Buckling of Flat Thin Plates under Combined Loading
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Abstract: This article aims to provide a quick methodology to determine the critical values of the forces
applied to the central plane of a flat isotropic plate at which a change to the stable configuration of
equilibrium occurs. Considering the variety of shapes, boundary conditions and loading combinations,
the article does not intend to make an exhaustive presentation of the plate buckling. As an alternative,
there will be presented only the most used configurations such as: rectangular flat thin plates, boundary
conditions with simply supported (hinged) or clamped (fixed) edges, combined loadings with single
compression or single shear or combination between them, compression and shear, with or without
transverse loading, encountered at wings and control surfaces shell of fin and rudder or stabilizer and
elevator. The reserve factor and the critical stresses will be calculated using comparatively two
methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 — AIRBUS France
software, a dedicated software to local calculations, for a simply supported plate under combined
loading, compression on the both sides and shear.

Key Works: buckling, thin plate, simply supported, hinged edge, clamped, fixed edge, combined
loading, reserve factor, ASSIST

1. INTRODUCTION

Shells and thin plates, in the variety of shapes of flat or curved panels of different
configurations, reinforced by stiffeners, are widely found in structural elements of aerospace
and aeronautical structures.

Because of the variety of shapes, boundary conditions and loading combinations, the
article does not intend to make an exhaustive presentation of the plate buckling.

There will be presented only the most used configurations such as: rectangular flat thin
plates, boundary conditions with simply supported (hinged) or clamped (fixed) edges,
combined loadings with single compression or single shear or combination between them,
compression and shear, with or without transverse loading, encountered at wings and control
surfaces shell of fin and rudder or stabilizer and elevator.

To verify if the results are the same, a comparison will be made between this methodology
and ASSIST 6.6.2.0 — AIRBUS France software, a dedicated software to local calculations,
for a simply supported plate under combined loading.

2. METHOD USED TO DETERMINE CRITICAL LOADS

The forces are applied to the central plane of a flat isotropic plate at which a change to the
stable configuration of equilibrium occurs.
The plate equation is written as follows - [1]:
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where:

- Nx, Ny, Ny —the critical distributed forces (flow) — (N/mm);
w — the displacement in the normal direction on the plate;
3
- D= Et - the bending stiffness of the plate;
120-+?)
- E - Young’s modulus — (N/mm?);
- v -Poisson ‘s ratio;
- t—the thickness of the plate — (mm)
The strain energy of the internal forces is - [1]:

otw ot oaworw (02w )
ﬂ {[ R j _2(1”){@(2 oy? _[axayJ ]}dmy @

The mechanical work of applied forces is - [1]:

1 owY o (owY ow ow
w :_Eﬂ[NX(&j +NV(E] +2N, = ay]dxoly (3)

To determine the critical buckling load of plate an energy method is applied. Let’s
consider the strain energy and mechanical work variation, 6U and W, resulting from
relationships (2) and (3), where w is virtual displacement.

The following situations are possible:

- a) 8U > 8W — the steady state of plate is stable;

- b) 8U < 8W — the steady state of plate is unstable;

- C) 8U = 8W — the steady state of plate is neutral, at which a change to the stable

configuration of equilibrium occurs.

The critical buckling load of plate is computed from the equality condition of relationships

(2) and (3):
tw _ow oworw (02w Y
ﬂ{( axz J _2(1_\/){ OX2 oy2 _(axayj ]}dxdy—

1 owY o (owY ow ow
__EJ.J.[NX(gJ +NV[5J +2nyag]dxdy

Solving the equation (4) for different configurations and fixed conditions of the plate
allows the determination of critical loads, Ny, Ny and Nxy.
Median deformed surface of the plate can be described using double trigonometric series:

[c o o]

w=>>C, sm—sm by (5)

m=1 n=1
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85 Buckling of flat thin plates under combined loading

where:
- a is the length and b is the width of plate;
- m and n are the numbers of half waves in the longitudinal and transverse direction of
the plate;
- Cmn — coefficients.

3. BOUNDARY CONDITIONS OF THE PLATE

A rectangular plate has four edges; each of them can be restrained or loaded in a different way.
One of the following possibilities exist for each edge:

ow
- clamped: (w),_, :0,(51 =0

=0

The edge of the plate is prevented from
rotation and deflection in a perpendicular
direction to the plane of the plate [11].

o i e ]
¢

2 2
- simply supported: (w),_, :0,(a Wivl WJ
y=0

oy2 X2

The edge of the plate is not prevented from
rotation, but is only prevented from deflection in
a perpendicular direction to the plane of the plate
[11].

