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Abstract 
The great developing of numerical analysis of the dynamic systems emphasizes the existence of a 
strong dependence of the initial conditions, described in the phase plane by attractors with a 
complicated geometrical structure. The Lyapunov exponents are used to determine if there is a real 
strong dependence on the initial conditions: there is at least a positive exponent if the system has a 
chaotic evolution and all the Lyapunov exponents are negative if the system has not such an 
evolution. Determining the largest Lyapunov exponent , which is easier to calculate, is sufficient to 
draw such conclusions. In this paper we shall use the greatest Lyapunov exponent to study two 
well-known problems who leads to chaotic motions: the problem of the buckled beam and the panel 
flutter problem. In the problem of the buckled beam we verify the results obtained with the 
Melnikov theorem with the maximum Lyapunov exponent [1]. The flutter of a buckled plate is also 
a problem characterized by strong dependence of the initial conditions, existence of attractors with 
complicated structure existence of periodic unstable motions with very long periods (sometimes 
infinite periods).  
 
 
Introduction 
 

 A large class of practical problems is modeled using dynamical systems whose 
solutions are characterized by a strong dependence of the initial conditions, a complex 
representation in the phase plane (the existence of attractors with a complicate structure) 
or the existence of solutions with very long periods, sometime infinite periods. Such 
dynamical systems are for example the Duffing equations, the Van der Pol equations or 
the Lorentz equations and they are extensively described in monogrphies as [6], [12]. 
 To study such problems one can use the great development of the computational 
technique (phase plane representations, with the possibility to build strange attractors, 
complicated Poincare maps or representations of the Lyapunov exponents) or analytical 
methods based on the particular form of the equations as for exempla the Melnikov 
method which uses averaging and perturbation of the homoclinical orbits. 
The stability of buckled beams and plates acted upon by periodical forces is a classical 
problem that can be included in the dynamical systems described above. The buckled 
beam is usually described using the Bernoulli-Euler model [6]. However, because the 
system of equations that describes the problem is of Duffing type with negative rigidity it 
is unstable and it is interesting to analyze its solutions when one takes into account new 
effects as the rotator inertia effect and the shear forces effect considered by a more 
complex beam model, the Timoshenko model. Although the principal characters of the 
model are the same, the small difference between the equation systems can induce 
interesting mechanical signification. These differences are remarked in an analysis done 
using the Melnikov function in [2]. The Melnikov function evaluates the distance between 
the stable and the unstable manifold. In this paper we evaluate the differences between the 
three models with the greatest Lyapunov exponent. 
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 A plane plate acted by axial forces in parallel flow is the usual model used to 
study the non-linear panel flutter problem [4, 5], [6]. Phase plane representations, Poincare 
maps lead Dowell to analyze different aspects of this phenomenon. In this paper we use 
the greatest Lyapunov exponent to discover the regions in the parameter space that lead to 
great sensitivity at initial conditions. 
 

Equations of motion 
 

a) Transversal vibration of a buckled beam 
Consider a buckled beam of length l, simply supported, acted upon by an axial 

force ( 21 crcr PPPP )<< and a lateral load 1cos 1tF ω . The equation of motion in the 
Bernoulli-Euler model, including the membrane effect, using no dimensional variables is: 
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EI  is the bending modulus, ρ  is the density, A the cross sectional area and κ a 
coefficient which introduce the membrane effect. 
 Introducing the rotatory inertia effect and the shear forces effect (1) becomes: 
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 To equations (1) or (4) we associate the following boundary and initial conditions: 
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 To study this problem we use the Galerkin method (in the first approximation) 
seeking the solution of the form: 
( ) ( ) xthtxv πsin, =                (6) 
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 Introducing (6) in (1) and (3) and orthogonalizing, we obtain the following 
differential equations: 
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2
24 bbfhbhb iiiiv  in (8) considering that they 

are much smaller than the unity. In this case (8) has the following approximate form: 
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Since 21
crcr PPP <<  one has 2π>Γ  and Tββ , are positive. In this case (7) and 

(10) are Duffing type equations. 
 

b) Panel flutter 

 
Fig. 1 

 The panel flutter problem is modeled sometimes in literature as a simple 
supported plate acted upon by in plane loads greater than the first critical load in a parallel 
flow as presented in fig. 1. The boundary value problem is: 
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where the principal notations are: 
W x t( , )  is the transversal displacement; a, b, h, are the dimensions of the plate; D 

is the plate rigidity, N x the nonlinear in plane load; N x
a the 

in plane applied load; 
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p p U
M

