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Abstract: Traditionally, the wall-bounded flows are boundary-layer like flows where the velocity 

gradients normal to the wall u/y are very large and the velocity monotonously increases from zero 

to about the velocity free flow, Ue = 0.99 U. However, the instabilities of flow, resulting from the 

reaction of the solid boundary against onset of flow, originate in the nearest-wall region where the 

mean velocity varies around of the velocity Ub = 1m/s constituting the wavy microflow field 

dominated by the boundary vorticity-viscosity mutual changes. The paper is aiming at presenting the 

main features of the microflow field and a new vision of the turbulence phenomenon illustrated trough 

canonical boundary-layer flows. 
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1. INTRODUCTION 

The wall-bounded flow as boundary layer, pipe and channel flows present particular features 

relative to those in the free shear flows far-away from their boundaries, i.e. are slower and a 

little out of sync. Firstly, these flows are dominated by shear stresses everywhere in the flow 

field, where the physical presence of solid boundaries, inevitable for fluid media with a non-

preferred shape, creates some restrictions and influences with important consequences on the 

development of shear flow including its turbulent behavior. These concerns the effect of 

initial and upstream conditions/starting conditions on the flow state when the motion starts 

from rest and the boundary vorticity and viscosity mutually adjust themselves continuously 

according to these conditions [1]. Secondly, the more-subtle issues relate to the effect of the 

wall on the inherent flow dynamics at both macroflow/ velocity and microflow/ vorticity 

scales. Such effects are non-perceptible at all scales in laminar flows, but they are easily 

observable in both macroflow and microflow fields of turbulent flows through the steep 

mean velocity gradients and the length and time scales of the local turbulence in the vicinity 

of the surface. The latter are associated with the high frequencies and small scales of the 

near-wall turbulence relative to free shear flows. Therefore, the scope of this paper is to 

study the question of how initial and upstream conditions affect the laminar-turbulent 

transition and what these might imply about understanding genuine turbulence. A holistic 

approach proposed for the whole evolution of turbulence phenomenon, i.e. from origin to a 

final state, is illustrated by the canonical Prandtl, Couette and Stokes flows [2]. They play a 
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fundamental role in the development of turbulent shear flows in general, far beyond the 

considered particular examples. Moreover, it is shown that the Stokes’s second problem is a 

fictional problem, i.e. it is physically ill-defined. In fact it comes back to the first problem as 

soon as the Reynolds effect is taken into account for supercritical values. The above model-

problems also highlight physical phenomena behind the mathematical challenges. 

2. PHYSICAL CONSIDERATIONS 

The most common fluids, air and water in particular, behave easily different from a linear 

viscous Newton fluid when they are subjected to severe loads and their flows exceed a 

critical Reynolds number, i.e. for turbulent flows. They possess certain intrinsic elastic 

properties which at the onset of a motion/flow can absorb/store the kinetic energy during 

flow-solid boundary collisions as a “latent heat” of compressing, then this being recovered in 

the flow field by an intricate vorticity wave system involving an entropic spring process. 

Thus the knowledge of the microflow field near physical boundaries is vital for any real 

flow, where the flow-boundary interaction makes the essential difference between the 

instability features of turbulent shear flows of different kinds (wall-bounded flows: 

pipes/channels, boundary layers, and free: jets, wakes, mixing layers). 

The deviant behavior of flows near boundaries arises only in motion as the reaction of a 

solid boundary on the flow inducing some anisotropy of the components of stress through 

the variations of the components of vorticity (angular acceleration) and shear viscosity (a 

thixotropic behavior). 

The thixotropic-like behavior of the near-wall fluid means that a thin non-Newtonian 

fluid has a memory which affects its response to applied stresses in a manner different from 

that of the Newtonian viscous fluid. Instead of the Rivlin-Erickson’s constitutive equation 

[3], based on a time expansion of the relative deformation tensor, the history of the 

deformation of shear-thinning fluid is taken into account by variations of the boundary 

vorticity and of the viscosity associated with a compliance/accommodation relationship [1], 

Fig. 1. This approach involves new entities that will be introduced in the sequel. 

