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Abstract: The true problem of turbulence dynamics is the problem of its origin and successive 

development from some initial conditions (IC) at some boundary conditions (BC) to an ultimate state 

restored, in a statistical sense, as fully developed turbulence. Since this intricate route is unknown up 

to now, a second approach is used quite frequently. That is, turbulent flows are studied as they are 

disregarding their origin, and without looking into some of the details of the mechanisms of 

turbulence production and sustenance. The last approach has been mainly represented by 

Kolmogorov’s papers which have kept the turbulence community quite busy until now. This fractional/ 

local approach aiming to describe theoretically the extremely complicated details of the visible 

fluctuating motion superimposed on a main motion, i.e. its “noise”, to the detriment of the essential 

aspects of turbulence (the origin and its self-sustaining mechanism), was however worth developing 

both mathematical and experimental analysis methods for the representation/ decomposition of the 

flow field. On the other hand, the extremely detailed decompositions became to some extent less useful 

by obscuring the physics of turbulence. In this paper, we propose a holistic approach for the entire 

evolution of turbulence phenomenon as being created and governed by boundary vorticity dynamics, 

which in our opinion mostly responds to Leonardo da Vinci’s questions: where the turbulence is 

generated, where the turbulence maintains for long, and where the turbulence comes to rest. In 

contrast to the previous approaches, here we will try firstly to understand the hidden causes of 

various existing visible facts and then to explain them. 

Key Words: Boundary layer, Vorticity waves, Laminar-turbulent transition, boundary vorticity 

dynamics. 

1. INTRODUCTION 

The fluid as a deformable continuum without own shape its motion must be guided by some 

physical surfaces/boundaries, which are subjected to an active action from fluid under the 

form of the wall pressure, equal to the reaction of the boundaries on the fluid. The 

fundamental law of equal action and reaction was easily misleading by assuming that the 

wall pressure is equal to the static pressure from the main motion. This result known as 

Prandtl’s hypothesis associated to the concept of a Newtonian fluid [1], i.e. a viscous fluid 

obeying a linear law of frictional shear stress and constant viscosity, could resolved the no-

drag crisis (d’Alembert’s paradox [2]), and have dominated the paradigmatic development in 
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research of Fluid Dynamics during the last century. However, the motions fluctuating in a 

disordered manner observed experimentally by Reynolds [3] and known as turbulent/noisy 

motions or simply turbulence remain a long-lasting and continuing paradigmatic crisis [4]. 

The issue involves a set of questions concerning the various theories of turbulence depending 

crucially on the boundary and initial conditions which are poorly known so that the 

physical/mathematical problem of turbulence is an ill-posed one [5]. 

From the physical/ mechanical point of view, the all previous theories are based on the 

idealized Prandtl-hypothesis, i.e. constant static pressure across the wall-bounded flow and a 

Newtonian fluid concept, which more or less violate the law of equal action and reaction 

failing to elucidate the nebulous aspects of turbulence concerning its origin, self-sustenance 

and fading. Concretely, the lack of a suited boundary reaction is reflected by the existence of 

a gap between the scales of molecular/laminar motions and the scales of the smallest relevant 

scales in fluid flows including turbulence. The complex interplay between the flowing fluid 

and its boundaries results in an oscillating behavior of the intrinsic properties of the fluid –

boundary system which has opposite tendencies: return force (wall pressure) and inertia 

(viscosity/shear of fluid). The “return force” tries to cancel out by imparting a suitable 

“velocity” to the moving part. The higher the flow rate U, the stronger the return force. For 

the oscillating fluid-boundary system, the “return force” is due to the boundary vorticity or 

wall pressure, which retards the fluid particles not to adhere to boundaries. The second 

property, “inertia” opposes any change of the flow state and is due to the viscosity of the 

fluid which must adjust itself continuously and respond the flow/stress. Therefore, the 

physical concept of the Newtonian fluid is an ill-defined concept, being too rigid to reliably 

describe the turbulent motions. As d’Alembert’s paradox was solved by a paradigm change 

from the concept of ideal fluid to the concept of Newtonian (linear) viscous fluid, it follows 

naturally that the turbulence crisis is a paradigmatic one due to the idealized Prandtl-

hypothesis and an ill-defined medium/fluid. The issue with the Newtonian fluid concerns 

firstly, the impossibility to describe the intense/concentrated boundary vorticity, i.e. its 

creation as the reaction of the boundary, and secondly, the impossibility to reflect the change 

from any state of microstructure of fluid to another for different states of flow, i.e. 

thixotropic/nonlinear effects [6]. From the mechanical point of view the Newtonian fluid can 

describe only some simple/laminar flows (sparse/diluted vorticity/small angular velocity and 

constant viscosity/mass), in contrast to the turbulent flows involving variations of both 

vorticity concentration and viscosity. 

