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Abstract: The present paper introduces an analytical potential solution for the incompressible flow in
a 2D channel with normal wall injection. This solution is capable to support reasonable injection flow
rates as compared to the general flow rate in the channel. A strategy to find solutions for longer
channels in case of increasing injection velocity with the distance from the entrance, using a small
number of the solution terms is pointed out. Examples of calculation are given.
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1. INTRODUCTION

The possibility to obtain potential solutions to incompressible flow with injection was, after
our knowledge, not thoroughly studied. Several papers [1], [2] take into account a vortex
solution generated by the injection itself, although the superposition of eigenfunctions do not
satisfy the nonlinear vortex equation of Helmholtz [3]. Of course much attention is paid to
wall injection in connection with boundary layer control [4;5].

2. EQUATIONS AND BOUDARY CONDITIONS

One considers the incompressible flow in a 2D channel (Fig.1), symmetrical with respect to
the channel axis. The flow is assumed incompressible, stationary and potential. By
introducing the stream function y(z, y), [3]:

S oW .o oV (1)

- 5

z a)—} > Yy T oz
one has to solve the partial differential equation for the stream function:
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In order to solve the problem the boundary condition have to be specified. At the
entrance, velocity is constant and parallel to channel walls:

V2 (0,) =V, =y Q)
The injection velocity is normal to the wall and variable along the wall:
v.(Z,a)=—u1,(Z). “)
On the axis, the symmetry of flow imposes
v:(2,0)=0, 220 Q)
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Fig.1- — Geometric configuration

The boundary conditions for the elliptical PDE (2) should include the whole frontier of
the channel domain; two parts of the frontier are required by conditions (3) and (4). As
condition at the channel exit, z =L, one will consider the exit velocity parallel to the
channel axis, an assumption corresponding to high values of L. Therefore:

v, (L,y)=0 (6)
Further by the change of variables:
z=z/L,y=yla, y=v,ay , y=y,+y (7
where the unbarred new variables are dimensionless, one obtains the equation:
2 A2 2 (8)
a_2 0 \|;1 N 0 \4121 _0
L 0z oy
the velocities being given by:
L Rl ©)
oy d oz
The boundary conditions for the new unknown \, are:
10
%zo for z=0 and 0< y<1; (102)
oy
10b
%zo for z=1, 0<y<1; (106)
Z
10
%:O for y=0,0<z<1; (10c)
oz
oy, (10d)

—=u,(z) for y=1, 0<z<1;
0Oz

where u (z)=u, (z)/v, .

3. THE ANALYTIC SOLUTION

One looks for the eq.(7) solutions of the form:

Yi(z,0)=Z(2)Y () (1)
Z(z) and Y(y)being obtained by separation of variables z, y [6]. By introducing (9) in eq.
(7) one obtains two ordinary differential equations which are easily solved under the form:

INCAS BULLETIN, Volume 2, Number 2/ 2010



Corneliu BERBENTE, Sterian DANAILA 22

Z(z)=4 cos(L—)Lz) + 4, sin(ﬂz) ;
a a

Y(y)=B,exp(ry) + B, exp(—L y)
A,B;,i=1;2 and A being real arbitrary constants. The stream function and the

(12)

corresponding velocity components are:

L) . LA
i (z.7) =[A1 cos(~2) + 4, sm(;z)}[ Byexp(hy)+ B, exp(-1) | (13a)
0 L) . LA
alyl - {Al cos(~2) + 4, sm(;z)}[ Bexp(hy)—Byhexp(-1 ) [; (13b)
0 Lx . LA LA L\
N _ [_A] —sin(—z)+4, —cos(—z)}[ B exp(Ly)+ B, exp(—A y) ] . (13¢)
Oz a a a a
Imposing the boundary condition (10c):
[—Alﬂsin(ﬂ2)+AzL—xcos(L—xz)}(B] +5,)=0, (14)
a a a a
yields:
B =-B,. (15)
At the entrance, z =0, from (10a):
A [ Bhexp(hy) - Bdexp(-Ly) |=0, (16)
one obtains
4,=0. (17)
Replacing (15) and (17) in (13) results:
Y,(z,y)= Asin(Az)sinh(A y) ; (18a)
% = A)sin(A z)cosh(h ) ; (18b)
Y
% = AAcos(Az)sinh(} ) . (18¢)
z

