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Abstract: The present paper introduces an analytical potential solution for the incompressible flow in 
a 2D channel with normal wall injection. This solution is capable to support reasonable injection flow 
rates as compared to the general flow rate in the channel. A strategy to find solutions for longer 
channels in case of increasing injection velocity with the distance from the entrance, using a small 
number of the solution terms is pointed out. Examples of calculation are given. 

Key Words: 2D channel flow, analytic solution, wall injection.

1. INTRODUCTION

The possibility to obtain potential solutions to incompressible flow with injection was, after 
our knowledge, not thoroughly studied. Several papers [1], [2] take into account a vortex 
solution generated by the injection itself, although the superposition of eigenfunctions do not 
satisfy the nonlinear vortex equation of Helmholtz [3]. Of course much attention is paid to 
wall injection in connection with boundary layer control [4;5].  

2. EQUATIONS AND BOUDARY CONDITIONS 

One considers the incompressible flow in a 2D channel (Fig.1), symmetrical with respect to 
the channel axis. The flow is assumed incompressible, stationary and potential. By 
introducing the stream function ),( yz , [3]: 
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one has to solve the partial differential equation for the stream function:  
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In order to solve the problem the boundary condition have to be specified. At the 
entrance, velocity is constant and parallel to channel walls: 

0 a(0, )z zv y v v x   (3)

The injection velocity is normal to the wall and variable along the wall:  
)(),( zuazv wy  . (4)

On the axis, the symmetry of flow imposes  
( ,0) 0yv z  ,  0z  (5)
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Fig.1- – Geometric configuration 

The boundary conditions for the elliptical PDE (2) should include the whole frontier of 
the channel domain; two parts of the frontier are required by conditions (3) and (4). As 
condition at the channel exit, z L , one will consider the exit velocity parallel to the 
channel axis, an assumption corresponding to high values of L. Therefore: 

( , ) 0yv L y   (6)

Further by the change of variables:  
/z z L , /y y a , axv a   , 1 y    (7)

where the unbarred new variables are dimensionless, one obtains the equation:  
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the velocities being given by: 
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The boundary conditions for the new unknown 1  are: 
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(10d)

where ax( ) ( ) /w wu z . u z v

3. THE ANALYTIC SOLUTION 

One looks for the eq.(7) solutions of the form: 

1( , ) ( ) ( )z y Z z Y y   (11)

( )Z z and being obtained by separation of variables z, y [6]. By introducing (9) in eq. 
(7) one obtains two ordinary differential equations which are easily solved under the form: 

( )Y y
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1 2( ) cos( ) sin( )
L L

Z z A z A z
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 
  ; 

1 2( ) exp( ) exp( )Y y B y B y     
(12)

, , 1;2i iA B i   and   being real arbitrary constants. The stream function and the 
corresponding velocity components are: 
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Imposing the boundary condition (10c): 

1 2 1sin( ) cos( ) ( ) 0
L L L L
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yields: 

1 2B B  . (15)
At the entrance, , from (10a): 0z 

 1 1 2exp( ) exp( ) 0A B y B y      , (16)

one obtains 

1 0A  . (17)

Replacing (15) and (17) in (13) results:  
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where . /L a  
At the exit, 1z  , the transversal velocity should vanish. So, from (18c) results the 

equation: 
 cos( ) 0  ,  (19)

having the solution: 
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Because the eqs. (2) and (8) are linear, the general solution is:  
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where: 
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The constants , nA 1,2,....n  are given by the injection  condition: 

1
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which will be written as follows: 
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In the above relations, the mean injection velocity  was introduced, defined by: wmedu
1

0

( )wmed wu u z  
(25)

In order to determine the coefficients nB  from (24a), one uses the orthogonality properties of 
cosine functions under the form: 
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4. RESULTS 

In the following several applications for different channel parameters L/a are presented. 
Taking into account that the injected flow rate divided by the general flow , , rate can be 

defined as: 
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one can obtain an expression for the mean injection velocity: 
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In Table 1 are given the expressions of the coefficients nB  for several distributions of the 

injection velocity, as well as the limit forms of the stream function 
nA

 for . /L a

Table 1 – Coefficients of series developments 
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The distribution , although very simple, has an undefined value for  at z =1.This 
is due to the disagreement between the boundary conditions at this only point. The 
uncertainty disappears in the limit ( long channel). 

( ) 1w z  zv

/L a 
The other two injection laws, having null injection velocity at z = 1, are concordant and 
besides lead to more rapid convergence rate for the series. 

 

Fig. 2.-Injection velocity profiles considering 3 terms in series developments.  

A solution using three terms. Let us consider the injection velocity of the form: 
3

1
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where the coefficients are: 
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The parameter k represents the value of ( , , )w z k m at channel entrance whereas the 

product  represents the curve slope at z = 1. / 2m
In Fig.2 the curves ( ,0.5,3), ( ,0.3,5)w wz z  and ( ,0,8)w z  are represented, suggesting 

a gradually increasing of the injection up to a maximum as one moves to the channel end. 
This configuration can be appropriate  to some combustion problems [1;2]. 

5. CONCLUSIONS 

A potential solution (satisfying  identically the Helmholtz vortex equation unlike some the 
existing vortical solutions) is capable to take over an injection (or suction) normal to wall  in 
a  2D incompressible flow. An analytical solution was obtained for stationary inviscid flow 
that can be used further as a frontier condition for calculation of the boundary layer. Limit 
behaviours for very long channels are obtained considering a finite ratio of the injection flow 
rate to the general one. 
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Interesting injection velocity profiles with gradually increasing up to a maximum in the 
last part of the channel can be obtained using a small number of series development. 
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