The paper aims to remove the above drawbacks and to develop a vorticity wake 

mechanism for the turbulence production and its sustenance using the dual concept: torsion 

of vorticity filaments and thixotropic/nonlinear fluid. In contrast to the previous energy 

dissipation models, the proposed model is based on a self creation dispersion mechanism of 

the boundary vorticity which manifests an elastic behavior. 

2. ON PHYSICS OF VORTICITY 

The problem of vorticity is a more complex question than the simple definition of vorticity 

flux (Lighthill, 1966) [7] that concerns the vorticity creation and boundary vorticity 

dynamics, inducing the velocity field of both laminar and turbulent flow as a result of a 

collision process produced during the starting of motion. The fluids as deformable bodies 

without own shape, when start from rest, experience interactions between the flowing fluid 

and the physical surfaces enclosing the flow. These interactions are a kind of impact process 

where there is a momentum exchange between the flow and its boundary surfaces, with zero 
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mass flux. Within a short time of contact a post-impact shear flow occurs where two main 

effects are triggered off by the flow-induced collision: dramatic redistribution of the 

momentum and the boundary vorticity creation followed by the shear stress/viscosity change 

in the microstructure of the fluid which at the beginning behaves as linear reactive medium 

(laminar flow) and latter as nonlinear dispersive medium (turbulent flow). The disturbances 

of the starting flow ( 0t  ) cause the entanglement of the wall-bounded flow (stream 

function 0, 0t   ) inducing a wall torsion pressure (suction) in the form of concentrated 

vorticity balls [8], as the result of boundary reaction. The concentrated vorticity balls are 

vorticity sources whence waves are emitted and propagated through the flow field [8], [9]. 

Such vorticity concentrations are observed both experimentally [10] and computationally [9] 

in Fig. 1, as well as in the natural case of tornados. The phenomenology of the impact 

process of any starting fluid motion shows that at the beginning the vorticity lines are 

subjected to a torsion pressure followed by their concentration at the boundaries. The 

vorticity conglomerations at sufficiently large Reynolds numbers are then dispersed in a 

shear layer by shear waves. 

  

a) b) 

Figure 1 - Two-dimensional turbulent flow: a) visualized in a soap film [10];  

b) computed plate wall flow (LES model,
6Re 2 10  ) [9]. 

In contrast with the common view that the origin of turbulence lies in the instability of some 

basic laminar flows, here the turbulence is the result of the boundary vorticity dynamics from 

the flow-induced collision and its consequences where shear waves are emitted and 

propagated in the basic flow field from the vibrating concentrated vorticity at the boundaries. 

This is understood in the sense that any flow starts from rest at some moment in time, 

and as long as the Reynolds number, or the reduced frequency of vorticity is small, the flow 

remains laminar (creeping motion of vorticity). As the Reynolds number/frequency of 

vorticity increases the boundary shear waves set off a wide instability range, which is 

followed by transition and then a fully developed turbulent state. This is the visible face or 

large scale of the flow field, i.e. the velocity fluctuations, whereas the poorly known origin 

of turbulence is the invisible face or small scale of the flow field, i.e. the vorticity 

fluctuations. 

Therefore, the origin of turbulence is a problem of boundary vorticity dynamics that 

needs a holistic approach of the motion process containing the linked up events: the flow 
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surface colliding and starting vorticity creation, the non-dispersive creeping motion of 

vorticity (laminar flow) and the dispersive vibrating motion of vorticity (turbulent flow). 

