over the points distribution 
in the wake region. Then the final domain was 
generated using the mirror image. The requirements 
for the wall treatment are for a target y+ = 1...3 and the 
maximum number of points in the 2D section was 
limited to approx. 50.000. The 2D mesh was 
partitioned for MPP implementation using METIS 
code [0]. An automatic procedure is implemented for 
quick partitioning 2D domains for any given number 
of processors to be used, minimizing the number of 
communicating nodes and having some uniformity for 
the loading balance on every subdomain.. The 3D 
extension is performed on parallel planes, equally 
spaced at a distance given by the initial global 
requirements. The number of planes used was between 
10 and 30. Generally we intend to use for this test case 
32 to 64 domains, with around 20.000 nodes allocated 
to each processor and up to 1.500 nodes for 
communication between domains.  

 
Fig. 1 – Mesh partition 

 
Fig. 2 – Mesh detail 

The efficiency tests performed with the code give an 
estimate of 60% efficiency for the 64 processors 
partition. The geometry is presented in Fig. 1-2. 

The boundary conditions used for the simulation are 
as follows. A freestream boundary is defined around 
the cylinder and the numerical treatment is made 
using characteristics. No fluctuating velocity profile 
on the incoming stream boundary was specified. 
Periodic boundary conditions are used in the 
spanwise direction. The wall laws are used for the 
solid surface and no coupling with a low Reynolds 
model was made. The constants in the wall laws were 
as for the classical k-ε model. No smoothing for 
pressure at the solid surface was performed, and the 
global distance to the solid surface was imposed at 
0.0025 . This value is confirmed by previous k-ε 
simulations under the same geometrical and flow 
constraints. All other simulation parameters ware as 
for classical RANS simulations, so the global time 
step strategy was used (we select at every iteration 
the global minimum of all locally computed time 
steps) with a time step around 0.0002. Because such 
simulations are requesting long computational times, 
a coarse grid was used to have an initial starting 
solution. All simulations were then started from this 
initial field solution extrapolated in the working grid. 
Time averaged parameters were computed after a 
cvasiperiodic solution was achieved, and time 
statistics were considered for 3 cycles. It is a 
minimum requirement but one has to consider the 
huge computational time involved. 

 
7. Numerical results 

 
All the simulations were performed on the Cray T3E 
supercomputing complex at FZJ-Juelich, using an 
MPI parallelized implementation of the code [0]. The 
target solution was either a solution as close as 
possible to the experimental values of Lyn [0] or the 
influence that some parameters of the numerical 
scheme or the SGS modeling have on the reference 
solution. The reference solution was considered for 
the coarsest grid (only 10 points in spanwise 
direction, approx. 500.000 points), β= 0.1 and γ = 0.5, 
with the standard Smagorinsky model with Cs =0.10, 
using Reichard wall laws and δ = 0.0025. The global 
values for reference were St = 0.129, Cd = 2.255, 
DCd = 0.25, DCl = 2.25 . The Strouhal number St 
agrees well with the experimental one ( St = 0.132+/-
0.004 ) and the Cd is 7.5% higher then the 2.1 
experimental value. Also, the amplitude in drag is 
higher than expected. This can be explained by the 
fact that the computational domain is not very large 
and boundary influence is important. Details for the 
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flow are presented in Fig. 3-5. Some local information 
for pressure distribution on the surface Fig. 6 

 

 
Fig. 3 – Instantaneous Iso-Mach and streamlines 

 
Table 1 - Cs influence 

The influence of the Cs constant was investigated 
using the reference solution and global parameters as 
indicators for the accuracy of the results, presented in 
Table 1. The higher the values for the Cs constant, the 
lower the St number is, with an constant increase in 
the drag coefficient, combined with lower oscillations 
in lift and drag. It is a logical trend that is based on the 
constant increase in numerical viscosity through the Cs 
coefficient. The value of Cs = 0.10 and Prt = 0.92 is a 
confirmation for other similar numerical experiments. 

