An Analytic Potential Solution for Incompressible 2D Channel Inviscid Flow with Wall Injection

Corneliu BERBENTE, Sterian DĂNĂILĂ

Corresponding author Department of Aerospace Sciences, POLITEHNICA University Bucharest Splaiul Independenței 313, 060042, Bucharest, Romania berbente@yahoo.com, sterian.danaila@upb.ro DOI: 10.13111/2066-8201.2010.2.2.3

Abstract: The present paper introduces an analytical potential solution for the incompressible flow in a 2D channel with normal wall injection. This solution is capable to support reasonable injection flow rates as compared to the general flow rate in the channel. A strategy to find solutions for longer channels in case of increasing injection velocity with the distance from the entrance, using a small number of the solution terms is pointed out. Examples of calculation are given.

Key Words: 2D channel flow, analytic solution, wall injection.

1. INTRODUCTION

The possibility to obtain potential solutions to incompressible flow with injection was, after our knowledge, not thoroughly studied. Several papers [1], [2] take into account a vortex solution generated by the injection itself, although the superposition of eigenfunctions do not satisfy the nonlinear vortex equation of Helmholtz [3]. Of course much attention is paid to wall injection in connection with boundary layer control [4;5].

2. EQUATIONS AND BOUDARY CONDITIONS

One considers the incompressible flow in a 2D channel (Fig.1), symmetrical with respect to the channel axis. The flow is assumed incompressible, stationary and potential. By introducing the stream function $\overline{\Psi}(\overline{z}, \overline{y})$, [3]:

$$
\overline{v}_{\overline{z}} = \frac{\partial \overline{\psi}}{\partial \overline{y}} \; ; \; \overline{v}_{\overline{y}} = -\frac{\partial \overline{\psi}}{\partial \overline{z}} \quad , \tag{1}
$$

one has to solve the partial differential equation for the stream function:

$$
\frac{\partial^2 \overline{\psi}}{\partial \overline{x}^2} + \frac{\partial^2 \overline{\psi}}{\partial \overline{y}^2} = 0.
$$
 (2)

In order to solve the problem the boundary condition have to be specified. At the entrance, velocity is constant and parallel to channel walls:

$$
\overline{\mathbf{v}}_{\overline{z}}(0,\overline{y}) = \overline{\mathbf{v}}_{z0} = \overline{\mathbf{v}}_{\text{ax}}
$$
\n(3)

The injection velocity is normal to the wall and variable along the wall:

$$
\overline{\mathbf{v}}_{\overline{\mathbf{y}}}(\overline{z},a) = -\overline{\mathbf{u}}_{\mathbf{w}}(\overline{z}).\tag{4}
$$

On the axis, the symmetry of flow imposes

$$
\overline{\mathbf{v}}_{\overline{\mathbf{y}}}(z,0) = 0, \ z \ge 0 \tag{5}
$$

Fig.1- – Geometric configuration

The boundary conditions for the elliptical PDE (2) should include the whole frontier of the channel domain; two parts of the frontier are required by conditions (3) and (4). As condition at the channel exit, $\overline{z} = L$, one will consider the exit velocity parallel to the channel axis, an assumption corresponding to high values of *L*. Therefore:

$$
\overline{v}_{\overline{y}}(\overline{L}, \overline{y}) = 0 \tag{6}
$$

Further by the change of variables:

$$
z = \overline{z}/L, \ y = \overline{y}/a, \ \overline{\psi} = \overline{v}_{ax} a \psi, \ \psi = \psi_1 + \overline{y}
$$
 (7)

where the unbarred new variables are dimensionless, one obtains the equation:

$$
\frac{a^2}{L^2} \frac{\partial^2 \psi_1}{\partial z^2} + \frac{\partial^2 \psi_1}{\partial y^2} = 0
$$
\n(8)

the velocities being given by:

$$
v_z = 1 + \frac{\partial \psi_1}{\partial y} , \quad v_y = -\frac{\partial \psi_1}{\partial z}
$$
 (9)

The boundary conditions for the new unknown ψ_1 are:

$$
\frac{\partial \psi_1}{\partial y} = 0 \text{ for } z = 0 \text{ and } 0 \le y \le 1;
$$
 (10a)

$$
\frac{\partial \psi_1}{\partial z} = 0 \text{ for } z = 1, 0 \le y \le 1;
$$
 (10b)

$$
\frac{\partial \psi_1}{\partial z} = 0 \text{ for } y = 0, \ 0 \le z \le 1 \tag{10c}
$$

$$
\frac{\partial \psi_1}{\partial z} = u_w(z) \text{ for } y = 1, 0 \le z \le 1;
$$
 (10d)

where $u_w(z) = \overline{u}_w(\overline{z})/\overline{v}_{av}$.

