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Abstract: This paper focuses on the behavior of the boundary-layer laminar flow produced by a large 

radius no-thickness disc which rotates inside an axial stream. Some early solutions are only known 

for the upstream flow field, but the details of the flow behind the disc are still obscure. A better 

understanding of the mechanisms and the properties of the shear layer close to disc is sought through 

the development of an analytic theory and then is completed by CFD computations. This article also 

shows that the basic flow on the leeward side of disc is mostly rotational-inviscid and only on in the 

neighborhood of the disc surface there is a viscous layer which rotates drawn by disc. The viscous 

layer containing a thin Ekman sublayer and a thicker essentially inviscid superlayer, governed by 

Taylor-Proudman theorem, can carry three possible actions: centrifugal (pumping) mode, neutral 

mode and centripetal (suction) mode. The action type depends on the relative importance of effects 

given by translation of the fluid (W) and rotation of the disc (ΩR), defined by a rotating parameter 

(W/ΩR). The existence of such modes is connected to the amount of angular momentum transferred 

outside the Ekman sublayer. A CFD analysis was used to identify the vortex structure which is 

responsible for the angular momentum transfer from the rotating disc to an axial stream. 

Key Words: Boundary layer, Rotating disc, Similarity solutions, inviscid superlayer 

1. INTRODUCTION 

One simple case of boundary layer on rotating body is the rotating disc in an initially 

stationary fluid, known also as the free disc [1], [2]. The solution is also a rare three-

dimensional exact similarity solution of the Navier-Stokes equations [3]. The viscous 

stresses on the disc surface drag fluid elements near disc around in almost circular paths, and 

then centrifugal forces cause these elements to spiral outwards. The disc thus acts as a 

centrifugal fan with a radial flow component that has a wall-jet character directed away from 

the axis of rotation, whence the name of pumping effect. The fluid outwards thrown in this 

way is replaced by an axial flow directed towards the disc surface. The azimuthally flow 

component has a typical boundary-layer profile, monotonically increasing from zero at 

infinity to a constant value at the disc. The importance of this cross-flow structure is due to 

the inflexional cross-flow instability [4], which generates stationary vortices in many three-

dimensional boundary layers of engineering interest. 

Another simple case of typical three-dimensional boundary layer is the flow near a 

stationary disc, when the fluid at a large distance above it rotates at the constant angular 
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velocity [5]. When the fluid rotates over the wall, there is a similar effect with the first case 

but its sign is reversed: at large distance from the wall the outer rotational flow is governed 

by a balance between the centrifugal force and radial pressure directed towards the axis, 

while close to the wall the radial pressure unbalanced by the frictional retardation proceeds 

to drive the radial inward boundary-layer flow. For reasons of continuity, the motion then 

must be compensated by an axial flow upwards that has a wall-suction character, whence the 

name sucking effect. 

The next problem is a disc of radius R rotating with an angular velocity Ω in an axial 

stream of velocity W∞. Although this flow was before considered a simple extension of the 

previous cases [6], [7] it has been shown in reality to be more difficult [8]. 

Thus, the determination of the flow due to a rotating body of revolution (here a disc) 

immersed into a steady flow parallel to the axis of rotation of body is not a simple problem, 

and a clear picture of all aspects of the flow field is not yet available. This flow is governed 

by two parameters: Reynolds number 
2

Re
R







, and the rotation parameter 

W

R

 


, given 

by the ratio of free stream to tip velocity. The rotation parameter is a measure of the relative 

importance of the effects of uniform axial flow and the disc rotation. In the limit   and 

at infinity we may expect the velocity distribution to reduce to a uniform stream. At the other 

extreme, 0  , it is plausible to meet again the flow around the free disc [1]. When µ is non-

zero, the flow field in upstream of the disc appears to be broadly correct predicted in the past 

[6], [7]. But the details of the flow in the axially symmetric shear layer and the way the fluid 

moves behind the disc are obscure. 

Generally, the physical origin of this flow is that the fluid in the boundary layer 

experiences centrifugal and wall shear stress forces, and these additionally act on the leeward 

side of the disc in an adverse pressure gradient, which can undergo separation. Thus the 

spiralling flow near the disc for 0   is presumably modified from the one for 0  , 

although there is an all-or-nothing quality about the moving vortex structure which makes 

the nature of the modification difficult to imagine. 

