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Abstract: The purpose of this paper is to present some aspects regarding two calculus models to 

evaluate the risk zone of the multistage launcher. Regarding the risk zone, unlike the classic model 

used for the launcher, we will use a calculus model build on non-inertial frames /taking part to the 

diurnal rotation (Earth spin). This is necessary to link the risk zone of the launch position, and place 

it on the map. For the risk zone we will use actually two models: first build in start frame which is 

more suitable for ascensional guidance phase, and second, built in quasi – velocity frame used for 

unguided motion especially in descending phase. The discussions will focus around the possibility to 

find a launching area to be satisfactory in terms of risk conditions arising from the SOL launching 

Key Words: small orbital launcher, risk zone, danger zone, quasi-velocity frame 

1. INTRODUCTION 

The first aspect regarding the flight experimentation of the launch vehicle (LV) Figure 1 is to 

determine the risk zone. The risk zone is defined in [2] as the zone where the vehicle can  

 

find itself because of the occurrence of certain 

incidents (malfunctions, wrong commands). In 

order to determine the risk zone one must assume 

some malfunctions that can lead to symmetrical 

commands generating a lateral movement; this is an 

extreme situation that allows the maximum 

development in the horizontal plane of the 

trajectories. The handling of the launch vehicle and 

the energy disposal on board the vehicle imposes its 

limits. The knowledge of the risk zone is necessary 

for avoiding certain accidents that can occur by the 

crashing of vehicle or parts of the vehicle (stages) 

over civilian areas or by injuring the personnel and 

destroying the involved in the experiment. Figure 1. SOL - LV 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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The delimitation of the risk zone in order to execute the experiments in safety conditions 

can be done with a calculus model of the commanded flight, to which certain variations of 

control can be added in time, in order to obtain a maximum deployment of the trajectory in 

horizontal plane, corresponding to certain flight angles. Paper [2] exemplified the calculus 

models for the risk zone, the problem being solvable with the help of a flight model with 6 

degrees of freedom. 

Processing work [6], we obtained the motion dynamic equations in Start frame, by 

means of which we can in principle solve any technical problem. But often in order to 

investigate the motion it is appropriate to introduce simplifications for solving some specific 

problem. 

For this reason, many studies of the launcher dynamics are straightforward if we use the 

description of the motion in a frame linked by the velocity vector. Next, beside well-known 

equations in Start frame, using work [6] we will write the equations set out above, in a frame 

related to the velocity, called quasi-velocity frame. 

2. THE FRAMES 

The Local Frame 
LLLL ZYXO  

This coordinate system has the origin in start position, being earthbound and participating in 

diurnal rotation (Earth spin) Figure 2. The axis LY  is the position along the vector r  at the 

start moment. 

The axis LZ  is parallel to the equatorial plane, being oriented to the East. The deriving 

LL axis forms with the first two axes a right trihedral. 

The Start Frame - SSSL ZYXO  

This coordinate system has the origin in start position, being earthbound and participating in 

diurnal rotation (Earth spin). 

The axis LY  is the position along the vector r  at the start moment. The axis SX  is 

oriented toward the launch direction and makes an azimuth angle 0ψ  related to LX  axis. 

The deriving Z axis, forms with the first two axes a right trihedral, being oriented to the 

right relative to the launch plane. 

The Initial Start Frame - 000 ZYOX  

This coordinate system has the origin in start position, being loosed from Earth and does not 

participate in its diurnal rotation (Earth spin). This frame overlaps the start frame SSS ZYOX  

during the launch moment. It doesn’t participate in Earth diurnal rotation being an inertial 

frame. 

The Geographical Mobile Frame - ggg zyOx  

This coordinate system has the origin in the center of the launcher mass of the launcher, 

being earthbound and participating in diurnal rotation (Figure 2). 

The axis gy  is the position along the vector r . The axis gz  is parallel with the 

equatorial plane, being oriented to the East. 
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The deriving gx axis, forms with the 

first two axes a right trihedral. The 

geographical mobile frame overlaps 

the local frame at the start moment. 