 

Figure 1. – Physical discrete-continuum model of wall-bounded flows; Recs – no slip condition, Recr – no rolling 

condition  

The question of the fluid in a wall-bounded flow perturbed by its inherent limitations 

and influences needs to be placed in a deeper context, where the disturbance development at 

a fluid-solid interface is a complex process involving four near concomitant events: (1) the 

starting boundary vorticity creation (anisotropy of strains), (II) the change of fluid-

microstructure (thixotropic-like behavior), (III) the localized mutual induction between 
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vorticity and viscosity (compliance/ accommodation relationship), (IV) the action on the 

main flow field (self-sustaining mechanism of turbulence). 

I) The perturbation of a flowing fluid caused by the presence of a physical boundary is 

in fact a kind of impact process between the flow and its defining boundaries, where the 

momentum exchange between colliding fluid-solid surfaces takes place within a short time 

of the contact with a zero mass flux. As a result, the initial velocity distribution is rapidly 

skewed/ squeezed; the vorticity is created and organizes itself into more and more 

concentrated structures, so that at a boundary/wall there is a set of point-vortices/vorticity 

balls, Fig. 2. Stuart’s solutions like Gaussian pulse ( e  solutions,  0,2  [5]) can describe 

such strong vorticity concentrations developing in skewed shear layers, i.e. large angular 

accelerations of fluid. The concentration level of vorticity is estimated on an ln-scale e from 
0e - sparse/weak vorticity, up to 2e - highly concentrated vorticity, staying hydrodynamically 

stable; the index  is a measure of the concentration of the vorticity local to the near-wall 

region. 

 

Figure 2. – Two-dimensional turbulent flow visualized in a soap film [4] 

Generally, any type of initial perturbation evolves into Kelvin wave packets [6]. 

However, the weak fluid-boundary perturbations initiated at the onset of motion evolve 

differently depending on the nature of the fluid medium considered: in a Newtonian viscous 

fluid the sparse vorticity lines coincide with the streamlines, and the concentrated vorticity 

move as streak lines of particles building different patterns in terms of the concentration, and 

then when the Reynolds number exceeds its critical value suddenly generates an apparent 

disordered Brownian-like motion-turbulent flow. In a non-linear thixotropic fluid, the 

concentrated boundary vorticity and shear viscosity mutually adjust and mitigate 

continuously their stresses through a self-sustaining controlled process implying 

(longitudinal-transverse) shear wave packets-like solitons [1]. From the physical point of 

view, the concentration of vorticity as the reaction of boundaries is a local compression 

(suction) of flow induced by torsion of vorticity wires. The dual concept proposed here, the 

concentrated boundary vorticity (CBV)-thixotropic fluid, allows a better understanding of 

the boundary vorticity creation and its dynamics as vorticity waves developed in a 

viscoelastic medium/fluid. The true problem of the boundary vorticity dynamics is the 

problem of its origin as an initially localized perturbation and the successive development of 
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vorticity waves (small amplitude-torsion vibrations) in the form of oscillating boundary/wall 

torsion pressures in a microflow field. 

II) Concomitant with the boundary vorticity creation the impact process at the start up of 

flow induces microstructure changes and at large strains; the viscous behavior of the fluid 

itself becomes nonlinear resulting in a time dependent shear property  t   , known as 

the thixotropic behavior of the flowing fluid [7]. 

That is, the fluid starting from rest behaves as the reactive/absorbent medium after it has 

been allowed to stand for a time, and if it is subjected to more severe loads, it behaves as a 

dispersive/elastic medium occurring fast longitudinal compressing/ expanding waves (L) and 

an intrinsic/molecular slip. This thixotropic behavior of fluid can be described by a Klein-

Gordon-like wave equation [8] 
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The damping coefficient ζ (
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2log Re
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l

c

   ) separates the exponential decay in Equation 

(2’) (power law, ζ = 1) from the oscillating lightly damped decay of viscosity in Equation 

(2’’) ( 0,25   is the model of an oscillating lightly damped thixotropic fluid). 

Figure 3 illustrates the response of the thixotropic fluid impacted at the onset of motion: 

at small Reynolds numbers Re Rel c , the fluid microstructures cannot respond quickly, and 

we see an exponentially decaying amplitude response, while at high Reynolds number, the 

microstructure can adjust itself continuously, i.e. it has an oscillating lightly damped 

response showing viscoelastic effects. 