The new insights into the nature of the 3D boundary layer on the leeward side of the 

rotating disc and the vortex structures carrying angular momentum into fluid are derived and 

discussed. 

2. PROBLEM FORMULATION 

The basic flow for the disc rotating at constant angular velocity Ω* in an otherwise still 

viscous incompressible fluid at kinematic viscosity *v  (the asterisk subscript indicates a 

dimensional quantities) is obtained from the von Karman similarity solution [1]. Batchelor 

[9] showed that this flow is a limiting case of a family of flows with similarity solutions, in 

which both the disc and the fluid far from the disc rotate with different angular velocities: the 

Bödewadt layer [5], where the disc is stationary and the fluid rotate, and the Ekman layer 

[10], where the fluid and disc co-rotate at almost the same angular velocity. The similarity 

structure also persists for the present case when there is an axial flow towards the disc of 

velocity *W   [6]. 

Governing equations. We choose to work with cylindrical coordinates in a non-rotating 

frame of reference (Fig. 1). The axial and radial coordinates are *z  and *r , respectively, the 

azimuthally angle is θ, time is *t , and *  is the density of the fluid. The velocities in the 
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radial, azimuthal and axial directions are *u , *v  and *w , respectively, and the pressure is *p . 

The governing equations in an inertial frame are therefore 

 

Figure 1 – Uniform superimposed flow of air impinging on the surface of rotating disc 
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* * * *
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where the differential operators are 

*
* * *

* * * *

v
D u w

t r r z

   
   
   

, (5a) 

2 2

* * 2 2 2

* * * * *

1 1
L r

r r r r z

    
   

    
, (5b) 

Equations 1-4 can be made dimensionless by dividing through by approximate 

parameters using the following transformations: 

1

2

*
*

2

* 1
r r

 
 
   

, 
(6a) 

1

2

*
*

2

* 1
z z

 
 
   

, (6b) 

*
2

* 1

t
t 

 
, (6c) 
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Flow variables are separated into an axisymmetric steady basic flow, which respects von 

Karman’s similarity structure and a more general unsteady part from [11], whose amplitude 

is characterized, by a small parameter 1  , 

         
11
22 22

* * * * * * * *
ˆ, , , 1 1 , , ,u r z t r U z u r z t          , (7) 

         
11
22 22

* * * * * * * *
ˆ, , , 1 1 , , ,v r z t r V z v r z t          , (8) 

         
1 1

2 22 2

* * * * * * * *
ˆ, , , 1 1 , , ,w r z t W z w r z t           , (9) 

            
1

2 22
* * * * * * * * * *

ˆ, , , 1 1 , , ,z rp r z t P z P r p r z t              . (10) 

Substituting (6a)-(10) into (1)-(4) and equating terms of  0   gives the basic flow 

similarity equations 

2 2' ' "rU WU V P U    , (11) 

2 2' ' "rU WU V P U    , (12) 

2 ' "UV WV V  , (13) 

' ' "zWW P W   , (14) 

to be solved subject to boundary conditions, 

     
2

1
0 0 0, 0

1
U W V  


, (15a) 

     
2 2

, 0,
1 1

U z V z W z z C  

 
    

 
, (15b) 

where C is some constant to be determined, rP  is the radial pressure distribution on the disc 

given from the potential flow moving perpendicularly to a disc, and z  is the dimensionless 

boundary layer thickness. 

These substitutions and the resulting equations reduce (with slight modifications) to the 

ones used by von Karman [1] for 0   and the ones used by Hannah [6] only for favourable 

pressure gradients (windward side of disc when 0  ). 

But the problems of flow separation on the leeward side of disc still remain unclear even 

for steady incompressible flow, and conceptual confusion and controversy often appear in 

the literature [9]. 

The numerical solution of (11)-(14) subjected to (15a) and (15b) is relatively straight- 

forward, e.g. by a shooting method where (15a) provides three initial conditions, with two 

more initial conditions  ' 0U  and  ' 0V  chosen iteratively until (15b) has been satisfied at a 
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suitable large finite value of z ( z ) to within some prescribed accuracy. The equation (14) 

integrates immediately to give 

21
'

2
zP W W  , (16) 

since 0zP   when W, W’ vanish. 