 
Fig. 4 – Turbulent kinetic energy k 

 

 

 
Fig. 5 – Instantaneous vorticity contours 

A separate analysis was performed in order to 
investigate the influence of the definition of the filter 
length from (7). There was no significant changes in 
the global parameters considered, but one can identify 
some changes in other parameters. For instance, if 
one choose to plot the ratio of the turbulent 
viscosity/laminar viscosity, there is a difference in the 
field distribution of this parameter (mainly close to 
the solid walls) as well as in the rage of the values. 
However, it is not possible yet to decide what 
definition to use based on the current results. The first 
definition will be used in the next steps. 
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Fig. 6 – Time averaged pressure distribution 

The dynamic model was tested and compared with 
the standard one, using the same parameters as for the 
reference solution. The global values were close to 
the reference ones, but somehow worst if compared 
to the experimental values. The Strouhal number was 
0.142, so 7.5% higher, and drag was Cd = 2.35, 
11.9% higher. Also the amplitude of the fluctuations 
was higher by 25%. These results confirm that the 
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dynamic model has to be triggered properly for every 
problem. It is also possible that more smoothing cycles 
and/or a different clipping procedure may give better 
results. All comments also have to be based on the 
imposed values for the beta-gamma scheme that may 
influence these findings. 
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 Fig. 7 – r parameter distribution 
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Fig. 8 – Gamma influence at beta = 0.1 

The numerical scheme was investigated using standard 
Smagorinsky model and the reference solution as 
initial values. Then, both β and γ parameters were 
changed and new solutions were computed. For a fixed 
value of γ = 0.5, the upwind β parameter was modified 
from 0.01 to 0.3. The values for the global parameters 
are presented in Fig. 7. Also, for a fixed value of β 
=0.1, the γ parameter was modified from 0.1 to 1.0 . 
Results are presented in Fig. 8. From these results it is 
clear that the numerical scheme has a strong influence 
and the indicator introduced by (16) can be used to 
have more information on this effect. 

If we compare the results with the incompressible 
case considered, one concludes that lower values for 
both β and γ have to be used in order to match the 
experimental data. However, one can see that several 
combinations for β and γ may provide good results, 
so further analysis may be considered in order to use 
LES with upwind schemes. From the r indicator, one 
can see that the distribution of the r in the field is 
very interesting, with only 0.1% of the points with 
values above the average value of 0.118, as in Fig. 6. 
This indicator also requires further investigation in 
order to confirm these results. 
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Fig. 9 – Beta influence at gamma = 0.5 

The 3D aspects of the numerical discretization were 
investigated using 3 levels of spanwise distributions, 
from 10 to 30 planes in this direction. The results 
show that there are no significant changes with the 
increase in resolution in this direction, but this is 
because of the fact that the grid was still very coarse 
in this direction as compared to the main flow 
direction. The computational effort was however 
important, mainly for the 1.5 million point 
simulation.  

 
8. Some conclusions 

 
The present work is related to the efficiency of the 
LES using wall-laws for compressible flows. The 
formulation of the model and the various parameters 
involved in the LES model were investigated in 
numerical simulation for the square cylinder case at 
Reynolds 22.000. The dimension of the problem and 
the complexity of the geometry are considered at 
representative for complex engineering flows and 
only suitable to be implemented on MPP computers, 
like the SADDAM cluster at INCAS. Based on the 
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numerical results, some preliminary conclusions can 
be formulated, as follows: 
 
• It is possible to use β-γ  scheme for LES 

compressible flows with the appropriate selection 
of their values. It is obvious that for very low 
compressible flows, both β and γ has to be as low 
as possible. On the other hand, for higher Mach 
numbers, one might expect to preserve the 
properties of the upwinding even for LES 
modeling, with a selection around (β, γ ) = (0.1, 
0.5). More numerical experiments and validations 
with experimental data have to be performed in 
order to validate this conclusion. 

• Time step integration scheme has to be explicit, 
because large CFL implicit numbers tend to act 
like filter in time on the solution. Also, since one 
is interested in LES for highly unsteady flows, 
non/reacting multifluid, etc., this seems the right 
choice. On the other hand, one has to remember 
that such simulations are very time consuming, not 
mainly because of the size of the domain, but 
because of the time development of the solution. 

• There was no significant difference between the 
standard and the dynamic LES model for the 
global parameters in the flow. If we consider that 
the dynamic model requires approx. 15% more 
time during the simulations, then we conclude that 
for rather simple flows, the standard model should 
be used. More investigations have to be performed 
in this direction either. 

• Wall laws can be used in LES if there is no better 
option. The implementations seams to comply 
with the experimental data and there are no 
problems concerning convergence. However, the 
fact that such laws are filtered in time and LES is 
using spatial filtering remains a problem. 

• The global efficiency of the code using LES is as 
good as for the k-ε, even better if we consider 
memory allocation and I/O time. This conclusion 
is valid only for unsteady flows, where one has to 
compute long time cvasiperiodic solutions, so that 
time averaging is not an extra option. We believe 
that LES under presented form, for the test case, is 
even more robust than standard k-ε model. 

 
All the preliminary conclusions are coming from 
simulations on the test case. More investigations are 
required for other test configurations for complex 
geometries and for multifluid non/reacting flows.  
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