The nonlinear viscoelastic effects of fluid shows a more general interpretation of the 

Reynolds number as the ratio of maximum frequency at boundaries, 
2 1

0eU   to the mean 

angular frequency in free shear flow, /eU l . 
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Figure 3. – The thixotropic-like behavior of fluid after the “start-up” of flow 
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which for 1 m/s, 1 meU l   is a critical value related to the boundary  1
0:BC   and initial 

 : ,eIC U l  conditions. When the Reynolds number is below this value the frictional shearing 

stresses (with low frequency) are large enough to smooth instabilities in the flow, while 

above Recs  the strong shear waves (with high frequency) in the microflow largely 

overcomes the inertia of the macroflow, exponential growth of instabilities occurs, and the 

flow en masse becomes turbulent. This critical value theoretically found from the thixotropic 

fluid hypothesis will be next subjected to a vorticity correction. An important conclusion 

drawn from Eq. 2’’ is that the zero-shear viscosity, the target of mathematicians, is a false 

one physically impossible to attain, being a misconcept. The conclusion is supported by 

transient measurements of the viscosity for different thixotropic materials. 

III) A viscoelastic model can have thixotropy introduced if the particles that give the 

viscous and elastic responses, in this case the concentrated/twisted vorticity, are made to 

change after a time to a purely viscous behavior. An expression for the rate of change of 

fluidity (the inverse of viscosity) can be obtained by the coupling of intrinsic properties of 

the thixotropic fluid (concentrated vorticity and time depending viscosity) in the form of the 

boundary/wall torsion pressure, 

2
,

1
 on Btorsion w w ep U    


, (4) 

where ,torsion wp  is the torsion pressure at the wall, w e   is the vorticity concentrated into a 

point on a solid surface ( )B ,  is a torsion/concentration index  0,2 , and ν(t) denotes 

the change of viscosity during the post-impact flow which is able to adjust itself 

continuously. The model of the thixotropic fluid based on the shear 

compliance/accommodation relationship (4) entails some comments. The left hand equality 

is a product of the torsion deformation of vorticity and the response of viscosity (or 
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decreasing fluidity) defining a torsion pressure (suction) at the walls. The right hand equality 

shows firstly, that the law of equal action ( 2
eU - dynamic pressure) and reaction ( ,torsion wp - 

torsion pressure) is satisfied for laminar flow as Newton’s law of friction, but in fluctuating 

near-wall viscous flows this has been wrongly interpreted and applied up to now. Secondly, 

the mutual accommodation of vorticity and viscosity can easily be rewritten in terms of the 

acceleration normal to the direction of the main flow 

2
2/ e

w

U
l or g e

l
      , (4’) 
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g[m/s
2
]. Using Stuart’s solutions e  and Eqs. 2 for the  t  evolution, Eq. (4’) can define a 

boundary Reynolds number as 
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where  2, , 0 1eU e    are starting conditions at t = 0. For 
2
eU

g
l

 , the start-up flow is a 

slow/smooth one, where the microflow field induces a low frequency – creeping motion of 

CBV governed by the frictional shearing stress,  
1/ 2

2/
f

ss e
e

V
U

U
   , with the friction 

velocity, Vf, in opposite phase with Ue. The most important result of the hypothesis of the 

thixotropic fluid is related to its capability of describing the setting in a circulation at fluid-

solid boundaries. The near-wall viscous flow can never be circulation-creating. For 
2
eU

g
l

 , 

the start-up flow is a fast/impulsive one inducing the high frequency oscillating motion that 

obeys the law of angular momentum and circulation-preserving with the invariant potential 

(molecular thermal) energy towards a rotating reference system [9]. At 0t  , the CBV is 

broken into two-contra-rotating halves with size preserving ( 1,e e ) and the possibility of 

direction change of the common rotation axis, see Fig. 2. This halving feature of the CBV is 

the result of a torsion fatigue process. The oscillating motions of the ordered vorticity 

elementary pairs/dipoles generate longitudinal-transverse vorticity waves penetrating the 

macroflow field where they induce the divers’ observable instabilities of flow, known as a 

flow in bulk/en mass or turbulent flow. The high frequency oscillating motion of the 

microflow field, in phase with the macroflow field, is described by the sign change of the 

index τ as  
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where bU e  and  12
0bU



 

 can be identified as a wave length and frequency of the vorticity 

dipole, and the critical boundary Reynolds number,  1bcrR l  , represents the starting 

conditions for the impulsive start-up as a non-rolling condition for concentrated vorticity 

which separates the non-periodic creeping motion-laminar flow, from the torsion vibration 
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motion-turbulent flow. The oscillating motions at high frequency undergo a mixing process 

and forget their initial/starting conditions, i.e. the intrinsic properties of the thixotropic fluid 

