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Abstract 

The present paper deals with the interactions between a fully supersonic flame front, situated in a supersonic two-
dimensional flow of an ideal homogeneous combustible gas mixture, and an incident shock wawe, which is penetrating in 
the space of the hot burnt gases. A possible configuration, which was named ,,simple penetration” is examined. For the 
anlysis of the interference phenomena, shock polar and shock-combustion polar are used. At the same time, the paper 
shows the possibility to produce similar but more complicated configurations, which may contain expansion fans and 
reflected shock waves. 
 
 

M 

Notation 
i or j         − subscrips indicating the i or j areas of 
the           flow, 
ij      − subscript for function or variable at 
         the boundary among the two jointed 

        areas,             
Mi                 − Mach number  
Ti         − absolute temperature, 
γ      − specific heat ratio, 
Q      − heat liberated by chemical reactions
         per unit mass of the gas mixture, 
ai                       − sound velocity in the i area, 
pi         − pressure 
ρi         − density 

mi      − flame Mach number, 
δij      − deflection angle of the flow behind the  
       flame front (or shock wave) between  
      the i and j areas, 
R     −  gas constant, 

 
1. Introduction  
Considering the two-dimensional supersonic flow 
of an ideal homogeneous combustible gas mixture 
which can be ignited in a point P (Fig. 1), J.F. 
Clarke [2] shows, for the first time, the possibility 
of formation of a fully supersonic flame front 
(combustion wave), PF, after an oblique shock 
wave, PS, attached in the same point, P (Fig. 1). 
 
The flame front and the shock wave are treated as 
surfaces of discontinuity. The term fully supersonic 
means that all Mach numbers M∞, M1 and M2 are 
greater than unity, and so the flow is supersonic in 
all areas. 
 

 
 
 
 
 
 
 

Fig. 1 
 
To realize such a configuration, some conditions 
are necessary [2]: 
- The flame propagation velocity must be high 
enough, so that the combustion wave inclination 
(respective to the direction of the initial flow) shall 
be sufficient to avoid the stability loss 
- The burnt gas temperature behind the flame front 
must not be too high, because it is possible that the 
sound speed should became greater than the flow 
speed, and the flow in this area shold become 
subsonic. 

i
ij

j

i
ij

j

density ratio,

p
pressure ratio,

p

ρ
λ = −

ρ

ξ = −
- In P, the ignition must be obtained by heat 
addition (by pilot burner or by an other heat 
sourse), because the temperature of the unburned 
gas must not be too high, so that the temperature 
behind the shock wave (PS) remains under the limit 
of the ignition temperature. This means that the 
combustible gas mixture can not be ignited without 
external heat addition. The shock wave PS will 
necessarly appear, in front of the combustion wave 
to deviate the flow with an angle δ, bringing it to 
the initial direction.The flow will be redressed to 
the initial direction by the combustion wave PF.  
- We shall asume, as in [2], that the flame front                   
remains separated from the combustion wave, so 
that a detonation wave is avoided. This means that 
the flame propagation speed do not exceeds a 
certain limit.  
 
2. The analysed shock-combustion configuration 
The shock wave PS may be reflected by a superior 
wall parallel to the direction of the undisturbed 
flow, and the reflected wave will penetrate through 
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the flame front PF in the region of the hot burnt 
gases. In Fig. 2  such a configuration is presented, 
which is, at least, theoretically posible.  
 
3. The computation relations 
We consider a premixed homogeneous gas mixture, 
which is characterized by the heat, Q liberated by 
chemical reaction per unit mass. In the computation 

 

programs we will use the notation: 

he variation of the Mach number with the 

    m = m(T)  (2)

sing the equatio servation of ma

 
T
temperature of the flame will be denoted by:  
 

 
U ns of the com tter, 
momentum and energy, we will obtain the folowing 
relations: 
 

( )ξ = = − λ − ⋅ γ ⋅ 22
1

1

p
1 1

p , m
 

 (3)

 
 which λ is the density ratio: in

 
1 2

2 1

v
v

ρ
=

ρ
λ = , 

 
4)

 
d γ1, the specific heat ratio for the cold unburnt 

ratio will be obtained from the 

 (

an
gas mixture. 
The density 
expression  [6]: 
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where γ  is the specific heat ratio for the burnt gas 

tion for the pressure variation trough the 

2
mixture. 
The equa
flame front is: 
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where 2

2
1

2Q(q = .
a
γ −1)

(1)   

From the same conservation laws and by using 
certain geometric considerations, we obtain [26]: 

( )

 

      
( )

( )
λ − ⋅ −

δ =
+ λ − ⋅

2 2
1

2 2
1

F

m 1 M m
tg ,

M 1 m
 

 
(7)

 
where M1 is the Mach number of the unburnt gas 
mixture flow.   
Also, we can compute the Mach number, M2, 
behind the flame front: 
 

( )2 2 2
1 1 1 12

2
2 2 2

R T M 1 m
M

R T

⎡ ⎤γ ⋅ ⋅ ⋅ + λ − ⋅⎣ ⎦=
γ ⋅ ⋅

. (8)

 
It is possible to eliminate the m parameter from the   
Eq. (2), (5) and (6), and to obtain finaly:  
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(9)

 
This relation is the equation of the flame 
deflagration polar,  as the relation: 
 

2
1

2
1

2 M 1
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1M 1
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− −
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represents the shock polar. Otherwise, if in Eq. (9) 
we make Q=0, γ1=γ2=γ and we change the sign, we 
obtain Eq. (10). 
In the above formulas M1 is the Mach number of 
the flow of the unburnt gas from zone. 
If it is possible to consider γ1=γ2=γ (the case of the 
poor mixtures), we can simplify the Eq. (9). We 
denote:  

 
With this notations, Eq. (8) became: 
 

− ξ − ξ
δ = ⋅

− ξ + ξF
1 s

tg . (12)
b L  

 
The reaction heat can be computed, after the 
methods which was developed in [6]. 
The interferences between the shock and 
combusion waves may produce complex flow 
configurations, whith may contain, apart from 
shock waves, expansion fans of Prandtl-Meyer 
type. 
 
