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Abstract: In order to continue paper [5] which presented the nonlinear equations of the movement for 

small satellite, this paper presents some aspects regarding the synthesis of the attitude control. After 

the movement equation linearization, the stability and command matrixes will be established and by 

using the gradient methods controller we will obtain them. Two attitude control cases will be 

analysed: the reaction wheels and the micro thrusters. The results will be used in the project 

European Space Moon Orbit - ESMO, founded by the European Space Agency in which the 

POLITEHNICA University of Bucharest is involved. 
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NOMENCLATURE 

  - Rotation angle around body BX axis 

  - Rotation angle around body BY axis 

  - Rotation angle around body BZ axis 

  - Attitude angle around z axis 

  - Attitude angle around y axis 

  - Attitude angle around x axis 

BIω -Angular velocity of the body frame relative to the inertial frame expressed in body 

frame; 

RIω -Angular velocity of the reference frame relative to the inertial frame expressed in 

relative frame; 

RIBω -Angular velocity of the reference frame relative to the inertial frame expressed in body 

frame; 

BRω  -Angular velocity of the body frame relative to the reference frame expressed in body 

frame;  
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ECBA ,,,  - Satellite inertia moments;  

m  - Satellite Mass; 

a  - Major semi axis of elliptical satellite orbit; 

e - Eccentricity of elliptical satellite orbit; 

t  - Time; 

r  - Position vector of the satellite relative to the origin of the inertial frame – centre of the 

Earth; 

T -Orbital period; 

v  - Velocity. 

1. BALANCE MOUVEMENT 

The study of flight stability will be made accordingly to Lyapunov theory, considering that 

the system of movement equations, established in paper [5], is perturbed around the balanced 

movement. This involves a disturbance shortly applied on the balance movement, which will 

produce deviation of the state variables. If we do a series development of the perturbed 

movement equations in relation to status variables and take into account the first order terms 

of the detention, we will get a system of linear equations which can be used to analyse the 

stability in the first approximation, as we proceed in most dynamic non linear problems. To 

determine the basic movement parameters in these equations we consider that the vehicle is 

stabilized in the position where the body frame overlaps the reference frame [4], [5]. This 

means that the rotation angles [5], [9] are nulls: 

 TR 000a  (1) 

and also that the angular velocity of the body frame [5] related to the reference frame is null. 

 TBR 000ω  (2) 

In this case the link between angular velocity, for the balance movement equation 

becomes: 

RIBBI ωω   (3) 

Moreover, because the attitude or the rotation angles are nulls and the rotation matrix is 

a unitary matrix, the previously relation becomes: 

RIBI ωω   (4) 

If we write it in scalar form we obtain: 

0x ; jy   ; 0z  (5) 

In order to have a stationary movement, we must admit that the orbit is circular. This 

hypothesis leads to a constant orbit range, ar   which allows us to have a constant value 

for the orbital angular velocity: 

r

v
j   (6) 

If we suppose that the angular velocity j  was obtained using only the reaction wheels 

by spinning them around the BY  axis, then the momentum exchange device for balance can 

be put in the form: 

 Twyw h 00h , (7) 
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where: 

Bh jwy  , (8) 

If the angular velocity j  was obtained using the rotation micro thrusters around the 

BY  axis, then the momentum exchange device for balance can be considerate null: 

 Tw 000h  (9) 

This situation will be further analysed. 

2. LINEAR FORM OF THE GENERAL EQUATIONS 

If we consider the base general equation in accordance with Kepler’s model we can obtain 

the linear form of these equations.  