(concentrated vorticity and viscosity) and the local perturbation stimulus l, so that the elastic 

fluid layer oscillates as a whole with a wavelength l bU e   and angular frequency 

 12
0l bf U
 

   along the near-wall flow. This wall high frequency longitudinal wave is 

governed by the relation 1l l bf U    (phase velocity) and for large wave numbers, 

1/l lk  , the wave number along the mean flow direction can be replaced with the 

frequency and vice versa, 
2 l

l
l

f
k

U


  (Taylor’s hypothesis). The longitudinal compressing/ 

expanding wave of thixotropic fluid is slightly attenuated by a factor e  . At the wall, the 

high frequency oscillations of the fluid are accompanied by transverse standing shear waves 

whose frequencies decrease with the distance from the wall. The transverse shear waves are 

attenuated at the micro-macro-flow interface by coming back to the initial meaning of 

vorticity 1/e   as the angular velocity and the transverse wave number tk y  as a phase lag 

to the microflow field. The attenuation of transverse shear waves with the distance from the 

wall is by a factor of 2π
-1

. A more subtle observation is related to the circulation preserving 

that show a smooth retarded setting in of the boundary circulation as in Fig 4. 
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Figure 4. – Non-linearity correction for Re – thixotropic effect 
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The molecular-slip velocity represents different expressions of the rotational relativity 

effect for boundary rotor translational motions 

1/ 2logRe 2

2logRe

s l

e c

U
e

U 
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where 
log Re

2log Re

l

c

 is the approaching to resonance state, 2/  is the rotation inertia effect and 

1/ 2
ince M   is the incompressibility condition. 

The ratio / 1b e    is a circulation-preserving kind showing the ratio of translation-

rotation partition for plane flows, with constant partition (2π
-1

, e
-1

) both in laminar and 

turbulent flow state. The wavy microflow field evolves along a wide frequency spectrum 

from the low indifference Reynolds number 2 1/ 2
0blindR e    - the onset of the weakest 

waves (TSM-Tolmien-Schlichting waves) up to the high indifference Reynolds number 
1/ 2 2

0bhindR e    - the soliton-like wave packet, where the wave system is a slightly 

damped one with the resonance close to the natural frequency ( 2 1
0bU  ) emitting vorticity 

dipoles with this frequency. The transitional flow displays a strong beat phenomenon with 

varicose aspect of vorticity for above 
2 1

0bcrR e    where its frequency ( 3 kHz) is far 

from the resonance frequency. For Reynolds number above 
2/3 3/ 2

0bR e    a new 

crumbling of concentrated vorticity is produced and their frequency approaches the 

resonance frequency followed by a full/en masse turbulent flow. The boundary Reynolds 

number controls the wave packets playing a role of tuning button switching the frequency 

band of turbulence. 

IV) The splitting of the wall-bounded flow field in the macroflow field dominated by 

the Newtonian boundary-layer flow and the wavy microflow field bu U , obeying the 

vorticity transport equation and the compliance relation associated to a thin thixotropic fluid 

hypothesis, has advantage to use specific methods for the detailed investigation of the near-

wall region. 

The early local decompositions/representations of the flow field based on the Navier-

Stokes equations failed to discover the origin of turbulence and its self-sustaining process 

which lie much nearer the solid boundary than the present computational methods (DNS, 

LES) can get the right starting details [10]. Beside the technical difficulties the scarce 

theoretical understanding of how initial conditions can affect the phenomenon of turbulence 

that led to an ill posing of the problem of turbulence [1]. The cornerstone of the turbulence 

mechanism is the molecular/intrinsic energy of the thixotropic fluid able to store it during the 

short time-start up of flow via frictional shearing stresses and a molecular thermal process 

inducing high frequency vorticity wave packets/groups in the microflow field; these transfer 

its rotation kinetic energy on small distinct wave-numbers to the translation motion of the 

macrofield with random large wave-numbers. This complex rotation-translation change 

process on account of the molecular energy of fluid, with high frequencies and small scales 

in the near-wall region is a self-sustaining process termed generic turbulence. More exactly 

the self-sustaining process of turbulence is the mutual induction between the wave-length 