− =
ρ

2

W
x U

W
t−

−
−

⋅
⎡

⎣
⎢

⎤

⎦
⎥∞

∂
∂

∂
∂

2 2

21
2
1

1
( )

M
M

+  is the aerodynamic pressure, and  

s the static differential pressure across the panel. Introducing the following non-
dimensional variables: 
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equation (11) becomes: 
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with corresponding boundary and initial conditions. 
 Using the Galerkin method (for P=0, α=1) one obtains from equation (12) the 
following system of ordinary differential equations: 
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This is an autonomous non linear system of ordinary differential equations 
extensively studied for example in [6], or [4]. 
 

Analysis and results 
 

To study the systems (11) and (13) we use here: portraits in the phase plane, 
Poincare maps, Lyapunov exponents for both systems and the Melnikov function for the 
equations of the buckled beam. 

Let  be the solution of the equation ,while ( 0,0; xty ) )( ytfy ,=&
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From the terms of the row (1.8) one can obtain an evaluation of the difference 
between the perturbed solution and the unperturbed one, computed in the points of the 
given mesh: 
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This expression represents an approximation of the Lyapunov exponent that, with a 
supplementary hypothesis has a more precise form. 

If the above result can be extended to n Lyapunov 
exponents. It offers useful information about the dependence of the initial conditions of 
the solution of the system. If at least there is one positive Lyapunov exponent then the 
solution is strong dependent of the initial conditions, and if all the Lyapunov exponents 
are negative then the solution is not chaotic, it may be periodic or almost periodic. 

,:,, 0
nnn RRR →∈ fxy

INCAS BULLETIN No. 2/ 2009

77



Equations (7) and (10) have for 0=ε  a hyperbolic saddle point and a 
homoclinical orbit. For 0>ε  one can associate to such an equation a real valued 
function, called the Melnikov function, a sort of distance between the stable and the 
unstable manifolds of the fixed point of the perturbed equation. If the Melnikov function 
has simple zeroes independent of ε , then for 0>ε  sufficiently small, the stable and the 
unstable manifolds intersect transversely and this means via the Smale-Birkhoff theorem 
that the motion described by (7) becomes “chaotic” [6]: it is sensitive dependent on the 
initial conditions, and some iterate of the Poincare map contains a countable infinite 
unstable periodic orbits, un uncountable set of bounded, nonperiodic orbits, and a dense 
orbit. To draw the conclusions above one integrates the differential equations obtained in 
the precedent paragraph and represents the solutions in the phase plane for the beams, or 
makes a choice of two directions for the plates. 
 

Analysis of the chaotic vibration of a buckled beam 
 

The possible relations between the mathematical beam model and the chaotic 
dynamics were numerically analyzed considering a steel beam with a circular cross 
section. The homoclinic orbit corresponding to (7) is: 
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The Melnikov function for (7) is: 
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For (10) we have: 
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Taking into account the form of the coefficients δγβα ,,, one obtains the 
following relation between the bifurcation values: 

TRR 00 >               (20) 
This relation reflects the fact that the two motions perform chaotic motions for 

different values of the parameters of the problem (it is possible that under the same initial 
conditions and external loads one model performs a periodic motion and the other a 
chaotic one).  

We calculate the maximum Lyapunov exponent for (7) and (10) for the same initial 
conditions which are in a small neighborhood of the homoclinical saddle 
point of (7) when 

1.000 == hh &

0=ε . The evolutions are analyzed representing the maximum 
Lyapunov exponents, Poincare maps and portraits in the phase plane. 
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In figure 2 we represented Lyapunov exponents, Poincare maps and phase plane 
portraits for the Bernoulli-Euler beam and in figure 3 Poincare maps and phase plane 
portraits for theTimoshenko beam. 

           
1/ =δγ      1,1/ == ωδγ  

   
 08.1,1/ == ωδγ      08.1,1/ == ωδγ  

          
 2/ =δγ       1,2/ == ωδγ  

   
 7.1,2/ == ωδγ     08.1,1/ == ωδγ  
    Fig.2 Bernoulli-Euler Beam 
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1/ =δγ      1,1/ == ωδγ  

  
 08.1,1/ == ωδγ      08.1,1/ == ωδγ  

     
 2/ =δγ       1,2/ == ωδγ  

      
 7.1,2/ == ωδγ     08.1,1/ == ωδγ  

Fig. 3 Timoshenko Beam 
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Analysis for the panel flutter problem 
 
 Dowell studied this system using time histories, spectral densities, portraits in the 
phase plane and Poincaré maps. In [5] the principal values of the parameters are:  
λ μ ξ= = =150 01 3 4 2, / . , / ,M = .N

= .
= .
= .