Flow of non-viscous fluid. When viscosity is ignored, the solution will be the same for 

a rotating as for a stationary disc since the rotation of the disc only affects the fluid velocity 

through the viscous drag which it exerts. 

The solution of the inviscid irrotational flow can be found by the conformal mapping 

technique from the streaming motion past a planetary ellipsoid [12]. This stream function for 

the impinging flow in a circular disc is 

 
2

2 1 2* * sinh cosh cot sinh sin
W R          

, (17) 

where Ψ is the stream function solution, * */ sinh cosz R     and * */ cosh sinr R    . Using 

the solution (17), the velocity are obtained as 

* * *

* *

1
i i

cosh( i )
r zv iv W

r R


  
    

     
, (18) 

and after a few calculation we obtain 

 

2

* *
* 2 2

*

1*
* *2 2

2 cos sin
,

cos sinh

2 sinh
cot sinh ,

cos sinh

r

z

W R
v

r

W
v W






 


  

 
    

   

, (19) 

On the disc surface we have 

* *
*

2 2

* *

2
, 0r z

W r
v v

R r

 
 

, (20) 

and therefore, the pressure coefficient on the stationary disc is 

2

* *

2 2 2 2

* * *

4
1

/ 2
p

p p r
C

W R r






  
  

, (21) 

Vortex structure. The theory reveals that, for laminar flow, once the local behavior of 

separation and attachment is known, the formation of free vortex layers and the total friction 

experienced by the body can be completely determined. Due to the engineering interest of 

flow separation and separated vortical flow associated with rotating discs, the understanding 

in detail of its structure is necessary. 

But, the above mentioned theoretical approaches are not adequate for predicting 

unsteady flow structures with large-scale separations and 3D flow vortices. Therefore, the 

Computational Fluid Dynamics (CFD) capabilities are used for getting an insight into the 

separating flow behind a rotating disc in axial flow. 
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3. RESULTS AND DISCUSSIONS 

3.1 Pressure distribution 

In order to solve the similarity equation system (11)-(15), the pressure distribution rP  on the 

disc must be known. The potential flow solution obtained by means of Eq. (17) is shown in 

Fig. 2, which contains the streamline pattern (Fig. 2a) and radial pressure distribution on the 

disc surface (Fig. 2b). 

  

Figure 2 – Potential flow field: a) streamline pattern; b) pressure distribution on stationary and rotating disc 

As shown in Fig 2b the radial pressure gradients are favourable on the leading side of 

disc and flow is attached up to the edge, while on the leeward side of disc the adverse 

pressure gradient can produce less and more flow separation depending on the value of µ. 

Using the method of Stratford [14], the laminar separation location does not require the 

solution of the laminar boundary-layer equations. For a given pressure distribution  pC r , 

the expression  1/ 2 /p pC rdC dr  is easy to calculate on the disc. 
 0

0

2

*/ 2
p

p p
C

R



  

 is the 

pressure coefficient on a rotating disc and 0p  is the pressure at the stagnation point, i.e. at 

the origin. Laminar separation is predicted when it reaches a value of 0.102. Figure 3 shows 

the location of the separation point depending on the rotation parameter µ which increases 

approximately linear up ½, 1
2

sr


  , after that follows a sudden rise, 
1

2
sr 


. As we will 

further show, the nature of the separation is related to the generation of vortices into the 

viscous layer adjacent to the disc. The vortex structure differs if the disc is stationary or in 

rotation. 

 

Figure 3 – Laminar separation on the leeward side of disc after Stratford’s criterion 
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3.2 Velocity distribution 

The solution of the system of equations (11)-(14) yields velocity distributions near the disc 

rotating in an axial flow. It is seen from Fig. 5(a, b) that the velocity components U and V 

have appreciable values only in a thin layer of thickness 5z   on the leading side (or 

windward) of disc and 10z   on the leeward side of disc. The velocity profiles on the 

windward side of disc where the flow is subjected to favourable radial pressure gradients are 

similar with the ones for the case of a free disc (Fig. 5a). 

But on the leeward side of disc where there are adverse radial pressure gradients, the 3D 

boundary layer is subjected to separation beginning from the edge to center as the rotation 

parameter µ increases (Fig. 4). 

