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Abstract. Stress analysis for a toroidal shell used for a flying platform. We will be comparing the 
results obtained by classical approach and by numerical method (finite element analysis). 
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1. INTRODUCTION 

The toroidal shell will be analyzed from a classical perspective and by a finite element 
analysis approach. The tools which will be used are MATLAB for the classical approach, 
CATIA and ANSYS for FEM. Numerical simulations will be made on the theoretical model, 
as well as on a modified version of the toroid, which will resemble the shape of the project. 

Preliminary remarks. We will use three descriptions for the geometry of the torus. 
Real torus is our physical geometry for the flying prototype. Theoretical torus is the classical 
perfect torus on which we will run numerical simulations in MATLAB, CATIA and 
ANSYS. Approximate torus is the approximate shape for the real torus, on which we could 
run an accurate simulations in CATIA and ANSYS. 

MATLAB is going to be used just for the implementation of the theoretical formulas, 
while also trying to present the results in comparison to CATIA and ANSYS. The geometry 
of the model will be made in CATIA, and then exported into ANSYS Workbench. We used 
also CATIA Structural Analysis to see if there were major discrepancies between the results 
obtained in ANSYS, which has a more established reputation as a structural solver. 

The material considered for the first prototype is polyethylene. 
Physical properties 

Density (ρ) = 950 kg/m3 

Young’s Modulus (E) = 1.1e9 Pa  

Ultimate Tensile Strength (UTS) = 3.3e7 Pa 
Poisson’s Ratio (υ) = 0.42 
Coefficient of thermal expansion (αTE) = 2.3e-4 C-1 

Loading 
Internal pressure at 4 000m (p1) = 125.66 N/m2  

Geometry of the real torus 
Dimensions of the real torus: 
Height = 1930 mm 
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Inner distance = 680 mm 
Outer distance = 3000 mm 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1 Real Torus shell (upper left – cross section, upper right – propeller housing, bottom – real model) 

A better view of the cross section of the toroidal shell can be seen below. 

 
Fig. 2 Cross section of the toroidal shell 

Geometry of the theoretical torus. From [4] and [5] we have the following notations 
on the correspondent figures: 

 

 
 
 
 
 
 
 
 
 
 
 

Fig. 3 Theoretical Torus as taken from [4] (left) and [5] (right) 
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Thickness of the shell (h, δ) = 0.15 mm 
The arm of the torus (b, a) = 2.161 m 
Meridional angle of point of interest (�, φ) 
Latitudinal angle of interest (θ) 

Geometry of the approximate torus. Due to the geometry of the structures, while 
running CATIA and ANSYS simulations the closest approximation that we could obtain 
from the real model is shown in the figure below. For other geometries which were not as 
smooth as a perfect circle, and had more inflections as the real model, the results diverged 
and they were not accurate. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 Cross-sections of the approximate model 

2. STRESS ANALYSIS OF THE TOROIDAL SHELL 

We will perform simulations on two models: the theoretical torus and the approximate torus. 
Stress analysis of the theoretical torus. For the theoretical torus, the first approach will 

be classical one, using classical analysis formulas. 
The second approach will be a finite element analysis running in CATIA and ANSYS. 
Classical approach using MATLAB. We shall use the relations given in reference [4], 

[5] 

1
1

2 sin
(

2 sin

p R b R

h b R )
 



 


                                                (1) 

1
2 2

p R

h                                                                 (2) 

2 2
1 2 2 3 1 3( ) ( ) (

2eqv

          


2)
                                  (3) 

Since σ3 is negligible compared to σ1 and σ2  
2 2

1 2 1 2( )

2eqv

2      
                                               (4) 

INCAS BULLETIN, Volume 2, Number 4/ 2010 



Cristian PURDEL, Marcel STERE 218 
 
 

INCAS BULLETIN, Volume 2, Number 4/ 2010  
 

2
1 [ (1 2 ) (1 )sin ]

2

p R b
R

Eh R
                                               (5) 

Equivalent stress von Mises (σeqv) 
Maximum principal stress (σ1,σ�)  
Middle principal stress (σ2,σθ) 
Displacements (ΔR) 

Finite element analysis using ANSYS and CATIA. Meshing in ANSYS was done on 
a specified thickness surface. In CATIA the mesh was done on a solid body with the 
specified thickness. We tried meshing in ANSYS with solid body and in CATIA with a 
surface, but the results were not accurate. Below are the meshes from MATLAB, ANSYS 
and CATIA. In our results, we used only one eighth of the models due to their symmetries 
and also to increase the resolution of the mesh. 