From dynamic Euler equation we can obtain the following two linear forms: 

- for the thrusters control case 

CRRBIBI MJaMωMω  1


  (10) 

- for the reaction wheels control case: 

wwhRRBIBI yJhMaMωMω  1


  (11) 

The gyroscopic terms are: 























 

EFBA

FD

CBDE

j

2

0

2
1JM   (12) 

The reaction wheel term is: 















 

 

001

000

100
1JM jh  . (13) 

Starting from the gravity gradient moment components, we can obtain the following 

relations for the small rotation angles: 

  )(3 2 CBL jg ;   )(3 2 CAM jg ; 0 gN  (14) 

The matrix form in both cases is: 





















 

000

00

00

3 12 CA

CB

jR JM   (15) 

In this case, for equation (10) the command moment is given by rotation thrusters: 

 TCCCC NML M , (16) 

and for equation (11) the command is given by reaction wheels: 

 Twzwywxw yyy y , (17) 

where: 
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   Twzwywx

T

wzwywx hhhyyy    (18) 

From kinematic equation, if we use rotation angles, the kinematic equation from paper 

[5] in its linear form becomes: 

RRBIRR aAωWa   (19) 

where: 

ReRRR  AWWA   (20) 

whereabouts: 







































BR

BR

BR

AAA
R

ω

ω

ω
WWW

W

00

00

00
 



























RI

RI

RI

eee
Re

ω

ω

ω
AAA

A

00

00

00














 
(21) 

Finally, using relations (10), (19), with rotation angles, the stability and the command 

matrices for thrusters control case are: 

Table 1.The stability matrix for the thrusters control 

case 

RRR

RBI

RBI

AWa

MMω

aω


 

 Table 2. The command matrix for the thrusters 

control case 

R

BI

C

a

Jω

M
1

 

or, if used the reaction wheels to control the attitude, from relations (11) and (19) we’ll 

obtain: 
Table 3. Stability matrix for the reaction wheels case 

w

RRR

hRBI

wRBI

h

AWa

MMMω

haω

  

In the case of reaction wheels command, the last column remains, because this 

parameter is being controlled by command. 

Table 4.The command matrix for the reaction wheels case 

3

1

Ih

a

Jω

y





w

R

BI

w

 

In any of these cases the system can be put in standard form: 

BuAxx   (22) 

where: 

 TABI aωx  ;  TCCC NMLu  (23) 

or: 

 TwABI haωx   Twzwywx yyyu  (24) 
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Observation. For the balance movement described above, where the body frame coincides 

with the reference frame, the stability and command matrix are identical for attitude angles 

and rotation angles. 

Next, we will try to find an analytical solution of these equations. For this purpose we 

consider that the vehicle has a symmetric plane 
BBZOX  with two inertial products being 

nulls: 0 FD . As we will show in this paper [5], for our model the inertial products FD;  

are small comparatively with the inertial product E . From the kinematic equation we obtain: 

  jx


; 

y  
 

  jz


 

(25) 

From the dynamic equations we can write: 

wz
n
xwx

l
xwz

l
xj

wx
n
xjC

n
xC

l
xjxzj

z
xxj

x
xx

ybybhb

hbNbLbaaa



  23
; 

wy

m

yC

m

yjyy ybMba    23  

wz
n
zwx

l
zwz

l
zj

wx
n
zjC

n
zC

l
zjzzj

z
zxj

x
zz

ybybhb

hbNbLbaaa
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  23
 

(26) 

where we denoted: 

2
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2
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ECCB
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x
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2

2

EAC

CCB
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B
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2
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EAAB
ax

z



 ; 

2

)(

EAC

BCAE
a z

z

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2

)(

EAC

CBE
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


 ; 

2EAC

C
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x


 ; 
2EAC

E
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x


 ; 

2EAC

A
bn

z


 ;  

2EAC

E
bl

z


 ; 
B

bm
y

1
  

(27) 

Deriving equations (25) and substituting them in equations (26) we obtain: 

wz
n
xwx

l
xwz

l
xjwx

n
xjC

n
xC

l
xj

x
x

j
z
xjx

z
xj

x
x

ybybhbhbNbLba

aaaa



 

2

2 )1()3( 
 

wy
m
yC

m
yjy ybMba   23  
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zjwx
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