 

Figure 4 – Boundary layer on a rotating disk in axial flow (on leeward side) 

  

 
a) 
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b) 

Figure 5 – Velocity distributions in boundary layer: a) on the windward side of the disc b) on the leeward side of 

the disc 

When the boundary layer separates, rotating vortex structures as vortex ring bubbles 

arise close to the disc, Fig. 4. When µ is small but non-zero, the angular velocity of the 

vortex ring bubble is smaller than the one of the disc (V < 1), the radial flow component U is 

directed away from the axis of rotation, and the axial flow (W < 0) is towards the disc 

surface, Fig. 5b. The tangential velocity profiles, V(z), point out that the viscous layer in the 

vicinity of the disc surface contains a thinner sublayer of thickness 2Ez   where fluid and 

disc co-rotate at almost the same angular velocity like the Ekman layer, followed above by a 

superlayer of rotational flow essentially inviscid subjected to the Taylor-Proudman theorem. 

The fluid present in the bottom of separating Ekman layer is thrown outwards and is 

transported to a vortex ring bubble or Taylor-Proudman flow. This way, an amount of 

angular momentum is transferred in the Taylor-Proudman flow and the disc acts as a 

centrifugal fan, a pumping effect occurring. The augmentation of angular momentum 

continues up to 1  , when reaches maximum value at about 0.3  , after that the angular 

momentum begins to decrease and in the limit   we may expect to cancel. When µ is 

of unity order, the surface shear forces vanish,  
0

', ' 0
z

U V

 , the angular velocity of the 

fluid is comparable with the one of the disc, and the fluid and disc co-rotate at almost the 

same angular velocity with no axial flow (W = 0) Fig. 5b ( 1  ). 

When µ exceeds the value of unity, the angular velocity of the vortex ring bubble is 

faster than the one of the disc (V > 1) similarity to a rotating fluid above a stationary disc [5], 
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the peripheral fluid flows radially inward through the thin Ekman layer toward the axis, Fig. 

5b ( 1  ) (U < 0), and the centripetal fluid is replaced by an axial flow outwards the disc 

surface occurring a suction effect (W > 0). 

In the limit  , the vortex ring bubble squeezes around the axis of rotation and in 

this way, the angular momentum of rotating fluid cancels. 

Understanding the transport process of angular momentum from a rotating body (there 

disc) to an uniform superimposed flow of fluid perpendicular to body is important for many 

engineering applications, one of which could be the vortex rings used for elementary 

excitations in turbulence. The angular momentum transport measured by the circulation of 

the boundary layer can be described as a two-step process: generation of vortex ring from 

separating Ekman shear sublayer when µ increases up to 1  , followed by dissipation of 

angular momentum in the Taylor-Proudman superlayer which is squeezed around the 

rotation axe according to the law .;r rconst     is the local circulation of the vortex ring 

bubble which is fixed by the azimuthal velocity component 0V  inside the boundary layer at z 

for U = 0: 
02πr srV  . 

Figure 6 illustrates the angular momentum transfer for a rotating disc in axial flow, 

where the production of circulation occurs on the outer half of that of the disc, with max , for 

=0.3 , while on the inner half-disc is its dissipation as   exceeds unity. The result is in 

agreement with the well-known Taylor’s sphere experiment. 

 

Figure 6 – Circulation of the vortex flow behind the disc 

3.3 Streamline pattern 

The streamline patterns of the flow behind the disc have been investigated with a numerical 

code which can provide opportunities to extend the research to topological structures of 3D 

vortex flow separation shown in Fig. 8. 

ANSYS FLUENT [14] was used for the numerical computations of the study. 

The computational domain has the far field boundary (half circle) placed at 20R from 

disc (R=1 m), and it contains about 10
6
 nodes with refinement near to disc (Fig.7). The first 

layer of cells, near to the wall, has thickness around of 10
-6

m. The layer is inflated from the 

disk surface at a growth rate of 1.05. 
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Figure 7 – Disk mesh and computational domain mesh 

We considered for computational simulation an axisymmetric swirl laminar flow with 

the Oz as symmetry axis. The undisturbed stream velocityW  is considered parallel with the 

Oz axis and the non-slip condition is selected for disc surface in rotating reference system 

attached to disc. 