Because of the lack of uniformity of ANSYS and CATIA not producing uniform results, 
and of the quite inaccurate meshing models, we will define three regions on this model. The 
reason is that CATIA and ANSYS find maximum or minimum in singular points, which are 
not relevant for the entire area surrounding that points. We’ve introduced these regions so 
that we can have a better view of the overall stress values that we are going to be analyze 
further on. From Fig. 5, from the MATLAB mesh, we are going to define the inner region, 
the region around the inner radius of the theoretical torus (the shorter region with the blue 
color). The upper region will be the highest region (z axis) of the theoretical torus (the 
middle of the red region). The outer region will be near the outer radius of the theoretical 
torus (the longer region with the blue color). We used this approach since the model has 
three planes of symmetry, and all the values are in the regions that we are covering. 
 

 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

Fig. 5 Meshing density MATLAB, ANSYS and CATIA 
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The mesh comparison is presented in Table 1: 

Table 1 Theoretical torus mesh density comparison for MATLAB, ANSYS and CATIA 

Theoretical torus 
mesh 

Number of nodes Number of 
elements 

Type of elements 

MATLAB 100   
ANSYS 55086 54792 Triangles/Quadrilaterals 
CATIA 335129 165889 Tetrahedrals 

 

Boundary conditions. Since we used one eighth of the real model, the bounding 
conditions were placed on the planes of symmetry, restricting only the displacement in the 
direction perpendicular to the corresponding plane of symmetry. In Fig. 5, in the CATIA 
model, there is a better representation of the imposed constraints. 

Equivalent stress von Mises of the theoretical torus. As stated before, we will present 
also the values from the three regions, together with the maximum and minimum values 
from the solvers. 

These values are taken not on the boundary, but on the vicinity, so that the boundary 
conditions don’t have a great influence on them. 

The values from these regions are arbitrary, but they are meant to better represent the 
values along the regions of interest.  
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Equivalent stress von Mises in MATLAB, ANSYS, CATIA 

As can be seen more clearly from Fig. 6 and Table 2, all three solvers values are in the 
same range. 

All values are under the UTS specified for polyethylene. 
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Table 2 Equivalent stress von Mises in MATLAB, ANSYS, CATIA 

Equivalent stress 
von Mises [MPa] 

Maximum Minimum Inner region Upper region Outer region 

MATLAB 1.06 0.615 1 0.775 0.65 
ANSYS 1.39 0.367 1.05 0.75 0.61 
CATIA 1.44 0.483 1.02 0.74 0.62 

 

Total Deformation of the theoretical torus 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 Total Deformations in MATLAB, ANSYS, CATIA 

The discrepancy between the maximum and upper region values may be attributed to 
how each program computes the total displacements. 

ANSYS gives the entire displacement, while CATIA plots the modulus vector, and also 
the direction. 

Overall, the values aren’t too high and the polyethylene will not tear. 

Table 3 Total Deformation in MATLAB, ANSYS, CATIA 

Total Deformation 
[mm] 

Maximum Inner region Upper region Outer region 

MATLAB 0.35 0.05 0.13 0.33 
ANSYS 3.26 0.05 1.7 0.35 
CATIA 1.81 0.07 1.7 0.3 
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Maximum Principal Stress of the theoretical torus 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 8 Maximum Principal Stress in MATLAB and ANSYS, Stress Principal Tensor in CATIA 

All the values from within the three regions are more or less in the same range (Table 4). 
While ANSYS plots the values for each of the principal stress individually, CATIA plots all 
three values in the same graph.  

Table 4 Maximum Principal Stress in MATLAB, ANSYS, CATIA 

Maximum Principal 
Stress [MPa] 

Maximum Minimum Inner 
region 

Upper 
region 

Outer 
region 

MATLAB 1.2 0.71 1.15 0.85 0.75 
ANSYS 1.636 0.497 1.18 0.83 0.7 
CATIA 1.64 0.553 1.15 0.8 0.71 

 

Middle Principal Stress of the theoretical torus 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9 Middle Principal Stress in MATLAB and ANSYS 
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As it can be seen from Fig. 9 and (2), the middle principal stress is constant in 
MATLAB, while in ANSYS and CATIA it varies a lot. However, the overall values are 
within the same interval, and we also found that the average for the CATIA middle principal 
stress values is almost the same value as for the MATLAB middle principal stress up to the 
4th digit. 