The Geocentric Spherical Frame 
rOp   

This coordinate system originated in 

the center of the Earth, is earthbound 

and participates in its diurnal rotation 

(Earth spin). The launcher position 

can be described using spherical 

coordinates   r,, , as can be seen in 

Figure 2. 
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Figure 2. The Geocentric and Geographical Frames 
 

 

The Body Frame Oxyz  

This coordinate system has 

the origin in the center of 

launcher mass (Figure 3). 

The axis x  is located along 

the longitudinal symmetry 

axis of the body. Axis y  is 

located in the symmetry 

plane of the vehicle. The 

deriving Z axis, forms a 

right trihedral with first two 

axes. Afterwards, we use 

this trihedral to write 

dynamic equations of 

rotation around the mass 

center. Figure 3. The Body Frame, Velocity Components, Aerodynamic Angles 

Also it will be use to write thrust terms and also aerodynamic terms. 

The Velocity Frame 
aaa zyOx  

This coordinate system has the origin in center of the launcher mass. The axis ax  of this 

trihedral is placed along the velocity vector V . The axis ay  and az  are in a perpendicular 

plane of the velocity vector, which in turn is tangent to the trajectory. Axis ay  is located in 

the symmetry plane of the vehicle. The deriving z  axis forms a right trihedral with the first 

two axes. Next we use this trihedral to write aerodynamic terms, thus it is also called 

aerodynamic trihedral. 
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Figure 4. The rotations between the geographical frame and quasi-velocity frame 

The Quasi-Velocity Frame ***
aaa zyOx  

This coordinate system has the origin in center of the launcher mass (Figure 4). Similarly to 

velocity frame, the quasi-velocity frame has the axis *
ax  located along the velocity vector, 

but the axis *
ay  it is in vertical plane. The deriving *

az  axis, forms a right trihedral with the 

first two axes. Next we will use the trihedral to write dynamic translation motion equations 

of the mass center. 

3. COORDINATE TRANSFORMATIONS 

The rotation matrix between the body frame Oxyz  and the aerodynamic frame 
aaa zyOx ,  used 

for aerodynamics terms is presented in paper [2], [4], [5], [6]. The rotation matrix between 

the body frame Oxyz  and the quasi-velocity frame ***
aaa zyOx  is: 
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*A  (1) 

With this matrix one can express different values from the quasi- velocity frame in body 

frame. If it is necessary to express values from the body frame in quasi-velocity frame, like 

thrust components, we can use the inverse of this matrix, which is identical with the 

transpose of the matrix
*A . Using Figure 4 we obtain the rotation matrix between the 

geographical frame and quasi-velocity frame: 
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In this case, we can write the link between the body frame and the geographical frame: 
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 ** AAA  (3) 
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4. THE EQUATIONS OF MOTION IN QUASI-VELOCITY FRAME 

Because the quasi-velocity frame is not an inertial frame, the dynamic equation of motion in 

quasi-velocity frame has the following form: 

cV
mt

ag
N

VΩ
V




  , (4) 

where we have grouped the aerodynamic and thrust forces. 

TFN   (5) 

And Coriolis acceleration is: 

VΩa  pc 2  (6) 

The locale derivative of the velocity in quasi-velocity frame is tV , and 
VΩ  is the rotation 

velocity of the quasi-velocity frame related the local frame, which can be expressed in 

vectorial form: 

λχγΩ  
V

 (7) 

The derivatives of latitude and longitude angles along the geographical frame are: 

  sincos gg jiλ  ;  
gk  (8) 

where 
ggg k,j,i  are unitary vectors in geographical frame. 