3. THE ANALYTIC SOLUTION

One looks for the eq.(7) solutions of the form:

$$
\psi_1(z, y) = Z(z)Y(y) \tag{11}
$$

 $Z(z)$ and $Y(y)$ being obtained by separation of variables *z*, *y* [6]. By introducing (9) in eq. (7) one obtains two ordinary differential equations which are easily solved under the form:

$$
Z(z) = A_1 \cos(\frac{L\lambda}{a}z) + A_2 \sin(\frac{L\lambda}{a}z);
$$
\n(12)

$$
Y(y) = B_1 \exp(\lambda y) + B_2 \exp(-\lambda y)
$$

 $A_i, B_i, i = 1,2$ and λ being real arbitrary constants. The stream function and the corresponding velocity components are:

$$
\psi_1(z, y) = \left[A_1 \cos(\frac{L\lambda}{a}z) + A_2 \sin(\frac{L\lambda}{a}z) \right] \left[B_1 \exp(\lambda y) + B_2 \exp(-\lambda y) \right]
$$
(13a)

$$
\frac{\partial \psi_1}{\partial y} = \left[A_1 \cos(\frac{L\lambda}{a}z) + A_2 \sin(\frac{L\lambda}{a}z) \right] \left[B_1 \lambda \exp(\lambda y) - B_2 \lambda \exp(-\lambda y) \right];\tag{13b}
$$

$$
\frac{\partial \psi_1}{\partial z} = \left[-A_1 \frac{L\lambda}{a} \sin(\frac{L\lambda}{a} z) + A_2 \frac{L\lambda}{a} \cos(\frac{L\lambda}{a} z) \right] \left[B_1 \exp(\lambda y) + B_2 \exp(-\lambda y) \right].
$$
 (13c)

Imposing the boundary condition (10c):

$$
\left[-A_1 \frac{L\lambda}{a} \sin(\frac{L\lambda}{a} z) + A_2 \frac{L\lambda}{a} \cos(\frac{L\lambda}{a} z)\right](B_1 + B_2) = 0,
$$
\n(14)

yields:

$$
B_1 = -B_2 \tag{15}
$$

At the entrance, $z = 0$, from (10a):

$$
A_1\big[B_1\lambda \exp(\lambda y) - B_2\lambda \exp(-\lambda y)\big] = 0\,,\tag{16}
$$

one obtains

$$
A_{\rm l}=0\,. \tag{17}
$$

Replacing (15) and (17) in (13) results:

$$
\psi_1(z, y) = A \sin(\Lambda z) \sinh(\lambda y) ; \qquad (18a)
$$

$$
\frac{\partial \psi_1}{\partial y} = A\lambda \sin(\Lambda z) \cosh(\lambda y); \qquad (18b)
$$

$$
\frac{\partial \psi_1}{\partial z} = A \Lambda \cos(\Lambda z) \sinh(\lambda y) \,. \tag{18c}
$$

where $\Lambda = \lambda L / a$.

At the exit, $z = 1$, the transversal velocity should vanish. So, from (18c) results the equation:

$$
\cos(\Lambda) = 0, \tag{19}
$$

having the solution:

$$
\Lambda_n = (2n-1)\frac{\pi}{2}, \ n = 1, 2, \dots
$$
 (20)

Because the eqs. (2) and (8) are linear, the general solution is:

$$
\psi = y + \sum_{n=1}^{\infty} A_n \sinh(\lambda_n y) \sin(\Lambda_n z)
$$
 (21a)

$$
v_z = 1 + \sum_{n=1}^{\infty} \lambda_n A_n \cosh(\lambda_n y) \sin(\Lambda_n z); \tag{21b}
$$

$$
v_y = -\sum_{n=1}^{\infty} \lambda_n A_n \sinh(\lambda_n y) \cos(\Lambda_n z)
$$
 (21c)

INCAS BULLETIN, Volume 2, Number 2/ 2010

where:

$$
v_y = -\frac{a}{L} \frac{\partial \Psi}{\partial z}
$$
, $\Lambda_n = \frac{L}{a} \lambda_n = (2n-1)\frac{\pi}{2}$, $n = 1, 2,...$ (22)

The constants A_n , $n = 1, 2, \dots$ are given by the injection condition:

$$
\sum_{n=1}^{\infty} \lambda_n A_n \sinh(\lambda_n) \cos(\Lambda_n z) = u_w(z), \tag{23}
$$

which will be written as follows:

$$
\sum_{n=1}^{\infty} B_n \cos(\Lambda_n z) = \beta_w(z)
$$
 (24a)

$$
\beta_w(z) = u_w(z) / u_{wmed} , B_n = \lambda_n A_n \sinh(\lambda_n) / u_{wmed}
$$
 (24b)

In the above relations, the mean injection velocity u_{wmed} was introduced, defined by:

$$
u_{wmed} = \int_{0}^{1} u_w(z) dz
$$
 (25)

In order to determine the coefficients B_n from (24a), one uses the orthogonality properties of cosine functions under the form:

$$
\int_{0}^{1} \cos(\Lambda_{m} z) \cos(\Lambda_{n} z) dz = \begin{cases} 0, \text{for } m \neq n; \\ 1/2, \text{for } m = n. \end{cases}
$$
 (26)

4. RESULTS

In the following several applications for different channel parameters *L/a* are presented. Taking into account that the injected flow rate divided by the general flow, r_Q , rate can be defined as:

$$
r_Q = \frac{\overline{u}_w L}{v_{ax} a} = u_{wmed} \frac{L}{a}, \quad \frac{L}{a} = \frac{r_Q}{u_{wmed}}
$$
(27)

one can obtain an expression for the mean injection velocity:

$$
u_{wmed} = \frac{a}{L} r_Q. \tag{28}
$$

In Table 1 are given the expressions of the coefficients B_n , A_n for several distributions of the injection velocity, as well as the limit forms of the stream function ψ for $L/a \rightarrow \infty$.