Table 5 Middle Principal Stress in MATLAB and ANSYS 

Middle Principal 
Stress [MPa] 

Maximum Minimum Inner region Upper 
region 

Outer 
region 

MATLAB 0.418 
ANSYS 0.841 0.102 0.41 0.425 0.42 
CATIA 0.925 0.013   0.43 

 

Minimum Principal Stress of the theoretical torus 
 
 
 
 
 

Fig 10  Minimum Principal Stress in ANSYS 

 

Fig 10  Minimum Principal Stress in ANSYS 

As stated before, the minimum principal stress can be ignored if we look at the values of 
the other principal stresses, especially in ANSYS. Values for CATIA don’t seem to be 
following any pattern, and it should be considered not relevant since they vary so much, and 
don’t have the same pattern as the other two principal stresses.  

Table 6 Middle Principal Stress in ANSYS 

Minimum Principal 
Stress [Pa] 

Maximum Minimum Inner 
region 

Upper 
region 

Outer region 

ANSYS 152.6 -2.06e-6 30 40 20 
CATIA 687468 -553405    

 
Stress analysis of approximate torus. After running the simulations on the theoretical 

model, we are going to run them on the approximate model. The reason we chose this 
approximate model is due to the fact that both ANSYS and CATIA give erroneous results if 
the shape is not smooth enough. Thus, we tried using as few inflection points as possible. 
However, the approximate model can be improved to resemble our real model.  

Mesh comparison. Below are the meshes from ANSYS and CATIA. As with the 
theoretical torus, we used only one eighth of the models because of its symmetries. 

Table 7 Approximate torus mesh density comparison for ANSYS and CATIA 

Approximate torus 
mesh 

Number of nodes Number of 
elements  

Type of elements 

ANSYS 94787 94368 Triangles/Quadrilaterals 
CATIA 279238 165889 Tetrahedrals 
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Equivalent stress von Mises of approximate torus. Like in the previous simulations, in 
CATIA we used a solid mesh, while in ANSYS we used a surface mesh. As with the theoretical torus, 
we will present results from the three regions (inner, upper and outer). 
 
 
 
 
 
 
 
 
 

Fig 11 Equivalent stress von Mises in ANSYS and CATIA 

The values for the equivalent stress von Mises tend to be higher than for the theoretical 
model, and the critical part is the outer region, but this is due to the boundary conditions. The 
maximum equivalent stress exceeds the ultimate strength, but this is influenced by the 
boundary conditions, and given the results from the theoretical model, the material should 
not brake. 

Table 8 Equivalent stress von Mises in ANSYS and CATIA 

Equivalent stress 
von Mises [MPa] 

Maximum Minimum Inner region Upper 
region 

Outer 
region 

ANSYS 48.1 0.28 1.31 1.0 5 
CATIA 21.9 0.259 1.4 1.1 6 

 
Total Deformation of approximate torus 

 
 
 
 
 
 
 
 
 

Fig 12 Total Deformation in ANSYS and CATIA 

The deformations are not that high, and are within limits. The critical area remains the 
outer region, and this is because of the boundary conditions we imposed on the model. 

Table 9 Total Deformation in MATLAB, ANSYS, CATIA 

Total Deformation 
[mm] 

Maximum Inner region Upper region Outer region 

ANSYS 111.8 1.11 25 17 
CATIA 35.8 1 15 5 
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Maximum Principal Stress of approximate torus 
 

 
 
 
 
 
 
 
 
 

Fig 13 Maximum Principal Stresses in ANSYS and Stress Principal Tensor in CATIA 

Values in CATIA were not as continuous as they were in ANSYS, but they were in the 
same range as the values for the theoretical model. Like in the case of the Equivalent Stress 
von Mises, the values are higher than the theoretical model (Table 10). 

Table 10 Maximum Principal Stress in ANSYS and CATIA 

Maximum Principal 
Stress [MPa] 

Maximum Minimum Inner 
region 

Upper region Outer 
region 

ANSYS 25.21 -0.0006 1 1.5 0.9 
CATIA 29.34 -16.19 1 1.15 0.7 

3. CONCLUSIONS 

We tried to find a suitable model that could resemble our real model. But because of a not so 
smooth geometry, there were problems running the simulation. Also, having such a thin 
shell, the solid model started giving errors since it could fit one degenerated tetrahedral. 
Another issue was the boundary condition, which we had to impose in that particular way to 
take advantage of the symmetries and have a more refined mesh order. For a better accuracy, 
there could be a more refined approximate model, but the inflexions on the geometry have to 
be taken into account. Nonetheless, the results from the theoretical models provided by 
MATLAB, CATIA and ANSYS gave similar results, and since the equivalent stress on the 
material is below the ultimate tensile strength, for that particular pressure, there are no signs 
of material tearing. 
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