Each perturbation, small or large, is in fact a kind of impact between the flow and its 

boundaries exchanging the momentum between bodies within a short time of contact, 

without mass flux. As a result, the initial velocity distribution is rapidly skewed/squeezed, 

the vorticity is created and organizes itself into more and more concentrated structures, thus 

at the boundary there is a set of point-vortices. The exact solutions of the equations of 

inviscid motion found by Stuart [8] (e

 - solutions,  0,2 ) can describe strong vorticity 

concentrations developing in skewed shear layers. The concentration level of vorticity is 

estimated on a natural logarithmic scale e

 from e

0
 - sparse/weak vorticity, up to e

2
 – 

concentrated vorticity, where the index  is a measure of the concentration of vorticity. In 

contrast to the sparse vorticity transported by the ideal fluid flow according to the laws given 

by Helmholtz [11], the concentrated vorticities are transported by waves, their shape 

depending mostly on the concentration of vorticity, Fig. 2. 

 

Figure 2 - Effect of γ (concentration), R (circulation) parameters on streakline patterns [9]. 

From the physical point of view, the concentration of vorticity at boundaries is a local 

compression of flow induced by the torsion of vorticity wires. The concept of torsion of the 

concentrated vorticity allows a better understanding of the boundary vorticity creation and its 

dynamics, which becomes an active one just after impact. Essentially, the boundary vorticity 

dynamics contains small amplitude vibrational motions generating vorticity weak waves that 

create the covered/hidden field of flow. The onset of self-sustained vorticity waves is the 

mechanical origin of turbulence. 

Concomitantly with the vorticity creation the impact process induces microstructure 

changes of the flow properties resulting in a time dependent shear stress, ν = ν (t), known as 

the thixotropic behavior of the flowing fluid. It is experimentally shown that the transient 

viscosities follow the line of the complex viscosity versus angular frequency [6]. This 

behavior can be described by a Klein-Gordon like wave equation [12] 

 
   

2

2 2
02 2

1

e

d x
x

dx U


    , (1) 
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where ν0 is steady shear viscosity and 1
0 0

    is the natural angular frequency of fluid, 

defined as the first zero of the Fourier coefficient B (ω) of a square pulse/impact. Thus, the 

solutions of Eq. 1, describe well enough the dual behavior of the thixotropic fluid, as a 

reactive medium, ω < ω0, at impact inducing exponential waves (without energy dissipation), 

and as a dispersive medium which can support sinusoidal waves for ω above the natural 

frequency 1
0
 . Equation (1) also shows that the microstructure takes time to respond to the 

flow/stress and its elastic response at low frequency is faster as the flow velocity Ue 

increases. 

The disturbed post-impact flow is a boundary-layer type flow which is relaxed through a 

complicated wave system, which transports concentrated vorticity from boundaries to the 

flow field and rebuilds the flow microstructure. There is a non-dispersive transport of 

vorticity performed by exponential waves in the form of the laminar flows dominated by the 

frictional shear stress and a dispersive one which involves lightly damped sinusoidal waves 

by dry friction in turbulent flows. Hence, it is evident that the analysis of the impact-

relaxation process requests another constitutive relation to describe the intricate behavior of 

viscous fluid. For the thixotropic fluid, such a relationship is a shear compliance defined as 

2
,

1
 on Btorsion w w ep U    


, (2) 

where ,torsion wp  is the torsion pressure at wall, w e   is the vorticity at a two-dimensional 

wall ( B ),  is a torsion/concentration index  0,2 , and ν (t) denotes the change of 

viscosity during the post-impact flow which is able to adjust itself continuously. The shear 

compliance expresses the law of equal action ( 2
eU - dynamic pressure) and reaction ( w  - 

torsion pressure) in a manner more exact than Newton’s law of friction. 

A non-steady fluid system involves an oscillating behavior of its opposite, intrinsic 

properties (vorticity and viscosity) and suddenly excited it decays as a big damped harmonic 

oscillator. The evolution is slow and a plotting on suited scales is necessary to visualize its 

extremely complicated route. Using the exponential scales and measure units e and 1
0
 , the 

shear compliance, Eq. 2, can be written as 

 

 

1/
1

0

1/ 1
0

Re  for Re Re  (laminar flow)

Re  for Re Re  (turbulent flow)

x x c

x x c

e

e


 


 

  

  

, (3) 

where the critical Reynolds number 2 1
0Rec e    is the non-rolling condition for concentrated 

vorticity, which separates the non-periodic creeping motion of vorticity inducing laminar 

flow from the torsional vibration motion of vorticity generating turbulent flow, and 1
0
  is the 

natural frequency of the thixotropic fluid. Equations (3) show the conservation of boundary 

vorticity in laminar flow, its dispersion in turbulent flow, respectively. 