 2

2

)3(

)1( 
 

(28) 

First, we can notice that the second equation can be analysed separately. For the first 

and the third equations, if we consider the value of 
j  constant, we can apply the Laplace 

transformation, and then put these relations in the matrix form: 

buxA )(s  (29) 

where: 
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


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

A  (30) 











n

z

l

z

n

x

l

x

bb

bb
b  Tx ;  TCC NLu  (31) 

or, if we use the reaction wheels: 


















l

zj

n
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l
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n

x

n

xj

l

x

bsbbsb

bsbbsb
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
b   Twzwx yyu  (32) 

Easily we can obtain the inverse of the )(sA  matrix: 








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
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1
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A  (33) 

where the characteristic polynomial is: 

 
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







 (34) 

Using these results we can put the previous relations in the form 

buAx )(1 s  (35) 

This form represents the analytical solution of the commanded linear equations. 

Observation. For balance movement described above, the stability matrix A , defined by 

relation (30) is identical for the attitude angles and rotation angles. 

3. EXTENDED STABILITY AND CONTROL MATRICES 

Besides the general motion equations in their linear form described above, the S/C needs 

other equations to be added. Among them, the actuator equations and the auxiliary guidance 

equations cannot be neglected. For the autonomous flight, as is the case of S/C‘s, the 

auxiliary guidance equations are necessary in order to introduce integrated terms specific to 

PID-type controllers. 

In order to give commands using the micro thrusters, we introduce a controller, called 

the Trigger Schmidt element. For the linearization of this element, we applied the method 

given to us by paper [7], using the Fourier transformation. Thus, taking into account only the 

first harmonic approximation, we obtain a linear transfer function of the form: 

s

s
ksN Mu

M


)(  (36) 

where we denoted: 

0

1

x

a
k u
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b
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  (37) 
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 
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where Mba MM ,,  define the non linear function from figure 7, paper [5]. Sizes 0x  and   

represent the amplitude, and the pulsation of the input signal.  

In this case, considering the integrator element and feedback loop, the linear transfer 

function of the command system for a channel can be written as: 

  M
u
M

u
MM

M
u
M

ksks

sk
sH






1

)(
)(

20  (39) 

or, if we neglect the pulse term M , we obtain the following simplified linear equation: 

1
)(0




u
MM

u
M

ks

k
sH  (40) 

Starting from the previous relation, the linear form of the command equation becomes: 

    uDD  u

T

CCCM

T

CCC NMLNML   (41) 

where: 
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
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D , (42) 

Similarly, if we use the reaction wheels, the command equation proposed in paper [8] 

becomes: 

wuwwhwwyww uDhDyDy  ;   
ww yIh  3

 , (43) 

where: 
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For integral terms, linear form of auxiliary equation described in paper [5] becomes: 

   T
T

III     (45) 

For the thrusters command case, by using linear relation (41) and (45) we can build 

extended stability and control matrixes. 

 

Table 5. Extended stability matrix A  for the 

thrusters control case 

MC

RRR

RBI

CRBI

DM

II

AWa

JMMω

MIaω

3

1



 

  

Table 6. Transposed extended command matrix  
T

B  for the thrusters control case 

u

CRBI

Du

MIaω
 

 

 

Similarly, for the reaction wheels case, from relation (43), the extended matrix and 

command matrix become: 

 

 



Teodor-Viorel CHELARU, Adrian-Mihail STOICA, Adrian CHELARU 52 
 

INCAS BULLETIN, Volume 5, Issue 1/ 2013 

Table 7. Extended stability matrix A for the 

reaction wheels control case 

ywhww

w

RRR

RBI

wwRBI

DDy

Ih

AWa

JMMω

yhaω

3

1







 

 Table 8. Transposed extended command matrix T
B  

for the reaction wheels control case 

uw

wwRBI

Du

yhaω
 

In this case the system can be put in the standard form: 

BuAxx  ; Kxu   (46) 

where, for the thrusters control case:  TCRBI MIaωx  ;  Tnml uuuu , and 

for the reaction wheels control case:  Tww yhaωx RBI ;  Tnml uuuu . For 

both cases the control matrix K will be defined further. 

