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Abstract: This article aims to provide a quick methodology to determine the critical values of the forces 

applied to the central plane of a flat isotropic plate at which a change to the stable configuration of 

equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations, 

the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative, 

there will be presented only the most used configurations such as: rectangular flat thin plates, boundary 

conditions with simply supported (hinged) or clamped (fixed) edges, combined loadings with single 

compression or single shear or combination between them, compression and shear, with or without 

transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and 

elevator. The reserve factor and the critical stresses will be calculated using comparatively two 

methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – AIRBUS France 

software, a dedicated software to local calculations, for a simply supported plate under combined 

loading, compression on the both sides and shear. 

Key Works: buckling, thin plate, simply supported, hinged edge, clamped, fixed edge, combined 

loading, reserve factor, ASSIST 

1. INTRODUCTION 

Shells and thin plates, in the variety of shapes of flat or curved panels of different 

configurations, reinforced by stiffeners, are widely found in structural elements of aerospace 

and aeronautical structures. 

Because of the variety of shapes, boundary conditions and loading combinations, the 

article does not intend to make an exhaustive presentation of the plate buckling. 

There will be presented only the most used configurations such as: rectangular flat thin 

plates, boundary conditions with simply supported (hinged) or clamped (fixed) edges, 

combined loadings with single compression or single shear or combination between them, 

compression and shear, with or without transverse loading, encountered at wings and control 

surfaces shell of fin and rudder or stabilizer and elevator. 

To verify if the results are the same, a comparison will be made between this methodology 

and ASSIST 6.6.2.0 – AIRBUS France software, a dedicated software to local calculations, 

for a simply supported plate under combined loading. 

2. METHOD USED TO DETERMINE CRITICAL LOADS 

The forces are applied to the central plane of a flat isotropic plate at which a change to the 

stable configuration of equilibrium occurs. 
The plate equation is written as follows - [1]: 
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where: 

- Nx, Ny, Nxy – the  critical distributed forces (flow) – (N/mm); 

- w – the displacement in the normal direction on the plate; 

- 
 2

3

112 


Et
D  - the bending stiffness of the plate; 

- E – Young’s modulus – (N/mm2); 

-  - Poisson ‘s ratio; 

- t – the thickness of the plate – (mm) 

The strain energy of the internal forces is - [1]: 
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The mechanical work of applied forces is - [1]: 
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To determine the critical buckling load of plate an energy method is applied. Let’s 

consider the strain energy and mechanical work variation, U and W, resulting from 

relationships (2) and (3), where w is virtual displacement. 

The following situations are possible: 

- a) U > W – the steady state of plate is stable; 

- b) U < W – the steady state of plate is unstable; 

- c) U = W – the steady state of plate is neutral, at which a change to the stable 

configuration of equilibrium occurs. 

The critical buckling load of plate is computed from the equality condition of relationships 

(2) and (3): 
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Solving the equation (4) for different configurations and fixed conditions of the plate 

allows the determination of critical loads, Nx, Ny and Nxy. 

Median deformed surface of the plate can be described using double trigonometric series: 
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where: 

- a is the length and b is the width of plate; 

- m and n are the numbers of half waves in the longitudinal and transverse direction of 

the plate; 

- Cmn – coefficients. 

3. BOUNDARY CONDITIONS OF THE PLATE 

A rectangular plate has four edges; each of them can be restrained or loaded in a different way. 

One of the following possibilities exist for each edge: 

- clamped:   0,0
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The edge of the plate is prevented from 

rotation and deflection in a perpendicular 

direction to the plane of the plate [11]. 
 

 

 

 

 

 

 
 

 

 

- simply supported:   0,0
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The edge of the plate is not prevented from 

rotation, but is only prevented from deflection in 

a perpendicular direction to the plane of the plate 

[11]. 
 

 

 

 

 

 

 

 

- free:  

The edge of the plate is not prevented from rotation and deflection in a perpendicular 

direction to the plane of the plate. In a structure it may be difficult to distinguish between 

clamped or simply supported edges. 