where A=AL/a.
At the exit, z=1, the transversal velocity should vanish. So, from (18c) results the
equation:

cos(A)=0, (19)
having the solution:
A, =(2n—1)§, n=1,2,.. (20)
Because the eqs. (2) and (8) are linear, the general solution is:
w=y+Y A,sinh(%,y)sin(A,z) (21a)
n=1
v.=1+Y 1,4, cosh(%,y)sin(A,2); (21b)
n=1
v, == A,4,sinh(,y)cos(A,z) (21c)
n=1
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where:

a oy L T
v=———""5 A =N =Qu-1)=,n=12,....
7 Loz "ooag " ( )2 (22)

The constants A4,, n=1,2,.... are given by the injection condition:

>, 4, sinh(, )cos(A,2)=u,(2), (23)
n=l1
which will be written as follows:

iBn cos(A,z)=B, (z) (24a)

n=1

B,(z2)=u,2)/u,,,, , B,=k, A4, sinh(r,)/u

In the above relations, the mean injection velocity u

(24b)
wmea Was introduced, defined by:

L (25)
Uy iod =J.uw (z)dz

0
In order to determine the coefficients B, from (24a), one uses the orthogonality properties of
cosine functions under the form:

wmed

; 0, form #n;
[cos(A,2)cos(A, z)dz= (26)
0 1/2,form =n.

4. RESULTS

In the following several applications for different channel parameters L/a are presented.
Taking into account that the injected flow rate divided by the general flow , 7, , rate can be

defined as:

rQ = =Uymed =
Vax

B

i, L L L 1 27
a a u

wmed

one can obtain an expression for the mean injection velocity:
a (28)

Uymed :z rQ :

In Table 1 are given the expressions of the coefficients B, A, for several distributions of the
injection velocity, as well as the limit forms of the stream function y for L/a—x.

Table 1 — Coefficients of series developments

Bw (Z) Bn An /uwmed L}Lilrilww
2(=1" M 2(-D"" L (-
1 —_— —— 1+7, ——=—sin(A,z
A, A2sinh, a g Q; A (A,2)
4 4 L — sin(A, z)
2(1- — — 1425, S 20/
d-2) A2 Adsinh2, a 4 ( o Z; A3 j
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6(_1)(Vl—l) 6(_1)(11—1) L ( )()1 1)
il i o) X 1435, Z

Al Asinha, a sin(A, Z)j

%a—f)

n=1 n

The distribution B, (z)=1, although very simple, has an undefined value for v, at z =1.This

is due to the disagreement between the boundary conditions at this only point. The
uncertainty disappears in the limit L/ a — oo ( long channel).
The other two injection laws, having null injection velocity at z = 1, are concordant and

besides lead to more rapid convergence rate for the series.
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Fig. 2.-Injection velocity profiles considering 3 terms in series developments.

A solution using threeterms. Let us consider the injection velocity of the form:

3
B, (z.k,m)=>)"C,(k,m)cos(A,z), (29)
n=l
where the coefficients are:
15 k m m k
C,=C; - , Ci=k-C,-C;. 30
3778 (6 12 8) 4 (39)

The parameter k represents the value of B, (z,k,m)at channel entrance whereas the
product —mm / 2 represents the curve slope at z = 1.
In Fig.2 the curves B,(z,0.5,3), B,,(z,0.3,5) and B,(z,0,8) are represented, suggesting

a gradually increasing of the injection up to a maximum as one moves to the channel end.
This configuration can be appropriate to some combustion problems [1;2].

5. CONCLUSIONS

A potential solution (satisfying identically the Helmholtz vortex equation unlike some the
existing vortical solutions) is capable to take over an injection (or suction) normal to wall in
a 2D incompressible flow. An analytical solution was obtained for stationary inviscid flow
that can be used further as a frontier condition for calculation of the boundary layer. Limit
behaviours for very long channels are obtained considering a finite ratio of the injection flow
rate to the general one.
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Interesting injection velocity profiles with gradually increasing up to a maximum in the
last part of the channel can be obtained using a small number of series development.
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