4. GUIDANCE COMMAND SYNTHESIS 

4.1 Optimal control using coupled states 

If we assume that we can access the extend state vector x  of the system: 

BuAxx   (47) 

then we could obtain directly the controller K  for optimal command: 

Kxu   (48) 

In order to satisfy the linear quadratic performance index (cost function): 

tJ TT d)(min
0

RuuQxx  


 (49) 

where the extended pair  BA,  is controllable and the state weighting matrix Q  is 

symmetric and quasi positive: 

;0Q
T

QQ   (50) 

the control weighting matrix R  must be symmetric and positive: 

;0R
T

RR  ; (51) 

In this case, the following relation gives the optimal controller 

PBRK
1 T  (52) 

where the matrix P  is the solution of the algebraic Riccati equation: 

0QPBPBRPAPA
T1T  

 (53) 

4.2 Optimal control using Kalman filter 

The usage of the optimal controller designed above requires access to all system's states, 

which is very difficult from the perspective of the limited number of sensors. In this case, for 

a complete description of the system we use a linear state estimator constructed as a Kalman 

filter. For this purpose we start from the regular relations: 
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vDuCxy

GwBuAxx




 (54) 

where w is the external noise and v is the internal noise introduced by the sensors. 

The idea of an estimator operation works like this: if the deliver the system )(:1 DC,B,A,  

with the state x, then, by using the system )(:2 DC,B,A,  that requires state z, which is accessible 

in this case to the controller, we can predict the state x. In order that the system 2  follows the 

system 1  we calculate a regulator L which brings the difference between the actual read states 1y  

and the estimated states 2y  as a correction into the system 2 . In this case we can write: 










vDuCxy

GwxBuAxx

1

0

1 :


 (55) 










DuCzy

yyLzBuAzz

2

210

2

)(
:

  (56) 

where initial conditions are introduced by 0x  and 0z , respectively. The possibility of tracking error, 

including into the initial conditions is given by: 

zxx ~ ;   000
~ zxx   (57) 

If we decrease 2  from 1  and neglect the noise we obtained: 

0

LCA
xx ~~ )( the   (58) 

Hence if L is dimensioned such that A-LC has eigenvalues with a negative real part, then the 

estimation error tends to zero. Since z is provided by the estimator, we have access to all the 

states in order to make the control of the form: 

Kzu   (59) 

In this case the system 1  is described by the equation: 

δδ oo xxBKBK)x(AxBKzAxx  ~  (60) 

which has the solution: 

)~( )()(

0

LCA

0

BKA
xBKxx

tt ehhe    (61) 

The process of calculating the estimator is similar to that described above for the 

optimal regulator. This is based on the dual system: 

uCxAx
TT   (62) 

for which we consider the performance index: 





0

dmin tJ TT
]uPux)GQ(Gx[  (63) 

By solving the matrix Riccati equation: 

0GQGCRPRCRAAR
1   TTT  (64) 

the matrix estimator is obtained: 
1

PRCL
 T  (65) 

where R is the solution of the Riccati equation. 
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4.3 Optimal control using uncoupled states (type PID after each of the satellite axes) 

In order to have a simpler control matrix and also a more robust one, by resuming papers 

[4],[5][6], the guidance commands for uncoupled state vector has the following form: 

 TR uuu Uu   (66) 

where the main control signals are PID structured: 

)
~~~

( 


  Ikkku I
uuu


; )

~~~( 



 Ikkku

I
uuu

 ; 

)
~~~( 




 Ikkku
I
uuu


 , 

(67) 

The matrix RU , was previously presented. The parameters relative 
~

;~;
~

 are given by: 

;
~

;~;
~

ddd    (68) 

where ddd  ,,  are the input reference values, and the integrals terms are defined hereby: 

   