l bU e   , and the frequency 
2 1

0l bf U    of the vorticity dipoles as 1l lf   . The 

turbulence represents an organized microscopic light dissipative world, acting on modes with 
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small distinct wave numbers, which transfer their molecular thermal energy to the macroflow 

field. The perturbation of the translation motion Ue, of a fluid at the fluid-solid boundary 

breaks off the continuity of motion, that can be restored smoothly as laminar flows with low 

frequency /eU l , acceleration 2 /eU l g , large scales (small wave numbers) and the 

discontinuity of wall-bounded flow (u = 0), or impulsively as turbulent flow involving large 

accelerations 2 /eU l g , high frequency, small scales (large wave numbers), and the 

molecular slip at wall. The high frequency – large wave numbers proportionality (

2 /l b lf U k  ) for turbulent wall-bounded flows known as Taylor’s hypothesis is a more 

general one that shows that any incompressible flow disturbed by the boundaries guiding 

flow, into a constant potential energy region, is restored in time without momentum and 

energy loss, but accompanied by small amplitude – high-frequency fluctuations 

superimposed on the main flow. 

3. FORMULATIONS FOR MICROFLOW FIELD 

This flow kind belongs to the fluid domain in the vicinity of solid surfaces bounding a flow 

with small velocities, 1 m/sbU  , but large angular velocities 1w  , where the flow is 

effectively two-dimensional and is dominated by the rotation of fluid, shear stresses and 

concentrated vorticities, resulting from the reaction of solid boundaries on the flowing fluid. 

The physical presence of walls introduces the constraints and influences on the behavior of 

flow with important consequences on the boundary vorticity dynamics, but unfortunately 

poorly understood and essentially not known. The basic issue is the no-slip boundary 

condition at a solid-fluid interface, since this assumption violates the law of equal action and 

reaction and this is impossible to derive from first principles. The center of understanding of 

microflows is the creation of the concentrated vorticity associated with the thixotropic like 

behavior of fluid able to describe right starting details, obscured by early ill-defined concepts 

(linear Newtonian fluid, boundary vorticity flux (BVF) [11] and its creation, empirically 

defined Reynolds number [12], etc.). The microflow field is a complex behavior at a 

fluid/solid interface involving a mutual induction between the large concentrations of 

vorticity occurring in wall-bounded flows and the changes of physical properties of fluid, 

including shear rate, the effect of torsion pressure and molecular slip. All these processes are 

directly related to the action of initial and boundary or starting conditions on the 

development of turbulent shear flows, including the birth of genuine/ shear turbulence. For 

the understanding the mechanism of the turbulence phenomenon and its origin, two simple 

formulations of microflow field are shown in the sequel. The first one concerns the 1-D 

vorticity equations yielding the boundary vorticity state and the starting/impact conditions 

general valuable for any wall-bounded flow, and the second is the similar solutions solely 

describing the complete evolution of flows from wall-collision (y = 0) up to their post-impact 

full relaxation/ attenuation, i.e. the exterior boundary condition  U y  . Any 

experimental and/or computational turbulence tests can get intermediate deactivating degrees 

of a flow, resulting in much diversity of the observed turbulence phenomenon, mostly 

influenced by the size of the investigation domain. The truncating approximations at 

boundaries (    1 0 and 0.99u y U y
   ) are plausible explanations for many 

controversial results in the research of turbulence. State of the art for both the experimental 

and computational methods shows that these boundary conditions are far from reaching a full 
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attenuation state and probably the 2-D turbulent flows are the fictional ones. Since the light 

damping/ decay of turbulence is easily observed in the case of free shear flows, the jet like 

flows are mostly experimentally and computationally investigated. Sometimes, the poor 

knowledge of the starting conditions and the intrinsic mechanism of turbulence makes many 

results extremely difficult to interpret, understand and explain [13]. 

The CBV formulation for the microflow field yields the starting conditions ( SC IC BC  ) 

for any wall-bounded flow from 
2

2

d
=  - vorticity equation

dt x

  



, (6) 

2  - mutual-induction relationeU  , (7) 

and a new interpretation for the issue of Taylor’s frozen-field hypothesis, where eU  is seen 

as a phase velocity and the microflow field is “out of phase”, 
eU

t x

 


 
, in laminar flow, 

 Rel bcrR  and “in phase”, 
eU

t x

 
 

 
, in turbulent flow. 