 The bifurcation parameter is Rx. In his 
analysis he emphasizes the the possible appearance of chaotic motions of all kind 
(beginning of chaos, mature chaos, etc) for different values of the parameter Rx. 
 In this paper we consider the following three cases, according to the well-known 
diagram of Dowell [1]. 
 1. λ μ  ξ= = =150 01 3 4 2, / . , / ,M N
 2. λ μ  ξ= = =150 0 01 3 4 2, / . , / ,M N
 3. λ μ  ξ= = =300 01 3 4 2, / . , / ,M N
 In figure 4 and 5 we represent the maximum Lyapunov exponent diagrams in the 
first two cases, followed by phase plane portraits in significant situations 3a), b), c) d) e), 
and f)for case 1. 
 As a first remark on these diagrams one can note easier the time intervals 
described by Dowell: 
 When the maximum Lyapunov exponent is in a small neighborhood of the origin 
the evolution is in a phase called the beginning and the onset of chaos (the portraits in the 
phase plane shows periodic, but not simple motions); when the maximum Lyapunov 
exponent is negative, but well separated of the origin , the evolution is periodic; when the 
maximum Lyapunov exponent is positive, well separated of the origin , the evolution is in 
a phase called the maturing process of chaos (the portraits in the phase plane is 
characterized by a diffusion of periodic curves in such a way that a complete region is 
filled). 
 More precisely analyzing fig. 1 we have the following situations: 
1. For Rx / π 2 less than 3 the motion is periodic. 
2. For  there is a strong dependence on the initial values and in the same 

time with a positive maximum Lyapunov exponent we have a diffusion in the phase 
plane (fig. 3a). 

Rx / π 2 3≈

3. For ( ).  the motion is periodic, but not simple (fig. 3b). Rx / ,π 2 3 55∈

4. For ( )Rx / . ,π 2 55 5 9∈ .   the motion is characterized by a strong dependence on the  

initial conditions and a positive maximum Lyapunov exponent (3c). 
5. For  again we have a periodic, but not simple motion (fig. 3d). Rx / π 2 6≈
6. For )   the motion is chaotic (fig. 3e). Rx / ( ,π 2 6 7∈
7. For    the motion is simple periodic (3f). Rx / π 2 7>
 In the second case (fig. 5) we have almost the same principal regions, for , 
with small differences - situation described at 3) does not occur, the situation described at 
4) covers a larger region while 5) is smaller. 

Rx
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 As we have expected in the third case the maximum Lyapunov exponent is very 
small for the whole domain of  [4]. Rx

 
 
Conclusions 

Analyzing the results of the two examples discussed above one can draw the 
following conclusions: 

1. Both the beams and the plates acted upon by axial loads and lateral loads can, in 
specific situations, lead to differential equations with chaotic solutions 
characterized by great sensivity to the initial conditions and complicated attractors 
in the phase plane. 

2. When the maximum Lyapunov exponent is negative the evolution is periodic or 
cuasi-periodic. 

3. When the maximum Lyapunov exponent is positive the evolution is rather 
complex, we may say it is chaotic. 

4. There are cases in which for the same initial conditions and the same external 
loads we obtain periodic or cuasi-periodic motions for the Bernoulli beam and 
chaotic for the Timoshenko model. 

5. The intervals discussed by Dowell (on set of chaos, beginning of chaos and 
mature chaos) can be noted from the Lyapunov exponent 
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Fig. 4. Largest Lyapunov exponent diagram for panel flutter problem μ=0.1, λ=150. 
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Fig. 5. Largest Lyapunov exponent diagram for panel flutter problem μ=0.01, λ=150 

INCAS BULLETIN No. 2/ 2009

82



10 0 10
100

0

100100

100

fi

1010 xi  
10 0 10

200

0

200
250

250

fi

1010 xi  
a)  =30.5     b) R =54.7 Rx x

10 0 10

200

0

200
250

250

fi

1010 xi  
10 0 10

200

0

200
250

250

fi

1010 xi  
c) =57.18     d) R =59.7 Rx x

10 0 10

200

0

200
250

250

fi

1010 xi   
10 0 10

200

0

200
250

250

fi

1010 xi  
e) =63.      f) R =72. Rx x

Fig. 6 
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