~~~~~~
III


. (69) 

For balance movement we can write relation (160) in their linear form: 

fIKaKωKu   )( IRPBI  (70) 

where: 

dIRdPBId IKaKωKf    (71) 
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u
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k

00

00

00

K    (72) 

In this case we can obtain the control matrix for uncoupled case: 
Table 9. Control matrix K  for thruster's case 

IP

CRBI

KKKu

MIaω



 

Heaving the system in its regular form: 

BuAxx   (73) 

Kxu   (74) 

we defined the performance index 

tJ TT d)(
0

RuuQxx  


 (75) 

where the extended pair  BA,  is controllable and the state weighting matrix Q  is 

symmetric and quasi positive: 

;0Q
T

QQ  . (76) 

The control weighting matrix R  is symmetric and positive: 

;0R
T

RR  ; (77) 

In this case we can obtain the controller K  terms by using the gradient method for 

minimizing the performance index (75). In order to improve this method we will use the 
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adjoint theory as it is described in paper [12]. First, we will try to obtain a simplified solution 

for the guidance command defined previously in PID form. For this purpose we will start 

from the scalar equations established for the commanded linear equations (28). 

Moreover we will neglect cross influence introduced by the angular velocity j  and 

also we will consider the inertial product moment null: 

0E  (78) 

In this case all angular equations (28) have a similar form: 

A

L
 ;

B

M
 ;

C

N
  (79) 

If we neglect the actuator delay time: 0M , from the guidance command form 

established previously, we can write the following linear forms: 

 1/)
~~~

(  u

M

u

M

I

uuu kkIkkkL 
 


; 

 1/)
~~~(  u

M

u

M

I

uuu kkIkkkM 
 

; 

 1/)
~~~

(  u

M

u

M

I

uuu kkIkkkN 
 


  

(80) 

Separating angular inputs and applying Laplace transformation, from the previous 

relations we will obtain: 
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(81) 

Admitting proportionality between the coefficients and the inertial moment we can write: 

     111
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(82) 

Using these new coefficients, the transfer function for angular size has the form: 

32

2

1

3

32

2

1
0 )(

ksksks

ksksk
sH




  (83) 

Next we will use the pole-zero allocation method [4]. For this purpose we use an 

optimal function quite similar with the one previously obtained: 

3
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2

0
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0
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0
0

7.67.6

7.67.6
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sss
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sH  (84) 

with rr t0 , where 5.1r , and the response time is chosen. 

Identifying between functions coefficients, we can obtain the following useful relations: 

3
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0
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Teodor-Viorel CHELARU, Adrian-Mihail STOICA, Adrian CHELARU 56 
 

INCAS BULLETIN, Volume 5, Issue 1/ 2013 

Finally, choosing the response time str 5  we obtain: 01.21 k ; 603.02 k ; 

027.03 k . The obtained values 1k , 2k and 3k can be used as initial values for the gradient 

method 0. The gradient of the performance index with respect to the parameters 321 ,, kkk  are 

then the partial derivatives 

sk

J




, 3,2,1s . (85) 

This gradient can be calculated given a base case pair )],,(,[ 321 kkkKx  and then solving 

the so-called forward problem: 

xBKxAx sss 
~

 ,  3,2,1s , (86) 

with the initial conditions: 

0,)0( ss xx   (87) 

where: 

BKAA 
~

,  ss k KK ,  
s

s
k




x
x  . (88) 

Once these nine problems are solved, the gradient of the performance index is calculated 

with 

  3,2,1;
~

2

0








sdt
k

J
s

TT
s

T

s

xRKKxxQx  (89) 

where: 

RKKQQ
T

~
. (90) 

The first term in the integral requires the repeated solution of the forward problem. To 

circumvent this disadvantage one can use the adjoint function method. Let's consider λ to be 

the adjoint of x . The solution of the adjoint problem 

xQλAλ
TT ~~

 , (91) 

with a homogeneous final condition: 

0)( ftλ , (92) 

allows us the direct calculation of the gradient the performance index. To do this, we 

multiply the equation (80) with the adjoint variable   and then by integration we obtain:  





000

~~
dtdtdt xAλxAλxλ s

T

s

T

s

T  . (93) 

Integrating by parts the left term, we obtain: 







000

0

~~
dtdtdt xAλxAλλxxλ s

T

s

TT

ss

T  . (94) 

By grouping the two terms result we get: 

  





00

0

~~
dtdt xAλλAλxxλ s

TTT

ss

T  . (95) 
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On the other hand, if we consider the adjoint equation (91) with the final conditions 

(92), we get: 





0

00

0

~
dtdt TT

xBKλxλxQx s

T

ss . (96) 

In this case the relation (89) becomes: 

 dt
k

J
s

T

s

TT

s

T

s









0

0,0 22 xBKλxRKKxxλ , (97) 

for which, it is necessary to determine the direct and the adjoint states, which is an obvious 

advantage in terms of required calculations from the previous algorithm. 

Moreover, if we admit that the linear relation between the direct and adjoint variable is 

the one proposed by [3], we have: 

Pxλ   (98) 

or after deriving: 

xPλ   , (99) 

By introducing the state equation (73) and the adjoint equation (91) we get: 

0QPAAP 
~~~ T