If we make the projection along the quasi-velocity frame it results: 

       sincoscossinsincoscossinsincoscoscos aaa kjiλ   

  cossinsincossin aaa kji  
(9) 

The derivatives of the climb angle and air - path track angle are: 

  cossin aa jiχ   akγ    (10) 

In this case, the components of angular velocity vector along quasi-velocity frame 

become: 

   sincossinsinsincoscoscos* 
l  

   cossinsincossinsincoscos 
m  

  cossincosn  

(11) 

Taking in consideration that the vector pΩ  has the same orientation with vector λ , we 

can write: 

   

  













sincos

sincoscoscossinsinsincoscoscos

a

aa

pp Ω
k

ji
Ω , (12) 

for where Coriolis acceleration components in quasi-velocity frame are: 

0cxa ;  sincos22 ppzcy VVa ; 

  sincoscoscossin22 ppycz VVa  
(13) 
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The gravitational acceleration is presented in detail in papers [2], [6], being finally 

expressed by two terms, one term denoted rg  oriented along the radius r  and the other term 

g  parallel with polar axis SN  . These two terms contain gravitational components and 

also centrifugal components given by Earth spin. 

rgg pArr
2 ;        sin2 rgg pA

, (14) 

where 
Arg  and 

Ag  are given by work [6], [8], being obtained by so-called „ 2J “model, that 

allows to take into account  the influence of the flattened shape of the Earth, depending of 

the latitude angle  : 

...)1sin5(
2

3 2

4

20

2

00 
r

a

r

a
gAr

;   ...sin3
4

20 
r

a
gA

. (15) 

Next we will project the terms given by relation (14) along the quasi-velocity frame. For 

this keep in mind that term rg  is along the angular velocity vector χ  given by relation (9) 

and term g  is along the angular velocity vector λ  given by relation (9) opposite to it. In 

this case we have: 

   sinsincoscoscossin ggg rx ; 

   cossinsincoscoscos ggg ry ;   sincosggz . 
(16) 

Summarizing, starting from relation (4), we obtain the dynamic equation which 

describes the motion of the launcher mass in quasi-velocity frame:  
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(17) 

complemented with kinematic equations: 

 coscos
r

V
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Regarding the dynamic equations of the rotational motion around the center of mass, 

written in body frame, and resuming the results obtained in paper [2] we obtain: 

qr
A

CB

A

LL
p

AT 



 ; rp

B

AC

B

MM
q

AT 



 ; pq

C

BA

C

NN
r

AT 



  (19) 

From the previous relations we can observe that for obtaining the components of the 

aerodynamic force and the detraction force in the quasi-velocity frame we need the angles 

connecting the quasi-velocity frame from the body frame. 

These angles are: *,   and  . In order to obtain them in the form of differential 

equations we must take into account that if the angular velocity in the body frame is 

 Trqp  in reference to an inertial frame and the angular speed of the quasi-velocity 

frame referenced to a local frame is  TnmlV
 Ω , between the two vectors the 

following equation is true: 

pV ΩαβμΩΩ   **  (20) 

If we project this equation on the axes of the body frame we obtain: 
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by substituting the matrixes: 









































































































































pr

pq

ppl

n

m

r

q

p

0cos0sin

sinsincoscossin

sincossincoscos0

coscossincossin

cossinsinsincossinsinsincoscoscossin

cossincossinsinsinsincoscossincoscos

*

*

*

*

***

***

***





 (22) 

From where we get the following scalar connections; 

13
*

12
**** sincoscos)( aap nml      

23
*

22
**** coscossin)( aaq nnl     

33
*

2,3
*** sin)( aar nml    

(23) 

where we denoted with ija  the elements of the 
*A  matrix and the rotation velocities after 

the axes connected to the body: 

pppp  ; pqqq  ; prrr   (24) 

If we continue the calculation: 
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13
*

12
**** sincoscos)( aap nml    

23
*

22
**** coscossin)( aaq nnl    

33
*

2,3
*** sin)( aar nml    

(25) 

and we finally get: 
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tancossin
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nmlqp  

  sincoscossin ***
nmqp  
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*

***

cos

cos

cos

sin
tansintancos









 

nmrqp  

(26) 

Where the angular velocity components in the body frame rqp ,,  can be found from the 

dynamic equations written around the center of mass (19) and the components of the angular 

velocity of the quasi-velocity frame  nml ,, **  are given by equation (11). 