Therefore, an intermediate form is used in the literature, namely the elastic or rotational 

restraint (an average between clamped and simply supported condition). In cases of doubt 

between the clamped and simply supported edges, it is suggested to use the latter one, which 

gives safe values for the initial buckling load. 
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4. SINGLE LOADING 

Three single in-plane loads are possible: 

 

 

 

 

 

 

 

 
 

 

Figure 1 – Single loading of plate 

The following formulas for the corresponding buckling stresses will be obtained from 

equation (4) with 
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where: 

- cc,0 – critical single compression stress; 

- cr,0 – critical single shear stress; 

- cf,0 – critical single bending stress; 

-  – plasticity factor; 

- 
 

kK
e
2

2

112 


  - buckling factor; 

- k is given in the diagrams, as defined [2], [3], [4], [5], [6], depending on the a/b ratio 

If a plate is loaded with a transverse compression stress (as per y), b should be replaced 

by a in formula (6). 

5. PLASTICITY CORRECTION FACTOR 

The plastic correction factor  depends on E, Et, Es and . These latter values depend on the 

stress value to be calculated. 

The equation of the buckling stress can be formulated as follows: ecrcr , , where cr,e 

is the linear elastic buckling stress. In practice, for as long as cr, e is less than the 

proportionality limit e of the material; the plastic correction factor may be considered as being 

1. 

For standard aluminum alloys: 
2

2.0e  - AIRBUS hypothesis, where 0.2 is 

conventional allowable compressive yield stress. 

Therefore, this calculation being iterative, the Ramberg and Osgood model is used: 
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, where Es and Et are secant and tangent 

modulus and nc is stress-strain shape factor for compression. 

In the table below the expressions of the plasticity correction factor are given: 

Table 1 – Expressions of plasticity correction factors 

Loading Boundary conditions Equation 

Compression and 

bending 

Plate with unloaded 
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Remarks: 

- 431  ; 

-  and p are elastic - plastic and plastic Poisson’s ratio; 

- ecrcr ,6 , where cr,e is the linear elastic buckling stress. As long as cr,e is less than 

the proportionality limit e of the material, the plastic correction factor may be 

considered as being 1. For standard aluminum alloys: 
32

2.0e  - von Mises 

hypothesis, where 0.2 is conventional allowable compressive yield stress. 

6. RESERVE FACTORS FROM INTERACTION CURVES FOR COMBINED 

LOADING 

For combined loadings the general conditions for failure are expressed by Shanley as follows: 

0.1...321  zyx RRR  (7) 

In this above expression, R1, R2, and R3 could refer to compression, bending and shear 

and the exponents x, y and z give the relationship for combined stresses. The exponents are 

determined either theoretically or experimentally and the Ri coefficients are defined as: 
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i
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where: 

- i is effective stress, (N/mm2); 

- adm,i is allowable stress, (N/mm2). 

For the single load, the reserve factor, RF, is equal with: 
R

RF
1

 . For the biaxial case 

the reserve factor is determined as follows, see figure below: 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2 – Interaction curve -  
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where: 

- 1 and 2 are effective stresses, (N/mm2); 

- 1adm,0 and 2adm,0 are critical stress under simple load, (N/mm2); 

- 1adm and 2adm are critical stress under multiple load, (N/mm2). 

Sometimes the diagram from figure 2 is given in the following form: 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Interaction curve - R 

The failure of plate does not occur if the following condition is fulfilled: 121  yx RR . 

The coefficients, R, in the above figure are defined as: 
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The coefficients R1adm and R2adm have to satisfy the conditions: 121  y
adm

x
adm RR  and (10). 

7. COMBINED LOADING WITHOUT LONGITUDINAL COMPRESSION 

 

Figure 4 – Combined loading without longitudinal compression 

a) Compression and shear: 

The interaction equation is 12  sc RR  and the reserve factor is defined as 
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b) Bending and shear: 

The interaction equation is 122  fs RR  and the reserve factor is defined as 
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c) Bending and compression: 

The interaction equation is 175.1  fc RR  and the reserve factor may be determined either 

graphically, using the interaction curves from [2], [3], [4], [5], [6] or numerically: 
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From the second equation of the system of equations (11) 
R

R
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c

admc  ,, ,  and 

introduced in the first equation, the reserve factor could be solved from the equation: 
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01** 75.175.1  RFRRFR cf  (12) 

d) Bending and compression and shear: 

The interaction equation is 1

275.1

2 




sc

sc

RR

RR

fsc RRR  and the reserve factor may be 

determined either graphically using the interaction curves from [2], [3], [4], [5], [6] or 

numerically. 