, (100) 

which is the Riccati algebraic equation in variable P . In this case the relation (97) becomes: 





0

00 )(22 dtJ T

s xKBPRKxxλ s

TTT

s  (101) 

which supposes to evaluate the direct states x  by solving the state equation (73) and then by 

solving the Riccati equation (100). Similarly, for the reaction wheels control case we have: 

A

ywx
 ;

B

ywy
 ; 

C

ywz
  (102) 

Taking into account that: 

ukhbyay u

wwxwwxwwx  ; ukhbyay u

wwywwywwy  ; 

ukhbyay u

wwzwwzwwz  , 
(103) 

and: 

)
~~

(  
  uu kku


; )~~(  

  uu kku  ; )
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(  
  uu kku


 (104) 

For the balance movement considered we can write the command relation in linear form: 

faKωKu   )( RPBI  (105) 

where:   

RdPBId aKωKf    (106) 

In this case we can obtain the control matrix for uncoupled case: 

Table 10. Control matrix K  for the reaction wheels case 

P

wwRBI

KKu

yhaω



 

Similarly, we can obtain the controller K terms by using the gradient method. 

We separate the angular inputs and then by applying Laplace transformation, from the 

previous relations we will obtain: 
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(107) 

Admitting certain proportionality between the coefficients and the inertial moment we 

can write: 
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Using these new coefficients, the transfer function for angular size has the form: 
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 ; (109) 

Next we use the pole-zero allocation method [4]. For this purpose we use an optimal 

function quite similar with the previously obtained: 
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with 
rr t0

, where 5r , and the response time is chosen. 

Identifying between coefficients, we obtain the following useful relations: 

wbk  2
01 35.6 ;  3

02 k  (111) 

Finally, choosing the response time str 10  we obtain: 

59.11 k ; 125.02 k  (112) 

Obtained values 1k and 2k will be used as start values for the gradient method described 

above.  

5. INPUT DATA, CALCULUS ALGORITHM AND RESULTS 

5.1 Input data for the model 
As input data for our application we considered: 

The eccentricity 1.0e ; The orbital period hT 24  

The inertial moments: ][44.31 2kgmA  ; ][11.34 2kgmB  ; ][12.13 2kgmC   

The product of inertia: ][39.0 2kgmE  ; ][02.0 2kgmD  ; ][03.0 2kgmF   

Parameters of the Schmidt Trigger element: 1.0Ma ; 3.0Mb ; ][1.0 sM  ; 2u
Mk . 