The systems of equations (17), (18), (19) and (26) represent the movement equations of 

the unguided rocket. In order to construct the guided movement equations we must add the 

guidance equations or the guidance commands. 

5. NONLINEAR RELATIONS FOR GUIDANCE AND CONTROL 

Resuming paper [2], [3] the guidance command for SOL is described by following relation: 

     Tnu

T

zu

T

ub uuuuuuuu
m   000 321 TTTuu  (27) 

where the command signals have the significance zu  - Lateral linear deviation signal; u - 

Roll signal; u - Pitch signal; u - Yaw signal; u  - incidence signal; u -Sideslip signal; 

nu - Yaw  angular deflection signal; mu - Pitch angular deflection signal. 

Summarizing the above relations, we can write the guidance command (27) in scalar form: 

;cossincoscossin

;coscoscossincos

;sin

nznbn

mzm

l

uuuuuuu

uuuuuu

uuu













. (28) 

6. CALCULUS ALGORITHM, INPUT DATA, TEST CASE 

Algorithm 

The calculus algorithm consists in multi-step method Adams' predictor-corrector with 

variable step integration method [1], [9], [10]. Absolute numerical error was 1.e-12, and 

relative error was 1.e-10. 

Input Data for SOL Model 

The mechanical characteristics for SOL are included in Table 1. 
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Table 1 Mechanical Characteristics 

Configuration Mass 

m  [T] 

Center of mass 

(from the bottom) 

cmx  [m] 

Axial Moment of 

Inertia 

A  [Tm2] 

Transverse Moment of 

Inertia 

B  [Tm2] 

 Initial Final Initial Final Initial Final Initial Final 

Stage I + II + III + AVUM 

+ P/L 

34.7 10.7 10.3 6.1 17.8 3.9 550.1 129.7 

Stage II + III + AVUM + 

P/L 

8.5 2.6 4.7 2.8 2.0 0.7 31.7 6.1 

Stage III + AVUM + P/L 2.0 0.6 2.2 1.5 0.5 0.2 1.1 0.4 

AVUM + P/L 0.49 0.38 1.3 1.2 0.15 0.11 0.17 0.13 

P/L 0.1 0.1 0.25 0.25 0.01 0.01 0.01 0.01 

For determining the launcher aerodynamics properties, we used a methodology based on 

paper [7]. Thrust characteristics for SOL3 are presented in table 2. 

Table 2 Thrust Characteristics - V - Vaccum 

Stage Specific 

impulse 

spI  [s] 

Propellant 

mass 

pm  [T] 

Total 

Impulse 

I  [kNs] 

Duration 

t [s] 

I (V) 280 23.9 65649 72 

II (V) 290 5.9 16785 45 

III (V) 295 1.4 4051 45 

AVUM (V) 315 0.11 340 200 
 

 

Test case: 

As test case, the following initial conditions 

were used: Geographic orientation: Azimuth 

angle  1150  (towards the South - East); 

Geocentric latitude  450  (Romania 

latitude); Altitude: ][10 my  ; Initial velocity 

]/[10 smV  ; Initial climb angle  900
. In 

order to evaluate the risk zone, we consider the 

following worst scenarios: 

During the ascensional phase, the 

guidance system applies a lateral commands 

corresponding to different yaw angles. After 

first stage or after second stage the launcher 

motor stops and the launcher or parts of it 

follows a ballistic unguided trajectory. 