The true problem of turbulence dynamics is the problem of its origin and successive 

development from start-up at 2 1
0bcrR e   up to an ultimate (statistical) state, 

 
2

1/ 2 1
0bhindR e   , whence the turbulence dies away in time. Since the CBV is the 

backbone of shear turbulence, the microflow field is effected approximately with zero 

vorticity diffusion ( 1
u

y





 is the light diffusion condition) and this is seen as an oscillating 

thin concentrated vorticity layer adjacent to the solid wall ( B ), in which the flow is highly 

rotational and causes an oscillating skin friction stress (molecular slip effect). In an 

unidirectional shear flow on the semi-infinite plane, , 0x l y  , the velocity and vorticity 

fields taken the form 

       2 0( , ),0,0 , 0,0, ( , , 0 , bcru y t x t e R e      u ω . (8) 

For Rel bcrR  the CBV at y = 0 is given by Eqs. (6, 7) as 

     
2

'' ' , , logRel

e
g gg g

e



       , (9) 

indicating in laminar flows clearly a creeping/retarded motion, out of phase, with a temporal 

light dispersion effect at solid boundaries [14]. 

For Rel bcrR  the near harmonic motion of CBV is described by 

      2
0'' sgn ' 0g g s g      , (10) 

indicating a temporal strong dispersion effect of the concentrated boundary vorticity, where s 

is a characteristic length related to the intrinsic/molecular friction of the thixotropic behavior 

of fluid 2( )s e . The mutual induction between the CBV and the viscoelastic fluid 

produces a fast longitudinal compressing/expanding wave that propagates along the solid 

wall with high frequency close to the natural frequency 1
0 0

    and has a lightly damped 

oscillating decay, Fig. 5. 
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Figure 5. – The oscillating motion of CBV: a) longitudinal lightly damped wave in thixotropic fluid;  

    b) phase curves 

The velocity distribution ( , )u y t  in the microflow field is a sinusoidal travelling wave 

   
1

2
1

0

, cos , logRe ,
2log

tk y

b t l t

n
u y t U e nt k y n k




   


, (11) 

where 

1

2

tk y

bU e



 is the amplitude decreasing outwards and the distance from the wall tk y  is a 

phase lag of microflow compared to the fast motion the CBV. The velocity distribution for 

different times is shown in Fig. 6 indicating that two layers at a distance 2 / tk  from each 

other oscillate in phase. This distance is just the wave length of oscillation called the 

penetration depth or attenuation length. Therefore, the CBV produces three vorticity wave 

packets that propagate along the normal/transverse and decays exponentially. 

 

Figure 6. – The transverse vorticity waves 

The fast longitudinal oscillating motion shown in Fig. 5 is the successive superposition 

of near harmonic half-waves that are shifted by the drift 
2s e  , leaving the linear 

frequency unaltered, while the slower torsional vibrations/vorticity waves propagates along 

the normal by wave packets containing three waves: shear wave (Ts), dispersion wave (Td) 

and elastic wave (Te). The dynamic process of the evolution of the three vorticity waves and 

their interactions play a crucial role in the turbulence phenomenon: the shear wave is 

responsible from the molecular thermal energy transfer to microflow velocity field, the 
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elastic wave damps down the high acceleration at wall, and the dispersion wave carries the 

attenuated vorticity dipoles to macroflow field. More subtle observations relate to the points 

0 (y = 0) and S (y = π/2) with vanishing friction and velocity that are, the centre of rotational 

oscillation with angular frequency 2 1 1
0

2
l bf U s



         
 and center of translational/ slipping 

oscillation with  l be U m   respectively. The transverse shear waves from Fig. 6 

represent moving and fixed centrodes in rolling contact. 

The holistic formulation concerns the approach of wall-bounded flows as a whole: the 

motion equations governed by the basic principles, and the accurate initial and boundary 

conditions, where the wall boundary  wB  is given by Rb and the exterior boundary  B  

tends to infinity, so that the flow perturbed by the start-up/impact on 
wB  can be exactly 

attenuated/ damped on the B , and its non-altered/genuine response to the starting 

condition it is found in the vicinity of the wall  wB . Any fluidic system entailing three 

indispensable elements: a motion/flow  U
, a physical surface/wall (l) bounding the flow 

and a medium/fluid (ν), evolves differently in terms of what medium hypothesis is chosen 