For the Prandtl-Meyer type expansion, we have [4]: 
 
 

( )

 
(where M1 denote the Mach number before the 
Prandtl-Meyer expansion and γ1, the specific heat 
ratio) 
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The Eq. (9) and (12) represent two branchs of a 
continuous curve δ=δ(ξ) [4]. The common tangent 
in the combination point (ξ=1) is: 
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A
c

ccording to the before considerations, the 
onstruction of the shock-expansion-combustion 

polar can be realized with the hods stated 
and [6]. 

tions, we can suppose that the Mach 
umber of the flame propagation may be obtaind 

met  in [4] 

 
4. The Mach number of the flame propagation 
Because the purpose of this paper is to announce 
the theoretical possibility of the existence of such 
configura
n
with the Passauer formula: 
 
 

2
1n1 ATv = , (17) 

 
where v1n is the propagation velocity of the flame, 

, an experimental coeficient, but which can be 
pproximated with some data from literatu  

and [10]. T1 is the unburnt gas temperature. If we 
ote with m1 and m2 the Mach numbers in two arias 

ple penetration 
is paper we will examine a possible 

 
simple penetration”. We will taken into 
onsideration the flow of a gaseous combustible 

is M1 (Fig. 2).  

A
a re [6]

n
with the temperatures T1 and T2 repectively,  we 
can write: 

and: 
                    m1/m2 = (T1/T2)3/2                          (19) 
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T In th
configuration of the flow which was named
,,
c
mixture whose Mach number 
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S1 F2

The mixture is ignited and a fully supersonic flame 
front, F1PF2, will appear. Behind this flame 

S2

F1

P
A

B

1

2

3
4

5

δ34

δ12 δ25

front is 
e zone of the burnt gas.  

 the point P the flame front is changing his 

, the   

oor, we will consider that γ1 = γ2 ≅ 1.4. 

arbitrarily, 
 

d by i 
nd j, which are separeted by a flame front, a shock 

Fig. 2 

or the tracing of the flame fronts PF1 and PF2, we 
have used the Eq. (1), , (6), (7), (8) and (9). 
nd some results and informations from [1], [3], 
], [6], [10]. 

 the equations mentioned before.  
he principal numerical results are presented in the 
elow table.  

Fig. 3 

Area 2 Area 3 Area 4 Area 5 

th
 
A shock wave, S1P, comes through the flame front, 
bringing forth the refracted shock wave, PS2.  
 
In
inclination because the temperatures in the regions 
2 and 3 are different, and,  according to (18)

ame Mach numbers are not the same.  fl
 
We will take into consideration a poor combustible 
gas mixture which flows with a supersonic speed at 
M1 = 2 and T1 = 300oK. Because the mixture is 
p
 
As previously stated, this paper tries to show only 
the possibility, at least theoretical, of the existence 
of such a flow and for this  we will use, 

e following caracteristic values (but which areth
near enough of the real gas mixture values): 
 
q1 = 10; R = 287 m2/s2×oC; m1 = 0.1; ξ13 = 1.2; (20) 
 
(the index ij corresponds to the regions note
a
wave or an expansion fan). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
F

 (3), (5)
a
[5
 
 
Fig. 3 represent the shock and flame polars, obtaind 
with the aid of
T
b
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

M2=1.3120 M3=1.8819 M4=1.2056 M5=1.8819

T2=919.6
o
K T =316.1

o
K T3 4=934.9

o
K T5=316.1

o
K

δ
o δ13= 9 δ  δ2 912=-6.1263 --3.293 34=--9.76 5=--3.293

ξ12=0.9697 ξ13=1.2 ξ34=0.9662 ξ15=1.1591
λ12=3.1610 λ13=1.1391 λ34=3.0610 λ25=1.1187

 
 
Sim  t king int  
consideration another values than (20).  

lso we could to use another law than the Passauer 

emonstrate 
e possibility of the (at least) theoretical existence  

 

 this paragraph we remark some theoretical flow 
onfigurations which can be produced when a 

ace of the hot burnt 
as mixture from behind a flame front. 

    

ll be: 

ilar configurations can be obtaind a o

 
A
law (18) to compute the flame mach number. This  
law and the data (20) was used only to d
th
of such a flow configuration. 
 
 
 
6. The complex penetrations
 
In
c
shock wave penetrates in the sp
g
 
We will consider a gas mixture which flows with    
M1 = 2 and T1 = 300oK and γ1 = γ2 ≅ 1.4. The 
characteristic values in this new case wi
 
q1 = 10; R = 287 m2/s2×oC; m1 = 0.12; ξ13 = 1.4;(21) 
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P
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Polar of the shock wave
between the 1 and 3areas 

Polar of the flame front
between the 3 and 4areas 

Polar of the flame front
between the 1and 2areas 

Polar of the shock wave
between the 2 and 5areas 

roceeding as before, we obtain the shock and 

Fig. 4 

e notice that the polar of the shock wave between 
the 2 and 5 areas can rsect the polar of the 

ame front between the 3 and 4 areas. In this case 

 this paper we presented a plausible configuration 
f a supersonic two dimensional flow in which a 

trates through a flame front in the 
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