The risk zone is given by the horizontal 

projection of all possible trajectories. Actually, 

the two risk zones obtained correspond with 

the area where the first stage or the second 

stage of the launcher is possible to fall. 
Figure 5. SOL geometry 
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7. RESULTS 

Evaluation risk zone for the first stage 

As we have previously mentioned, for obtaining the maximum dispersal of trajectories in 

horizontal plane, we assumed the occurrence of a navigation error which generates a lateral 

guidance signal which is linear, as shown in Figure 6, which then takes the form of 7 distinct 

angular values. As a result of these wrong commands, during the functioning of the first step 

we get attitude errors, as shown in Figure 7. 
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We can observe from this 

figure that after the first step 

stops functioning, the head 

angle value remains constant, 

case which corresponds to a 

ballistic evolution that can be 

achieved only by the first step 

of the launcher after the 

detachment or by the entire 

launcher if the second step does 

not fire, or by the center of 

mass of the elements resulting 

in the case of an explosion at 

the end of the first step's 

functioning. Following the 7 

error cases analyzed in Figure 8 

we present a beam of velocities  
Figure 6. Imposed commands for lateral maneuver SOL 2 

and in Figure 9 we present the diagram of the 7 possible trajectories in vertical plane. 

Finally, after we make a horizontal projection of 7 possible trajectories, we obtain the risk 

semi-zone for the first step, which is presented in Figure 10. 

 

Figure 7. Achieved commands for lateral maneuver SOL2 
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Figure 8. Velocity diagram SOL 

 

Figure 9. Trajectory diagram – vertical plane SOL 

 
Figure 10. Trajectory diagram – horizontal plane. Risk zone first stage SOL 
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Evaluation risk zone for second stage 

 

We act similarly in the case of the 

second stage. Therefore, in Figure 11 

we present a beam of 6 erroneous lateral 

maneuvers which may occur during the 

functioning of the first two stages. In 

Figure 12 we present the head angles 

that may occur because of the 

navigation errors. In Figure 13 we 

present the velocity diagrams 

corresponding to the functioning of the 

two stages. In Figure 14 we present the 

trajectories beam in the vertical plane 

and in Figure 15 we present the 

trajectories beam in the horizontal 

plane, which represents the risk  Figure 11. Imposed commands for lateral maneuver - SOL 

semi-zone for the second stage of the launcher. 

 
Figure 12. Achieved commands for lateral maneuver – SOL2 

 
Figure 13. Velocity diagram – SOL2 



85 Small Orbital Launcher - Risk Zone Evaluation 
 

INCAS BULLETIN, Volume 7, Issue 3/ 2015 

 
Figure 14. Trajectory diagram – vertical plane – SOL2 

 

Figure 15. Trajectory diagram –horizontal plane. Risk zone second stage SOL 

In Figure 16 are presented risk area for the first stage and in Figure 17 for the second stage in 

case of launching from Romania (Capu Midia fairing range) in inclined orbit  54i . 
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Figure16. Risk Zone for SOL stage 1 in Romania launch case 

 

Figure17. Risk Zone for SOL stage 2 in Romania launch case 
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7. CONCLUSIONS 

We developed two mathematical models to evaluate the risk zone. The first one was built in 

the start frame and was used for the ascensional guided phase because the guidance relations 

is more convenient to be written in this frame. In second phase of the evolution when the 

rotational motion is more difficult to be described due to dynamic instability, we have built 

the second mathematical model based on quasi – velocity frame that contains only 

translational equations, enough for describe this ballistic motion of the launcher or its parts. 

Using these two models and considering the worst scenarios we have obtained the 

horizontal dispersal of the trajectories defining the risk zone. Risk zones were 

evaluated in two situations: after the separation of the first stage and after the separation of 

the second stage of the launcher. These two zones also represent the possible area where the 

first or the second stage of the launcher will fall. The results obtained can be used to choose 

the launching location for SOL. As we can see in Figure 16 and Figure 17, from the risk 

zones point of view, launching from Romania is not convenient because the risk zones 

overlap populated areas of the states in the vicinity of the base trajectory, which is not 

allowable from a firing safety point of view. 
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