for the paradigm of flow. In this context, the unsolved problem of turbulence (T – paradox/ 

crisis) is a paradigmatic nature one due to the ill-posed starting conditions and the 

misconception of the medium (linear-viscous/ Newtonian fluid) [1]. The approach of wall-

bounded flows uses the similar solutions of the Navier-Stokes equations in the boundary-

layer approximation, that are a kind of diffeomorphisms in flow field related to the existence 

of some smooth global solutions  ,tu x  that evolve, for the large times, into an equilibrium 

state, characterized by a stationary solution, to Euler  u x  [15]. According to [13], the 

various methods of describing and studying turbulent flows, including the direct numerical 

simulations of Navier-Stokes equations, are more or less incomplete formulations failing to 

describe the “essence” of turbulence: the origin and its self-sustaining mechanism. 

Kolmogorov’s idea [16] of disregarding the origin of turbulence and the details of its 

mechanism in favor of a noisy/ spectacular flow far from boundaries is a harmful, obscuring 

the micro-world of turbulence, i.e. the residence of the origin and the self-sustaining process. 

In contrast to Kolmogorov’s point of view, we show that just by disregarding these detailed 

flow representations so hopelessly complex to describe, the self-similarity leads to localized 

singularities at solid boundaries, where the details of the turbulence production-dispersion 

mechanism are found. The mechanism involves the CBV-viscosity mutual induction 

generating longitudinal-transverse waves in a thixotropic fluid. 

4. RESULTS FOR CANONICAL BOUNDARY-LAYER FLOWS 

The coordinate transformation from the variables x, y to new dimensionless variable 

   

1/ 2Re
,

x y y

l l
    

   
 

hides the physical importance of solid surfaces as the origin of the reaction forces on the 

flow directly related to the creation of boundary vorticity and the change of microstructure of 

fluid. Thus, the boundary-layer equations for plane steady incompressible flow reduce to the 

ordinary differential equation (ODE) for the stream function  
 

   ,
Re

NlU
f


        [17] 
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2
1 2 3''' '' ' 0f ff f    , (12) 

where the constants 1 2 3, ,    defined as 

 
2 2

1 2 3, , N
N

N

dUd U dU
U

V d V U d V d

  
      

  
 

are unknown functions      ,  and NU U    , determined once the basic/outer flow is 

specified. Here the Reynolds number 
0

Re
Vl




 is formed with the reference velocity V, the 

reference length l and the equilibrium value 0  of the kinematic viscosity or the inverse 

value of the natural frequency of fluid. The term '''f  must be corrected with the starting 

acceleration effect according to Eq. (4), as 4 4''',f e   . 

A. Prandtl boundary-layer flow 0
dU

d

 
 

 

. 

In this case we set  2 30, 0NdU dU

d d
     

 
, and  1 1

d
U

V d


   


, since the thickness 

scale   is only fixed up to a numerical factor. With 1 2 3 41, 0, e       , it then 

follows that  

4 ''' '' 0f ff   , (Blasius soliton) (13) 

with the boundary conditions 

0: 0, ' 0,

: ' 1

f f

f

  

 
. (14) 

Equation (13) with 4 1   early known as Blasius equation, describes transverse 

standing vorticity/shear waves, called solitons, which retain their identity upon the flow-solid 

boundary collision. The vorticity solitons depending on the function 4  are directly related 

to Rel via the mutual induction relation (5). The mutual induction function 4  is responsible 

for the coupling between the autonomous fast motion of the CBV and the slower non-

autonomous macroflow field flow, Fig. 7 

 
Figure 7. – The mutual induction function  4 Rel  
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 

4

-1

4

                       for Re  (weak coupling)

= log Re  for Re  (strong coupling)

l bcr

l l bcr

e R

e R





  

  
, (15) 

Now once the Reynolds number Rel is fixed, the solutions of the Blasius soliton can be 

easily computed by a standard shooting technique. Figure 8 shows the solution of transverse 

vorticity waves propagating under the form of three wave packets: shear stress wave, f’’, 

elastic wave, f’’’, and sinusoidal dispersion wave, f
iv
. The super-imposing of vorticity waves 

and mean velocity f’ suggest the λ shape for the envelope of vorticity waves (in turbulent 

flows). Figure 8 makes evident that the wave packet is embedded in the boundary layer as a 

λ – like wave. 