8. COMBINED LOADING WITH LONGITUDINAL COMPRESSION 

 

Figure 5 – Combined loading with longitudinal compression 

For the calculus of the reserve factor, the following assumption is made: 

- the coefficient Rc is computed for compression on the both directions; 

- in presence of other loads such as shear or bending, the interaction curves of the 

previous chapter are used. 

9. CALCULUS OF RESERVE FACTOR WITH COMPRESSION IN BOTH 

DIRECTIONS 

 

Figure 6 – Combined loading with compression on the both directions 

a) the plate has all edges simply supported: 

From chapter 2, applying the energy method, the equation (4) will become: 
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Here m and n signify the number of half waves in the buckled plate in the x and y 

directions, respectively. Dividing by thickness t of plate in equation (13), it is obtained: 
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To find y,adm for a given x,adm, take m=1 and n=1, if: 
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If x is too large to satisfy this inequality, take n=1 and m to satisfy: 
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If x,adm is too small to satisfy the first inequality, take m=1 and n to satisfy: 
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b) the plate has all edges clamped: 
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This equation is approximate and is most accurate when the plate is nearly square ax and 

y nearly equal. 

The calculus of the reserve factor is made from the following relationships: 
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10. EXAMPLE – COMBINED LOADING WITH COMPRESSION ON THE 

BOTH DIRECTIONS AND SHEAR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Combined loading with compression in both directions and shear 

pad 

t = 5 mm 
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- plate geometry: a = 530 mm, b = 170 mm, t = 5 mm; 

- plate loading: 

x = 18 N/mm2 

y = 9 N/mm2 

xy = 27 N/mm2 

- plate material: 2024 - T3: 

Ec = 70300 N/mm2 

0.2 = 270 N/mm2 

R = 440 N/mm2 

nc = 7.05 

e = 0.33 

- plate boundary conditions: all edges simply supported 

a) the calculus of the coefficient Rc for compression in both x and y directions of the 

plate.  

From equation (14), for m=1 and n=1, it is obtained: 
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and introducing the input data in the eqautions (19) and (20), the following system of equations 

is obtained: 
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From system (21), it is obtained: 

x,adm = 113.32 N/mm2 and y,adm = 56.66 N/mm2, where x,adm satisfies inequality (15). 

It is not necessary to apply the plasticity correction factor, because e = 0.2 / 2 = 135 

N/mm2. From relationship (19), Rc = 0.159 is obtained. 

b) the calculus of the coefficient Rs for shear 

From relationship (6), it is obtained: 
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ks = 5.74, it is given in the diagrams, as defined [2], [3], [4], [5], [6] depending on the minimum 

value of (a/b ; b/a) ratios. 

Because cr,e = 322.18 N/mm2 is greater than 
3*2

2.0e = 77.94 N/mm2, a plasticity 

correction factor is aplied, 6. 

A schematic method to calculate the plasticity correction factor is presented below: 
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,
,

correctedcr
elasticcr 137.13 N/mm2. 

Thus, for cr,corrected = 135 N/mm2 corresponds cr,elastic = 137.13 N/mm2. 

By varying the cr,corrected (using an average between the value found and the initial value 

of the previous step), the corresponding cr,elastic can be calculated. With these values the curve 

cr can be plotted as shown in the figure bellow. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8 – Plasticity correction of stress 

cr,corrected 

cr,elastic 
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Hence,  3*18.3223,,, ecreqelasticcr 558.03 N/mm2. From the diagram above, it is 

obtained cr,corrected,eq = 291 N/mm2 and 





03.558

291

,,

,,

6

eqelasticcr

eqcorrectedcr
0.521 and  

cr,0 = 6 * cr,e = 0.521* 322.18 = 167.86 N/mm2. From relationship (8) we get 







86.167

27

0,cr

xy

sR 0.161. Using the interaction curve for compression and shear, it is 

obtained: 






2222 161.0*4159.0159.0

2

4

2

scc RRR
RF 3.86 

This example was made with the AIRBUS software ASSIST 6.6.2.0 for Windows. The 

results are presented in the figure below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 9 – Calculation of reserve factor with ASSIST 
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As it can be seen, the results are practically identical: the value of the reserve factor calculated 

with this methodology is RF = 3.86 while the value obtained using the dedicated software 

ASSIST is RF = 3.85. 

