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Abstract: The aim of this paper is to study the unsteady aerodynamic interaction between a Krueger 
flap and a three-element airfoil using the finite volume method to solve the Unsteady Reynolds-
Averaged Navier-Stokes equations. For a better understanding of this unsteady interaction, the 
Krueger flap is placed at different positions. Our results clearly show that the airfoil’s aerodynamic 
performance and the pressure distributions are strongly influenced by the Krueger flap position. 
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1. INTRODUCTION

The Krueger flaps, invented by W. Krüger in 1943 are lift enhancement devices that may be 
fitted to the leading edge of an airplane wing. Unlike slats or drooped leading edges, the 
main wing upper surface and its nose is not changed. Instead, a portion of the lower wing is 
rotated out in front of the main wing leading edge. Krueger flaps, hinged at their leading 
edges, hinge forwards from the under surface of the wing, increasing the wing camber and 
maximum coefficient of lift at take-off and landing. However, the unsteady interaction 
between Krueger flap and airfoil generates the unsteady aerodynamic loads and fatigue, 
which decreases their life. For this reason, we have considered that it is useful to study this 
interaction. Furthermore, there is very little available information about this topic. 

2. GOVERNING EQUATIONS

For a two-dimensional stationary Cartesian coordinate system, the unsteady Reynolds-
averaged Navier-Stokes equations using the Favre averaging (a mass-weighted averaging) 
could be written in the conservative form as [1-3] 
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If one assumes that the fluid is Newtonian and the thermal boundary layer is neglected, 
the diffusive flux G may be written as 
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According to the Boussinesq hypothesis, the shear stresses tot may be written as 
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The Sutherland’s formula could be used to determine the dynamic viscosity  as a 
function of temperature, while the eddy viscosity t is computed with a turbulence model. 

For gases, the external force fe due to the gravitational acceleration is very small, 
therefore it can be neglected.  

Moreover, we can assume that the thermal conductivity is the single heat source, 
therefore the source term S becomes null 

0S   (5)
The pressure is obtained from the equation of state of ideal gas 

ρp RT  (6)

Furthermore, we could assume that air is a perfect gas; therefore 
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3. TURBULENCE MODEL 

In 1995, T-H Shih et al. [4] have published the realizable k- turbulence model, which is an 
original modification to the standard k- turbulence model [5]. The realizable k- model 
differs from the standard k- model in two important ways. Firstly, it contains an alternative 
formulation for the turbulent viscosity. Secondly, a modified transport equation for the 
dissipation rate  has been derived from an exact equation for the transport of the mean-
square vorticity fluctuation. 

The unsteady two-dimensional transport equations of the realizable k- turbulence 
model neglecting the buoyancy effects could be written in the conservative form as 
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In the above equations, Gk represents the generation of turbulence kinematic energy due 
to mean velocity gradients, calculated as in the standard k- turbulence model while YM is the 
contribution of the fluctuating dilatation in compressible turbulence to the overall dissipation 
rate 

22ρεM tY M  (11)

where Mt is the turbulent Mach number, defined as 
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As in the standard k- turbulence model, the eddy viscosity is computed from 
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For a two-dimensional stationary Cartesian coordinate system, the square of mean rate-of 

rotation tensor  and W have the following expressions: ij
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The model constants C2, k and  have been established to ensure that the model 
performs well for certain canonical flows: 

2 1.9 σ 1.0 σ 1.2  kC   (17)
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4. NUMERICAL SIMULATION 

The numerical simulations of the two-dimensional viscous flow were carried on a multi-
element airfoil shown in Fig. 1, with an in-house code developed by INCAS, which is based 
on finite volume method where each unknown takes an average value on each discretization 
cell. The mesh for which, the results are given, has about 26 000 cells. The height of the first 
row of cells near airfoil as shown in Fig.2 is chosen so that the averaged dimensionless 
distance y+ is about 200. 

 
Fig. 1 – Configuration for the Krueger flap positions and rotation center 

 

 
Fig. 2 – Detail of the mesh, near airfoil 

Because the realizable k- model is a high-Reynolds turbulence model, we used the non-
equilibrium wall functions [6] that are suitable in complex flows with separations and 
reattachments. 

In order to decrease the computational time, impressively, the discretization is made 
with an implicit formulation. To take into account the physical properties of flow, the 
convective fluxes are discretized with the Roe scheme, which is a Godunov-type scheme [7-
10]. The simulation is carried out with a compressible Navier-Stokes (density based) solver, 
with an implicit formulation and a dual-time marching algorithm and a fixed time step of dt 
= 1e-4 s, for accuracy reasons.  

5. CASE SETUP 

The numerical simulations have been performed within the following free-stream conditions: 
Pressure = 101325 Pa. Temperature = 300 K. Turbulence intensity = 0.5 %. Viscosity ratio = 
0.2. Angle of Attack (AoA) = from -10º to +20º. 
The velocity is computed from a condition of Mach = 0.2 and corresponds to V =70 m/s. 