Parameters of the reaction wheels: 20wa ; 20wb .10u

wk  

5.2 Calculus algorithm 

The calculus algorithm consists in multi-step method Adams' predictor-corrector with 

variable step integration method: 00. Absolute numerical error was 1.e-12, and relative error 

was 1.e-10. 

5.3 Results 

First we highlight the influence of gravitational moment on the uncontrolled satellite 

orientation. Figure 7 presents the rotational velocity around the y axis of the mobile frame 

related inertial frame 
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Fig. 7 Angular velocity for uncontrolled vehicle. M1 - with gravitational moment terms; M2- without 

gravitational moment terms 

We can see that the gravitational influence leads to an additional angular velocity. 
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Fig. 8 angular diagram for uncontrolled vehicle. M1 - with gravitational moment terms; M2- without gravitational 

moment terms 

Consequently, it influences the angle around the y axis, as we can see from Figure 8. 

Next we compare gradient method results with Monte Carlo method presented for the 

same model in papers [6] and [12]. 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 9 Performance index evolution related steps 

iteration (N) 

Fig. 10 K1 parameter evolution related steps 

iteration (N) 

Figure 9 compares the evolution of the performance index in the case of the iterative 

methods: gradient and Monte- Carlo, and figure 10 shows the evolution of “k1” parameter 

during the iterations, starting from the value obtained by pole-zero allocation method.  

Next we analyze the three types of orientation control systems described above. For starters, 

the thrust control using a trigger Schmidt element is presented.  
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Fig. 11 Command moment for controlled vehicle. M1-  Optimal control using uncoupled states ;  M2-  Optimal 

control using coupled states ; M3-  Optimal control using Kalman filter ; 

Note that after achieving control system synthesis, the model uses the nonlinear switching 

element. Because at the beginning we have an angular velocity jump, the command is more 

active in this moment. By applying the above presented control systems, the absolute angular 

velocity is stabilized at the base, which provides to the satellite a rotation velocity around its 

y axis synchronous with the motion around the Earth, as we can see in figure 12. 
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Fig. 12 angular velocity diagram for controlled vehicle. M1-  Optimal control using uncoupled state vector ; 

M2-  Optimal control using coupled state vector ; M3 – Kalman filter; 

Finally, figure 13 shows the rotation angle around the y axis, which is stabilized at null value, 

and providing the overlap of the  mobile frame over reference frame. 
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Fig. 13 angular diagram for controlled vehicle. M1-  Optimal control using uncoupled state vector ; 

M2-  Optimal control using coupled state vector ; M3 – Kalman filter; 
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6. CONCLUSIONS 

The paper presents some synthesis aspects of the simulation model, developed for the 

calculation of Attitude Control System- ACS of the small satellite which uses as command a 

micro jet engine. The application is made for three ACS variants, the first one using a control 

system for uncoupled state, the second using a control system for coupled state and the third 

using the Kalman filter. From the results obtained one can observe that the last two solutions, 

although are more complicated, they give better results than the previous ones, providing an 

ACS with the shortest response time and a smaller override. As a general conclusion we 

must underline three novelty aspects introduced by the paper: 

- We achieved the description of the model by using the rotation angles, which lead to 

polynomial forms for the rotation and connection matrix and which eliminate the 

singularities of the connection matrix in the case of Euler’s angles. On the other hand, these 

3 values are independent and on the same time they have an angular dimension, and so they 

are measurable. This creates a great advantage as compared to the use of the Hamilton 

quaternion. 

- By the linearization of the Trigger-Schmidt element we have constructed a 

homogenous linear system and we made the ACS synthesis. With all the simplifications 

introduced by the Fourier transformation, the result obtained is valid, this being verified by 

testing the system in its non-linear form. 

- The use of the adjoint analysis methods for the synthesis of optimal controller based on 

uncoupled state. The advantage of this method consists in allowing optimization of the 

controller and also of the other system parameters as mass distribution or Trigger Schmidt 

parameters. 
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