- free:

The edge of the plate is not prevented from rotation and deflection in a perpendicular
direction to the plane of the plate. In a structure it may be difficult to distinguish between
clamped or simply supported edges.

Therefore, an intermediate form is used in the literature, namely the elastic or rotational
restraint (an average between clamped and simply supported condition). In cases of doubt
between the clamped and simply supported edges, it is suggested to use the latter one, which
gives safe values for the initial buckling load.
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4. SINGLE LOADING
Three single in-plane loads are possible:

il oy o
b -

a la

¥

1Tl — \r

Compression Shear Bending

Figure 1 — Single loading of plate
The following formulas for the corresponding buckling stresses will be obtained from

N, (N N
equation (4) with ¢ = X(t y);rz t"y;
t 2 t 2 t 2
oo =ME[ v = gy e =g ®

- oo — Critical single compression stress;
- Tero — Critical single shear stress;
- oo — critical single bending stress;
- n - plasticity factor;
n? .
K= mk buckling factor;
- kis given in the diagrams, as defined [2], [3], [4], [5], [6], depending on the a/b ratio

If a plate is loaded with a transverse compression stress (as per y), b should be replaced
by a in formula (6).

5. PLASTICITY CORRECTION FACTOR

The plastic correction factor ) depends on E, E;, Es and n. These latter values depend on the
stress value to be calculated.

The equation of the buckling stress can be formulated as follows: o, =noy, ., Where cere
is the linear elastic buckling stress. In practice, for as long as o, e is less than the

proportionality limit ce of the material; the plastic correction factor may be considered as being
1.

For standard aluminum alloys: ce:% - AIRBUS hypothesis, where oco2 is

conventional allowable compressive yield stress.
Therefore, this calculation being iterative, the Ramberg and Osgood model is used:
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e=240.002 -2 , Eq =E, i=&+1_n° , Where Es and E: are secant and tangent
E Gy e E E E

modulus and nc is stress-strain shape factor for compression.
In the table below the expressions of the plasticity correction factor are given:

S

Table 1 — Expressions of plasticity correction factors

Loading Boundary conditions Equation
Plat;_witz ugloaded - =n{0.5+0.25 /1+35j
Compression and Inged edges E,
bending .
Plate with unloaded E,
. =7, 0.352+0.324 [1+3—
fixed edges e nl( ’ \ TE, ]

Ne = % (in the € formula use the

Shear All conditions
equivalent normal stress G, = r\/§)
where:
1- Ve2 Es E Es
- 771= 2 _!Gz—’Gsz—
1-v? ) E 2@+v,) 2@+v)
E, E, ] , ) ]
- v=—"3vyv +|1-—=|v_ , v, =05, v, — Poisson's ratio —elastic
E € E p p e
Remarks:

S MM >Ny
- vand vy are elastic - plastic and plastic Poisson’s ratio;
- Ty =TMgTe e » Where tere is the linear elastic buckling stress. As long as ter,e is less than

the proportionality limit te of the material, the plastic correction factor may be

. . . () .
considered as being 1. For standard aluminum alloys: t,=—2Z - von Mises

243

hypothesis, where o is conventional allowable compressive yield stress.

6. RESERVE FACTORS FROM INTERACTION CURVES FOR COMBINED

LOADING
For combined loadings the general conditions for failure are expressed by Shanley as follows:
RF+R)+RZ+...=1.0 (7

In this above expression, Ri, Rz, and Rz could refer to compression, bending and shear
and the exponents X, y and z give the relationship for combined stresses. The exponents are
determined either theoretically or experimentally and the R; coefficients are defined as:

R =" ®)
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where:
- oils effective stress, (N/mm?);
- oadm,i is allowable stress, (N/mm?).