INCAS BULLETIN, Volume 4, Issue 1/ 2012 



7 Unsteady numerical estimation of the aerodynamic loads of the Krueger flap 
 

The reference values for the computation of the forces and moment coefficients are: 
Aria = 0.23 m2. Length = 0.23m. Density = 1.177kg/m3. Temperature = 300 K.  
Velocity = 70 m/s. Specific heats ratio = 1.4. Viscosity = 1.789e-5 kg/m·s. 

6. RESULTS 

The results for the unsteady simulations are given in the tables below for the minimum and 
maximum of the coefficients, and also for their frequencies. Also, it should be noted that 
whenever a result is omitted in the table or a NA is recorded it is a case of either a constant 
value of the coefficient or a numerical oscillation is recorded in the numerical solver, 
respectively. 

To clarify we present the case of the oscillations of the lift force coefficient at α = -6º 
and α = -10º, from where we can deduce three different possibilities. First, if the lift 
coefficient is almost constant then in the tables 1-3 that value is recorded and in the 
frequency column a NA is recorded, or if the lift coefficient is oscillating as a result of a 
numerical error and is not correlated to a physical phenomenon, than again only a mean 
value of the lift coefficient is recorded and a NA for the frequency. Second, if there is just 
one amplitude for the variation of the lift coefficient (case of α = -10º) then that amplitude 
and its corresponding frequency are recorded in the table. Last, if the amplitudes of the 
oscillations are roughly of the same order of magnitude (case of α = -6º), then we will write 
in the table the values and frequency for the highest amplitude.  

 
Fig. 3 - Time variation of the lift force coefficient at α = -6º(left) and α = -10º(right). 

A physical explanation of these kinds of behaviors is given by analyzing the 
instantaneous flow field at several cases of interest, α = -6º, α = 0º and α = +6º. 

 
Fig. 4 - Pressure coefficient contours and streamlines at α = -6º(left), α = 0º(middle) and α = +6º(right) 
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It can be seen in this case (α = -6º) that the recirculation zone extends on the whole 
lower-surface and the vortex shedding mechanism behind the Krueger flap is a periodic one 
and can be described by the superposition of several frequencies, corresponding to vortices 
of roughly the same size.  

In the case of α = 0º the recirculation area on the lower-surface has disappeared and the 
vortices behind the Krueger flap are smaller and also their corresponding frequency is 
increased (while the amplitude of the coefficients has decreased) compared to the previous 
case (α = -6º). 

Concerning the case of α = +6º, the flow is almost perfectly attached to the Krueger flap 
and we expect to see higher frequencies and smaller amplitudes than in any of the previous 
cases. Also the amplitudes of the coefficients oscillations have a quasi-constant appearance.  

 Position I 

Table 1 - Coefficients for Position I 

AoA Cz_min Cz_max Cx_min Cx_max Cm_min Cm_max Freq. (Hz) 

-10 -1.2095 -0.936 0.858 1.107 0.616 0.773 16 

-8 -1.193 -0.920 0.844 1.095 0.618 0.777 17 

-6 -1.032 -0.881 0.809 0.947 0.609 0.699 30 

-4 -0.814 -0.791 0.732 0.752 0.573 0.588 33 

-2 0.194 0.225 -0.202 -0.171 -0.015 0.0027 140 

0 0.752 0.765 -0.7385 -0.725 -0.404 -0.397 90 

2 1.205 1.215 -1.240 -1.229 -0.768 -0.761 140 

4 1.651 1.656 -1.8408 -1.8359 -1.2083 -1.2055 100 

6 2.138 2.139 -2.5246 -2.523 -1.7044 -1.7034 80 

8 --- 2.6371 --- -3.1408 --- -2.1367 NA 

10 --- 2.8155 --- -3.5765 --- -2.3567 NA 

12 2.986 2.994 -3.7039 -3.699 -2.4348 -2.4315 34 

14 2.940 2.956 -3.726 -3.707 -2.441 -2.4297 27 

16 2.701 2.880 -3.6143 -3.4185 -2.361 -2.24 20 

18 2.697 3.066 -3.8295 -3.3615 -2.4411 -2.1574 16 

20 1.878 2.596 -3.281 -2.335 -2.0631 -1.484 13 
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Fig. 5 - Cp distribution on the Krueger flap at α = -6º (left) and at α = -4º (right). 

 
Fig. 6 - Cp distribution on the Krueger flap at α = -2º (left) and at α = 0º (right). 

 
Fig. 7 - Cp distribution on the Krueger flap at α = 2º (left) and at α = 4º (right). 

 
Fig. 8 - Cp distribution on the Krueger flap at α = 6º (left) and at α = 8º (right). 