11. CONCLUSIONS 

This article establishes a quick methodology to determine the critical values of the forces 

applied to the central plane of a flat isotropic plate at which a change to the stable configuration 

of equilibrium occurs. Because there are a plenty of shapes, boundary conditions and loading 

combinations, it is not possible to make an exhaustive presentation of the plate buckling in this 

article. 

For this reason, there were presented only the most used configurations, such as 

rectangular flat thin plates, boundary conditions with simply supported (hinged) or clamped 

(fixed) edges, combined loadings with single compression or single shear or combination 

between them, compression and shear, with or without transverse loading, encountered at 

wings and control surfaces shell of fin and rudder or stabilizer and elevator. 

The reserve factor and the critical stresses will be calculated using comparatively two 

methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 – 

AIRBUS France software, a dedicated software to local calculations, for a simply supported 

plate under combined loading, compression in the both sides and shear.  

In the table below it is presented comparatively the results of the calculation for the 

reserve factor and critical stresses using this methodology and ASSIST, using a proper 

mathematical model. 

Table 2 – Critical stresses and reserve factor 

Method of 

calculation 

Effective stresses 

(N/mm2) 

Critical stresses under multiple 

load (N/mm2) 
Load ratio 

Reserve 

factor 

x y xy cr,x cr,y cr Rc Rs RF 

This 

methodology -18 -9 27 
-69.48 -56.66 104.22 0.159 0.161 3.86 

ASSIST -69 -56 104 0.16 0.161 3.85 

Remarks: 

- the results are practically identical for critical stresses under multiple load, load ratios 

and reserve factors; 

- cr,x = RF*x. Due to the transverse load y, only the longitudinal critical compression 

stress cr,x is affected; 

- cr,y = y,adm , this critical stress is not penalized; 

- cr = RF*xy; 

The original contributions of the author are:  

a) the analytical calculation of critical stresses x,adm and y,adm was made using the 

equations (14), (18) and (19) for the case with biaxial compression and all edges 

simply supported or clamped; 

b) building the chart from figure 3 – Interaction curve – R, where the coefficients Ri are 

obtained by dividing with adm,0 of the terms from figure 2– Interaction curve – . 

 

This article also is intended to be a calculus guide for students and design and stress 

engineers, adapted to the INCAS needs enabling a correct understanding of the phenomenon 

of the plates stability. 



Ion DIMA 96 
 

INCAS BULLETIN, Volume 7, Issue 1/ 2015 

REFERENCES 

[1] S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability, McGRAW-HILL BOOK COMPANY, INC. 1961. 

[2] *** AIRBUS Static Stress Manual, Metallic Materials, MTS 004, Issue C, 1999. 

[3] E. F. Bruhn, Analysis and Design of Flight Vehicle Structures, 1973. 

[4] *** HSB 45111-01, Issue B, 1969, Buckling of rectangular plates under various loading types and support 

conditions. 

[5] *** HSB 45111-04, Issue B, 1970, Buckling of flat, rectangular plates under bending and compression. 

[6] *** HSB 45112-01, Issue C, 1970, Shear buckling of flat, rectangular plates. 

[7] *** HSB 45113-01, Issue B, 1969, Buckling under combined loading. 

[8] *** HSB 51200-01, Issue D, 2006, Reserve factors from interaction curves for combined loading. 

[9] *** ASSIST 6.6.2.0 for Windows, AIRBUS Software – FRANCE, 2010. 

[9] R. J. Roark, W. C. Young, Formulas for Stress and Strain, Fifth Edition, 1975 

[10] G. V. Vasiliev and V. Giurgiutiu, The stability of the aeronautical structures, Bucharest, Tehnical Publishing 

House, 1990. 

[11] * * * FOKKER TECHNICAL HANDBOOK, TH3 Strength Data, Issue 068, Issue data 951208. 