. . . 1 L
For the single load, the reserve factor, RF, is equal with: RF =" For the biaxial case

the reserve factor is determined as follows, see figure below:

F
Oladmo interaction curve
B
Glagm - - - '
A a
Gl - . i
102 | 02um 02adm0
0

Figure 2 — Interaction curve - ¢

R= - =— RF== ©)
Gladm  O2adm OB R
where:
- o1and o are effective stresses, (N/mm?);
- Giadmo and Gaadmp are critical stress under simple load, (N/mm?);
- G1adm and o2agm are critical stress under multiple load, (N/mm?).
Sometimes the diagram from figure 2 is given in the following form:

R, &
1 interaction curve
R +R} =1
B
Ryodm: @-==r—r=mrm e e ey .
A i
R @, : !
iR: i Roaim 1 2
O R:

Figure 3 — Interaction curve - R

The failure of plate does not occur if the following condition is fulfilled: R + R, <1.
The coefficients, R, in the above figure are defined as:
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cSladm,o c52a’1dm,0

O. (¢}
Rladm = —ladn ) RZadm = —2adm (10)

cT:I.adm,o G2adm,0
R= R1 — RZ :2, RF :l
R1adm RZadm OB R

The coefficients Riagm and Rzaam have to satisfy the conditions: R, + R,qm =1 and (10).

7. COMBINED LOADING WITHOUT LONGITUDINAL COMPRESSION

G

babddldidd _

R y
Gf\ [T Lx TJ Of b

R EREE R S

Gc

Figure 4 — Combined loading without longitudinal compression

a) Compression and shear:
The interaction equation is R,+R?=1 and the reserve factor is defined as

2 Sc p__"T

——————— ,where: R, = s
Rc +4/ RCZ + 4R52 G(:c,O Tcr,O

b) Bending and shear:

RF =

1

The interaction equation is R2 + R? =1 and the reserve factor is defined as RF =

where: R; = , Rg=——.

cFcf ,0 Tcr,O
¢) Bending and compression:
The interaction equation is R, + R}"® =1 and the reserve factor may be determined either

graphically, using the interaction curves from [2], [3], [4], [5], [6] or numerically:

Rc,adm + R%Z’fdm =1
R 11
R _ ™ _R,RF=1 (1)

Rc,adm Rf,adm

R Ry

From the second equation of the system of equations (11) R .4 = HC Rf adm= R and

introduced in the first equation, the reserve factor could be solved from the equation:
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R%‘75*RFJ"75+ RC*RF -1=0 (12)

d) Bending and compression and shear:
1.75R,+2R

The interaction equation is R, +RZ+R, %' =1 and the reserve factor may be

determined either graphically using the interaction curves from [2], [3], [4], [5], [6] or
numerically.

8. COMBINED LOADING WITH LONGITUDINAL COMPRESSION
TTNITY
SARRSARER

Figure 5 — Combined loading with longitudinal compression

Frr

For the calculus of the reserve factor, the following assumption is made:
- the coefficient R. is computed for compression on the both directions;
- in presence of other loads such as shear or bending, the interaction curves of the
previous chapter are used.

9. CALCULUS OF RESERVE FACTOR WITH COMPRESSION IN BOTH
DIRECTIONS

a

N
badbdiddbey,

—> §
Gy —» T < « Gy, |b
_’ 4_

BEEEEEEEEE LN

Figure 6 — Combined loading with compression on the both directions

a) the plate has all edges simply supported:
From chapter 2, applying the energy method, the equation (4) will become:

2.2 2.2 2.2 n2-2)\?
Nmn+Nnn:D(mn+nnj (13)

X a2 y bZ aZ b2

Here m and n signify the number of half waves in the buckled plate in the x and y
directions, respectively. Dividing by thickness t of plate in equation (13), it is obtained:
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m? n? E2 (m2 n2)
Gx,adm?"'cy,admﬁ = 0.8231_\/2 (?4_[)_2) (14)

To find oy,aim for a given ox aum, take m=1 and n=1, if:

a* a? 0.823Et?
C£1—4Fj<cxvadm<c(5+2b—2],Where C= IR (15)
If o is too large to satisfy this inequality, take n=1 and m to satisfy:
a2 aZ
C[Zm2 -2m+1+ 2b_2j<cx’adm<c(2m2 +2m+1+ ZF] (16)
If ox.a0m IS to0 small to satisfy the first inequality, take m=1 and n to satisfy:
2 2a’ 2 2 a’
C|1-n2(n-1) o7 | Oxasm>C|1-1 (n+1) o7 (17)
b) the plate has all edges clamped:
a2 Et?2a?( 3 3 2
nyadm—i_FGY’adm:l'll_vz [; F'F aszj (18)