$\beta_w(z)$	D_n	A_n / u_{wmed}	$\lim_{L/a \to \infty} \Psi$
	\cdot (-1) ⁽ⁿ⁻¹⁾ \mathbf{v}_n	$2(-1)^{(n-1)} L$ Λ_n^2 sinh λ_n a	$-1)^{(n-1)}$ $\sin(\Lambda_n z)$ $1+r_Q \sum$ ν $\overline{n=1}$
$2(1-z)$		Λ_n^3 sinh λ_n a	$\sum_{n=1}^{\infty}$ sin($\Lambda_n z$) $(1+2r_Q)$ \mathcal{Y} $n=1$

Table 1 – Coefficients of series developments

INCAS BULLETIN, Volume 2, Number 2/ 2010

Corneliu BERBENTE, Sterian DĂNĂILĂ 24

$$
\begin{array}{|c|c|c|c|c|c|c|} \hline 3 & 6(-1)^{(n-1)} & 6(-1)^{(n-1)} & L & \sqrt{1+3r_{Q} \sum_{n=1}^{\infty} \frac{(-1)^{(n-1)}}{\Lambda_{n}^{4}} \sinh \lambda_{n} a} \hline \end{array}
$$

The distribution $\beta_w(z)=1$, although very simple, has an undefined value for v_z at $z=1$. This is due to the disagreement between the boundary conditions at this only point. The uncertainty disappears in the limit $L/a \rightarrow \infty$ (long channel).

The other two injection laws, having null injection velocity at $z = 1$, are concordant and besides lead to more rapid convergence rate for the series.

Fig. 2.-Injection velocity profiles considering 3 terms in series developments.

A solution using three terms. Let us consider the injection velocity of the form:

$$
\beta_w(z,k,m) = \sum_{n=1}^3 C_n(k,m)\cos(\Lambda_n z),\tag{29}
$$

where the coefficients are:

$$
C_3 = \frac{15}{8} \left(\frac{k}{6} + \frac{m}{12} - \frac{\pi}{8} \right), \ C_2 = C_3 - \frac{m - k}{4}, \ C_1 = k - C_2 - C_3. \tag{30}
$$

The parameter *k* represents the value of $\beta_w(z, k, m)$ at channel entrance whereas the product $-\pi m / 2$ represents the curve slope at $z = 1$.

In Fig.2 the curves $\beta_w(z, 0.5, 3)$, $\beta_w(z, 0.3, 5)$ and $\beta_w(z, 0, 8)$ are represented, suggesting a gradually increasing of the injection up to a maximum as one moves to the channel end. This configuration can be appropriate to some combustion problems [1;2].

5. CONCLUSIONS

A potential solution (satisfying identically the Helmholtz vortex equation unlike some the existing vortical solutions) is capable to take over an injection (or suction) normal to wall in a 2D incompressible flow. An analytical solution was obtained for stationary inviscid flow that can be used further as a frontier condition for calculation of the boundary layer. Limit behaviours for very long channels are obtained considering a finite ratio of the injection flow rate to the general one.

INCAS BULLETIN, Volume 2, Number 2/ 2010

Interesting injection velocity profiles with gradually increasing up to a maximum in the last part of the channel can be obtained using a small number of series development.

6. ACKNOWLEDGEMENTS

The present work has been supported by the CNCSIS –UEFISCSU, project number PNII – IDEI 1030/2007 (contract number 109/2007).

REFERENCES

- [1] C. Zhou, J. Madjalani, Improved Mean Flow Solutions for Slab Rocket Motors with Regressing Walls, *Journal of Propulsion and Power*, vol.**18**, no. 3, pp.703-711, 2002.
- [2] J. Madjalani, A.B., Vyas, A.B. and G.A. Flandro, Higher Mean-Flow Approximatios for a Solid Rocket Motor with Radially Regressing Walls, *AIAA Journal*, vol.**40**, no. 9, pp.1780-1788, 2002.
- [3] E. Carafoli, V.N. Constantinescu, *Dinamica fluidelor incompresibile*, Editura Academiei, Bucureşti, 1984.
- [4] V.N. Constantinescu, *Dinamica fluidelor vâscoase în regim laminar*, Editura Academiei, Bucureşti, 1987.
- [5] H. Schlichting, K. Gerste, *Grenzschicht-Theorie*, Springer, 1997.
- [6] I.Gh. Şabac, ŞABAC, *Matematici speciale*, (vol.2), Editura Didactică şi Pedagogică, Bucureşti. 1965.
- [7] C. Berbente, S. Mitran, S. Zancu, *Metode numerice*, Editura Tehnică, Bucureşti, 1997.