For the above 1
0Rex
   the transient flow in the neighborhood of the wall vibrates as a 

continuous and homogeneous string carrying transverse vorticity waves which permanently 

disperse vorticity. Figure 3 illustrates the wave system induced by the flow-boundary impact 

and the dispersion mechanism of concentrated vorticity that displays wide frequency/ 

Reynolds number spectrum from the low indifference Reynolds number 2 1/ 2
0Relind e    - the 
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onset of the weakest waves (TSW-Tolmien-Schlichting waves) up to the high indifference 

Reynolds number 1/ 2 2
0Rehind e   . For the last Re the wave system becomes a slightly 

damped one with the resonance close to the natural frequency 1
0
 , emitting acoustic waves. 

The transitional flow displays a strong beat phenomenon with varicose aspect of vorticity for 

above 2 1
0Rex e    where its frequency 1/ 2Rex

 is far from the resonance frequency (Fig. 1). For 

above 2/3 3/ 2
0Rex e   , the vorticity is broken down in contra-rotating fragments/flocks and 

its frequency approaches the resonance frequency where the flow is full turbulent and it can 

be statistically described. The Reynolds number controls the wave system playing a role of 

tuning button that switches the frequency band from concentrated vorticity and small Re/low 

frequency and long wavelength to dispersed vorticity and high Re/high frequency and short 

wavelength. 

The essential difference between the laminar flow and the turbulent flow is given by the 

difference between the behaviors of fluid as linear viscoelastic-reactive medium and 

nonlinear thixotropic-dispersive medium. That is, while both are time effects, the former is 

in the linear region, where the microstructure responds but remains unchanged and the latter 

takes place in the nonlinear region where the microstructure is broken down by deformation 

as well as responding to it. 

At the smallest scales of the flow there is a vorticity field like an elastic 

coverlet/diaphragm over the boundary having a wide frequency spectrum. The fundamental 

difference between these two types of flows is given by the vibration frequency of the elastic 

coverlet. The nature and the location where the turbulence is generated justify the term of 

wall/elastic turbulence. 

 

Figure 3 - Transverse waves (TW) modulated in amplitude on a longitudinal carrying wave (LW) and dispersion 

mechanism of concentrated vorticity by shear waves [9]. 

3. PLATE BOUNDARY-LAYER FLOW 

The main reason for considering the Prandtl boundary-layer equations is to expose clearly 

ideas on the origin and extremely intricate mechanism of turbulence. A holistic approach of 
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turbulence dynamics is used where the spectacular fluctuating motion/visible noise, and so 

hopelessly complex to describe, is disregarded and only the main motion is considered, but 

without the above remarked drawbacks. 

Thus, the main (laminar) flow field is governed by the Navier-Stokes equations in the 

boundary-layer approximation and their similar solutions [1], where the law of equal action 

and reaction obeys a shear compliance relation, Eq. 3. 

The similar solutions provide a smooth passing from the wall-bounded flow dominated 

by the boundary vorticity dynamics (an autonomous motion) to the non-autonomous basic 

flow (here outer flow   .eU x const ), describing a kind of diffeomorphism in flow field 

[13]. 

In this context, the motion equations contain an irrotational potential U x  (outside 

a shear layer) and a vector potential  ,x yA k  (inside and normal to shear layer) where 

ψ is the stream function defined by 

,u v
y x

 
  
 

, (4) 

Using the approximations and notations of the boundary-layer flow [1] 

   
 

1/ 2

2 , ,
x y

xU f x
U x





 
       

 
, (5) 

where  f   is the dimensionless stream function,  x  is a scaled measure of the boundary-

layer thickness (up to the approximation 0.99u U ) and  '
u

f
U

   is the similarity law 

of the velocity profile, the boundary layer equations and their boundary equations become 

one ODE for the stream function 

''' '' 0

0 : 0, ' 0

: ' 1

wk f ff

f f

f

 

   
 

. (6) 

This nonlinear third order equation and the three boundary conditions completely 

determine its solution, if the mute constant kw can be known a priori. 

Blasius found a solution for 2wk  , known as Blasius equation, but, Eq. 6 describes a 

more general phenomenon, that of the transverse standing vorticity/shear waves, called 

solitons, which retain their identity upon a collision. 