This equation is approximate and is most accurate when the plate is nearly square a oy and
oy nearly equal.
The calculus of the reserve factor is made from the following relationships:
o (o)

R =—P2=—" ,RF:i and (14) or (18) (19)
c c R

x,adm y,adm C

10. EXAMPLE — COMBINED LOADING WITH COMPRESSION ON THE
BOTH DIRECTIONS AND SHEAR

&
tY
pocket
* . \ . BAY
b= 170 mum
t=5mm
__:‘
: : —
3 a= 330 mm ,’z*’;‘
VY
pad members /.-ﬁ/

Figure 7 — Combined loading with compression in both directions and shear
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- plate geometry: a=530 mm, b =170 mm, t =5 mm;

- plate loading:
ox = 18 N/mm?
oy = 9 N/mm?

Ty = 27 N/mm?
- plate material: 2024 - T3:
Ec = 70300 N/mm?
002 = 270 N/mm2
or = 440 N/mm?
ne.=7.05
ve =0.33
- plate boundary conditions: all edges simply supported
a) the calculus of the coefficient R. for compression in both x and y directions of the

plate.
From equation (14), for m=1 and n=1, it is obtained:
2
Gx,adm c;y,adm Et2 (1 1)
—8m 4+ 22 =0.823 —+ 20
a2 b? 1-v2{a? b? (20)

and introducing the input data in the eqautions (19) and (20), the following system of equations
is obtained:

— T = VU (o) +
530> 170° 1-0.33% (5307 170°
18 9

cFx,adm + cTy,adm -0 82Q70300*52 ( 1 1 jz
(21)

cTx,adm Csy,adm

From system (21), it is obtained:
Ox.adm = 113.32 N/mm? and oy agm = 56.66 N/mm?, where oy aam Satisfies inequality (15).

It is not necessary to apply the plasticity correction factor, because c. = co2 / 2 = 135
N/mm?. From relationship (19), Rc = 0.159 is obtained.

b) the calculus of the coefficient Rs for shear

From relationship (6), it is obtained:

72 5\
= xk, %*70300%| — | =n6*322.18 N/mm?2.
o0 = Ne oxi_0332) (170} e

ks =5.74, itis given in the diagrams, as defined [2], [3], [4], [5], [6] depending on the minimum
value of (a/b ; b/a) ratios.

Because Tere = 322.18 N/mm? is greater than 1, = 2iof/§ = 77.94 N/mm?, a plasticity

correction factor is aplied, ns.
A schematic method to calculate the plasticity correction factor is presented below:

270 . L
Ocr corrected = % = 7 =135N/mm? is assumed as initial value.
N 7.05
e=2 100042 | =13 0002+ (@j ~0.00194
E G5 70300 270
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== 135 _ 69750 Nimme
g 000194
-1
E - N 1-n 7.05 +1—7.05j _ 66609 N/mIm.
E, 69752 70300
VZEVe{l_E_ij:@ 0.33+ [1 @J*os:o.ssl
E E 70300 70300
_ _ 2
! VEVE, _(1-033 ), 69752_ oo,
1-v2JE (1-0.33% ) 70300
N =1 05+0.25 1435t |=0.993%| 0.5+0.25% [14+3+ 895901 _ 9845
E, 69752
_G

o elastic = —2rreded 135 _ 13713 N/mm2.
' s 0.9845

Thus, for Gercorrected = 135 N/mm? corresponds Ger etastic = 137.13 N/mm?.

By varying the ocr corrected (USING an average between the value found and the initial value
of the previous step), the corresponding cer elastic Can be calculated. With these values the curve
Gcr Can be plotted as shown in the figure bellow.

800 T T T
= .._,I._.,.lll
1 1 ] H
. T
T
|

()

:
= I s e

"

1 -
T I

Ocr elastic  spg -

135 145 155 165 173 185 193 205 215 225 235 245 255 265 275 235 205 305

Gecr,corrected

Figure 8 — Plasticity correction of stress
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Hence, O asticeq = Tcr,e\/§ =32218*%/3 =558.03 N/mm?. From the diagram above, it is

i °c 291
obtained Ger,corrected,eq = 291 N/mm? and m; = crcorrectedeq _ 291 0521 and
cscr,elastic,eq 55803

Tero = Me * Tere = 0.521* 322.18 = 167.86 N/mm? From relationship (8) we get
RS = TXy :i
oo 167.86