A fully unsteady, incompressible pressure-based solver on a second order SIMPLEC 

algorithm was selected to accurately capture the unsteady flow behaviour. Explanations of 

the scheme, settings and recommended constants may be found in ANSYS FLUENT 13 

documentation [14]. The numerical time step size was set to an equivalent of 1/10 deg 

rotation of disk. The vortex flow separation is shown in Fig. 8 for two Reynolds numbers, 

Re
, 10

4
 and 10

5
. The vortex structures result from the flow separation produced by adverse 

radial pressure gradients of the leeward side of disc; to describe entrainment one has to 

employ the term “rotating vortex ring bubble”. 

a.  
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b.  

Figure 8 – Streamlines on the leeward side of the disc in the FLUENT calculations for 
4Re 10   (a) and 

5Re 10   (b) 

It refers to the volume of fluid being instantaneously transported with the ring. This 

concept is precise only for a steadily rotating ring, i.e. it is the volume enclosed by the 

dividing streamline in a reference frame moving with the ring. 

From Fig. 7, it is observed that as µ increases, the circulation of bubble continually 

increases due to angular momentum transfer from separating Ekman sublayer and its size 

decreases because its angular momentum has to be shared with a greater angular velocity of 

fluid. When 1  , the angular momentum transfer is maximum, and the fluid and disc co-

rotate at almost the same angular velocity. 

For 1  , both circulation and size of bubble decrease according to the rule 

. and 1/ 2r bconst r     . 

For 0.3   the streamlines indicate clearly the Ekman sublayer and Taylor-Proudman 

superlayer. 

But, for the greater values of μ, the simulation model accuracy is limited and it is not 

able to capture the Ekman layer-flow structure. 

3.4. Moment coefficients on the rotating disc 

Tifford and Chu [7] obtained solutions to the laminar flow equations for the moment 

coefficient for impinging flow on a rotating disc at various values of µ, but only for the 

leading side of disc. 

To our knowledge, a solution for the leeward side of disc is lacking. Figure 8 shows a 

comparison of various solutions for the moment coefficient mC  on both leading side and 

leeward side of disc. 
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The present similarity solution for upstream flow has been corrected with edge effect, 

which implies this solution for the whole disc:  
1

' 2 8
* *1R R



   when 1   and '

* *0.9R R  if 

1  . 

The corrected similarity solution is in a good agreement with CFD solution. The 

similarity solution on the leeward side of disc is not in the agreement with the CFD 

calculations. 

The discrepancy between predicted and numerical *

2 3

* * *1/ 2
m

M
C

R


 
 is due largely to the 

2D URANS approach used in the FLUENT code, which cannot model, with sufficient 

fidelity, the flow structures with large scale separations behind the rotating disc. From Fig. 9 

we can also observe the influence of the inertia forces associated with the span motion of the 

bubble: when 1   the force Coriolis (
,

1
f mC C 


) is greater than the centrifugal force in r 

direction, and is acting in the span direction, stabilizing the motion, while when 1  , the 

force Coriolis changes its direction, causing a strong instability effect. 

 

Figure 9 – Moment (Cm) and radial wall shear stress (Cf,r) coefficients 

4. CONCLUSIONS 

A physical description has been applied for the laminar uniform superimposed flow of air 

perpendicular to a rotating disc impinging on the surface. The investigation has been 

particularly focused on the flow events behind the disc, which has a more general interest by 

the angular momentum transfer from a rotating rigid body to a steady translation of air 

parallel to the axis of rotation. 

It is shown that the angular momentum of flow behind the disc increases along with µ, 

reaches a maximum value for µ about 0.3 and tends to zero when  . The maximum 

transferred value to fluid is of order half of the angular momentum produced by the disc, 
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0 *2 R    . As µ increases up to unity, the 3D boundary layer is continually separating on 

the outboard half of the disc and a rotating vortex ring bubble carrying angular momentum is 

formed in the vicinity of the disc surface 

This is the circulation production step of the transfer process. A circulation dissipation 

step follows after 1  , the circulation decay is according to the law .r const    and the 

vortex ring bubble squeezes around the axis, and in the limit   its size and angular 

momentum cancel. These are the fundamental basic flow characteristics that produce 

enhanced angular momentum in the rotating-disc boundary layer by an axial flow impinging 

on the disc surface. The behaviour of the flow leeward the rotating disc is closely related to 

the stall-delay phenomenon for the horizontal axis wind turbines when the circulation around 

the inner airfoils of the blade is enhanced at high wind speeds ( 0.3 1.0   ) [15]. 
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