The vorticity soliton identified here as Blasius soliton, depends on the function wk  

directly related to Rex via the shear compliance, Eq. 3 , which is responsible for coupling 

between the autonomous fast motion of vorticity and the velocity field of the non-

autonomous slower flow, 

 
-1

 for Re Re  (weak coupling)

logRe  for Re Re  (strong coupling)

w x c

w x x c

k e

k

 

 
. (7) 
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Figure 4 - Coupling function  Rew xk  

Figure 4 shows the variation of the coupling function  Rew xk , that as a matter of fact is 

a vorticity creation boundary condition, with a physical support, for any wall-bounded flow. 

Now, justly Rex known the successive solutions of Blasius soliton can be easy computed by a 

standard shooting technique. 

Figure 5 a, b shows the solution for the vorticity waves close to the ends of the Reynolds 

spectrum, i.e. flow field at small scale for Prandtl flow. In contrast to the strong 

shock/pressure waves, the weaker vorticity waves propagate under the form of the three 

wave packet: shear stress wave f’’, elastic wave f’’’ and dispersion wave f
iv
. The vorticity 

wave packet is a superimposing of three waves, each wave having different roles depending 

on the Reynolds number (the flow type), that is while the laminar flows (Fig 5a) are 

dominated by the shear stress waves induced by the creeping motion of vorticity (without 

energy dissipation), in turbulent flows (Fig. 5b) the elastic dispersive waves, induced by 

torsional vibrations of vorticity, are the key mechanism of the turbulence phenomenon. 

  

Figure 5 - Blasius soliton for T – waves, (Prandtl flow): f’’ - shear wave, f’’’ - elastic wave, f1v –dispersion wave 

for a) kw = e and b) kw = e-2 
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Figure 6 - Average velocity profiles and dynamic features of a wall-bounded flow: 

laminar,   turbulent two layer model 

Figure 6 shows the flow field at large scale marking also the vibration tendencies of 

flow near wall when the Reynolds number exceeds its critic value. 

The analysis of the wall-bounded flow both at small scale (vorticity field) and large 

scale (velocity field) points out the self-sustained wave mechanism of turbulence, that is 

similar to synthetic jets generated by pulsed jets with zero net-mass flux and a small flow-

momentum consumption [14], Fig. 7. 

The thixotropic fluid in the turbulent wall-bounded flows operates as a diaphragm that 

alternatively sucks inflow and ejects outflow in a periodic manner, creating 

discrete/concentrated vortical structures followed by their dispersion by wall friction and 

transport by flow. 

 

Figure 7: Principle of a wall “turbulence cell”/Blasius soliton - like synthetic jets generator 
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4. CONCLUSIONS 

The objective of this paper has been to correctly pose the turbulence problem and make a 

contribution towards a better understanding of the phenomenon of turbulence in order to 

assist in the knowledge about the basic physical processes of turbulence, its generation and 

origin. There is no consensus on what is physics and what is mathematics of turbulence due 

to the lack of a theory itself to guide researches. In this context we have proposed a holistic 

approach of turbulence problem involving its origin and successive development from initial 

conditions: 2 1
0Rec e    - non-rolling wall condition for concentrated vorticity, at some 

boundary conditions-successive Blasius solitons, to a terminal (statistical) state: 
1/ 2 2

0Rehinf e    and last Blasius soliton. 

Moreover, the holistic approach can elucidate some controversial questions: 

 The turbulence is a flow/motion state of any slight/thin viscous fluid when a control 

parameter-Reynolds number exceeds its critical value ( 2 1
0Rec e   ). 

 The origin of turbulence is the result of the intrinsic property of shear-thinning 

fluids/materials that vigorously loaded when starting from rest are relaxed and at one 

time manifest a thixotropic response/behavior. That is, at impact short times the fluid 

structures cannot respond quickly, remain unchanged, and have a linear 

viscoelastic/laminar response, while further the response becomes a nonlinear 

thixotropic/turbulent one where the structure is broken down by deformation (here 

torsion of boundary vorticity) and the motion/velocity field is regularized. 

 The turbulence phenomena contain the ensemble of flow manifestations 

observed/perceived/non-understood from diverse turbulent flow categories/types. 

 The problem of turbulence is one of paradigmatic nature depending on the solution of 

the key issue of “medium” and flow-boundary reaction. 

We hope that by means of a more correctly defined concept of the fluid (dual concept of 

torsional concentrated vorticity-thixotropic fluid, introduced in the paper), it is possible to 

improve the paradigms in research of turbulence thus stopping its crisis. 
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