= 0.161. Using the interaction curve for compression and shear, it is
T

2 2
R, +RZ+4R2  0.159+/0.15% +4*0.16 7

This example was made with the AIRBUS software ASSIST 6.6.2.0 for Windows. The
results are presented in the figure below:

obtained: RF =

Diesignation | "test”
Plate length (mm) (mm) 530
Plate width (mm) (mm3 170
Thickness mm) g
Radiuz of curvature mm
Material characteristics
Mame "z0z4 PL T3"
oung modulus (B2 (MPa) Z0300
Paizzon's ratio (mu) 0,33
Yield stress in Comp (Fey) Pz} 270
Ultimate ten=ile stress (Fiu) (iPa) 440
R-0 ratio (ne) 7.05
Boundary conditions
Edgel
— —
Edgel Simply supported Edge3 :: :: Edge 4
Edgez Simply supported — - - —
Edge 7_4 Simply supported Edgez
Critical stress
Sigma Plasticity Buckling
Comection Coefficient
MPa) (Ba) 03]
Critical normal stres= along x-axis under multiple load 59 0,995 2.02
Crtical normal strezz along y-asxiz under multiple load 55 . e
Critical shear stress under multiple lead 104 0,521 5. 74
Crtical bending stress under multiple load — — —
Stress margin Case : ‘Computalion caze’
Loading
¥_awis stress (MPa) -18
Shear stress MiPa) 77
Bending strezz imiPa) i
¥_awiz stress MiPa) -q
Load ratio
In compression 0.16 07 ) S
Under shear stress 0.161 n3d
Under bending stress -
MARGIN OF SAFETYMS) 285 ()| v T T Bl b
Reserve factor [F] e 20 14 0B 02 04 1.0

Figure 9 — Calculation of reserve factor with ASSIST
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As it can be seen, the results are practically identical: the value of the reserve factor calculated
with this methodology is RF = 3.86 while the value obtained using the dedicated software
ASSIST is RF = 3.85.

11. CONCLUSIONS

This article establishes a quick methodology to determine the critical values of the forces
applied to the central plane of a flat isotropic plate at which a change to the stable configuration
of equilibrium occurs. Because there are a plenty of shapes, boundary conditions and loading
combinations, it is not possible to make an exhaustive presentation of the plate buckling in this
article.

For this reason, there were presented only the most used configurations, such as
rectangular flat thin plates, boundary conditions with simply supported (hinged) or clamped
(fixed) edges, combined loadings with single compression or single shear or combination
between them, compression and shear, with or without transverse loading, encountered at
wings and control surfaces shell of fin and rudder or stabilizer and elevator.

The reserve factor and the critical stresses will be calculated using comparatively two
methods, namely the methodology proposed by the present article and ASSIST 6.6.2.0 —
AIRBUS France software, a dedicated software to local calculations, for a simply supported
plate under combined loading, compression in the both sides and shear.

In the table below it is presented comparatively the results of the calculation for the
reserve factor and critical stresses using this methodology and ASSIST, using a proper
mathematical model.

Table 2 — Critical stresses and reserve factor

Method of Effective stresses | Critical stresses under multiple Load ratio Reserve
ethod o (N/mm?) load (N/mm?) factor
calculation
Ox Oy Txy Gcr,x Gcry Ter Rc Rs RF
This
methodology 18 | 9 | 27 -69.48 -56.66 104.22 0.159 0.161 3.86
ASSIST -69 -56 104 0.16 0.161 3.85

Remarks:

- the results are practically identical for critical stresses under multiple load, load ratios
and reserve factors;

- oux=RF*oy Due to the transverse load oy, only the longitudinal critical compression
stress oerx is affected;

- Ocry = Oy.adm , this critical stress is not penalized;

- Tor = RF*1yy;

The original contributions of the author are:

a) the analytical calculation of critical stresses Gyaim and Gy.aim Was made using the
equations (14), (18) and (19) for the case with biaxial compression and all edges
simply supported or clamped;

b) building the chart from figure 3 — Interaction curve — R, where the coefficients R; are
obtained by dividing with cadm,o of the terms from figure 2— Interaction curve — c.

This article also is intended to be a calculus guide for students and design and stress
engineers, adapted to the INCAS needs enabling a correct understanding of the phenomenon
of the plates stability.
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