 Position II 
Similarly to the Position I case a correlation on the vortex shedding behind the Krueger flap 
and the time variation of the coefficients can be summarized in the table below. 
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Table 2 - Coefficients for Position II 

AoA Cz_min Cz_max Cx_min Cx_max Cm_min Cm_max Freq. (Hz) 

-10 -0.379 -0.287 1.1146 1.4554 0.5148 0.6545 9 

-8 -0.390 -0.311 1.1912 1.5043 0.5511 0.6823 20 

-6 -0.382 -0.314 1.1764 1.4859 0.5566 0.6892 16 

-4 -0.339 -0.318 1.2565 1.3358 0.6018 0.6359 30 

-2 -0.294 -0.265 1.0656 1.1753 0.5370 0.5853 32 

0 -0.130 -0.129 0.5265 0.5289 0.3437 0.3448 61 

2 --- 0.018 --- 0.0141 --- 0.1426 NA 

4 0.113 0.115 -0.3565 -0.3506 -0.0252 -0.0218 76 

6 0.230 0.232 -0.8111 -0.8034 -0.2341 -0.2288 73 

8 0.367 0.368 -1.3643 -1.3594 -0.4862 -0.4837 69 

10 0.488 0.489 -1.9432 -1.9365 -0.7706 -0.7671 67 

12 0.565 0.565 -2.5523 -2.5482 -1.0981 -1.096 64 

14 0.611 0.611 -3.2202 -3.2173 -1.4579 -1.4566 62 

16 --- --- --- --- --- --- NA 

18 --- --- --- --- --- --- NA 

20 0.684 0.688 -3.9807 -3.9521 -1.9386 -1.9216 22 

 
 
 

 
Fig. 9 - Cp distribution on the Krueger flap at α = -6º (left) and at α = -4º (right). 
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Fig. 10 - Cp distribution on the Krueger flap at α = -2º (left) and at α = 0º (right). 

 
Fig. 11- Cp distribution on the Krueger flap at α = 2º (left) and at α = 4º (right). 

 
Fig. 12 - Cp distribution on the Krueger flap at α = 6º (left) and at α = 8º (right). 

 Position III 

Similarly to the Position I and Position II case a correlation on the vortex shedding behind 
the Krueger flap and the time variation of the coefficients can be summarized in the table 
below. 

Table 3 - Coefficients for Position III 

AoA Cz_min Cz_max Cx_min Cx_max Cm_min Cm_max Freq.(Hz) 

-10 0.2484 0.3072 0.8700 1.0695 0.3231 0.4003 18 

-8 0.2636 0.3278 0.9174 1.1351 0.3473 0.4312 19 

-6 0.2643 0.3034 0.9404 1.0747 0.3514 0.4305 20 
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-4 0.2896 0.3212 0.9974 1.0954 0.4034 0.4356 27 

-2 0.2765 0.2978 0.9494 1.0213 0.3866 0.4151 33 

0 0.2172 0.2242 0.7906 0.8149 0.3320 0.3419 45 

2 --- 0.1195 --- 0.3922 --- 0.2332 NA 

4 --- 0.0346 --- 0.0782 --- 0.1294 NA 

6 --- -0.0447 --- -0.2058 --- 0.0420 NA 

8 --- -0.1005 --- -0.4212 --- -0.0380 NA 

10 --- -0.2110 --- -0.7902 --- -0.2029 NA 

12 --- -0.3254 --- -1.1568 --- -0.3612 NA 

14 -0.3551 -0.3088 -1.2475 -1.1060 -0.4045 -0.3424 4 

16 -0.4065 0.0161 -1.3972 0.0121 -0.4782 0.0996 2 

18 -0.1673 -0.1035 -0.6291 -0.4126 -0.1548 -0.0681 15 

20 -0.2406 -0.1638 -0.8647 -0.6121 -0.2647 -0.571 13 

 

 
Fig. 13 - Cp distribution on the Krueger flap at α = -6º (left) and at α = -4º (right). 

 
Fig. 14 - Cp distribution on the Krueger flap at α = -2º (left) and at α = 0º (right). 
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Fig. 15- Cp distribution on the Krueger flap at α = 2º (left) and at α = 4º (right). 

 
Fig. 16 - Cp distribution on the Krueger flap at α = 6º (left) and at α = 8º (right). 

 
Fig. 17 - Cm variation with the position of the Krueger flap for α in [-6,10] deg 

6. CONCLUSIONS 

The design of the actuator system for the Krueger flap must take into account the unsteady 
loads induced in the structure, especially since the numerical results clearly show that the 
flow is strongly unsteady past the Krueger flap even at moderate angles of attack as shown in 
Fig. 3 and Tables 1-3. This unsteady flow could trigger the appearance of fatigue and even 
noise, generated by flow induced oscillations. However, the Krueger flap is a main element 
of wing configurations of many modern aircraft because it increases the lift impressively 
during take-off and landing. 3D computations are necessary to completely analyse this 
configuration as it would be very useful to try to mitigate the effects of the unsteady 
aerodynamic loads caused by the Krueger flap. 
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