  

Figure 8. – Transverse vorticity waves in Prandtl flow (f’ – mean velocity profile): f’’ - shear wave, f’’’ - elastic 

wave, i1v –dispersion wave for a) α4 = e (laminar) and b) α4 = e-2 (turbulent) 

B. Couette flows 

Traditionally, the Couette flow is separately approached as “start-up” flow and its internal 

flow [17]. In contrast with these distinct approaches we propose a unitary approach, where 

the time scale is included in the Reynolds number as an initial condition: small Reynolds 

numbers for the start-up of the laminar flows, 1/ 2
0Re Re 2 1420h cs e      and the start-up of 

the turbulent flows at supercritical Reynolds numbers. The ODE of the Blasius soliton is 

exactly the same as Eq. (13) with different boundary conditions 

: ' 1,

0 : 0,

: ' 0,

f

f

f

 

  

 

 (16) 

Figure 9 shows the solutions for the vorticity field, where the wave packet at solid walls 

contains only shear stress wave (f’’) and elastic wave (f’’’) because of the stronger restriction 

on the double bounded flow. The suppression of the dispersion wave leads to a pressure 

increase in the macroflow field as the Reynolds increases. For the critical Reynolds Recs, the 

concentrated vorticity (e
2
) at the moving wall is broken down in two contra-rotating 

fragments, there is a rotation center of CBV on each solid wall (O’, O’’) and the slipping 

center S of velocity is approximately little shifted towards the moving wall. The adjacent 

layers at a distance h/2 from each other oscillate in opposite phase and the velocity field is 

regularized as Reh increases according to 1/ 2

2

1
Re ss

h
U





 
  

 

, Fig. 10. The onset of turbulence 

is the vorticity jump itself when Re Reh cs  the CBV at the moving wall is halved and the 
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energy storage at impact as torsion boundary pressure is recovered as dynamic pressure of 

flow. 

  
Figure 9. – Transverse vorticity waves in Couette flow: f’’ - shear wave, f’’’ - elastic wave, for 

a) α4 = e and b) α4 = e-2 

  

Figure 10. – Start-up of a Couette flow, a: laminar, 2 /U h g , b: turbulent, 2 /U h g  

It is worth noting that the turbulent flow produces a slipping effect at the moving wall 

and an entrainment effect in the region of fixed wall. The different behavior of the flow near 

walls is a consequence of the rotational relativity induced by the phase difference between 

translation and rotation motions at a fluid-solid interface. 

C. Stokes’s problems 

The Stokes problems excluding the length scales from the analysis of starting process, i.e. 

the starting acceleration, and by this eluding the law of equal action and reaction these 

problems, ill defined, turn into only simple mathematical exercises without any physical 

signification. The misunderstanding of the starting mechanical process led to two different 

representations of the start up of a flow: suddenly accelerated (infinite) plate-Stokes’s first 

problem (similar solutions), and vibrating plate-Stokes’s second problem (without 

similarity). The second Stokes’s problem in fact represents the impulsive start –up of a finite 

length plate when 2
0 /U l g . For 2

0 /U l g , the slow/laminar start-up, the Navier-Stokes 

equations by introducing the dimensionless similarity variable 

1/ 2 0

0

Re , Re
22

l l

U ly y

lt
  


 (17) 
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and the function  0/u U f   reduce to the ODE 

'' 2 ' 0f f    (18) 

with the boundary conditions (0) 1 and ( ) 0f f   . The solution is 
0

erfc 1 erf
u

U
     

where the error function 
2

0

2
erf e d


 



   and erfc is the complementary error function. 

The correction on the velocity distribution of CBV, given by  1/ 2Re , 0,2
2

corr l

y
e

l

    is 

shown in Fig. 11. 

 

Figure 11. – Distributions of velocity in Stokes’s first problem  

For 2
0 /U l g , the penetrating process of vorticity waves from the fluid-solid boundary 

into the macroflow field is like that of Fig. 6, and can be described by the local-induction of 

CBV with constant circulation condition 

   0

1
, costk y

tU y t U e nt k y


 


 (19) 

where 
0

2
tk y y

 
  

 
 and 0 0U l  is the circulation assumed constant across the boundary 

layer. 

Figure 12 illustrates the Stokes’s second problem where the distribution of mean 

velocity and vorticity waves, including their λ envelope exhibits the rotational relativity 

effect of the impulsive motion of a finite plate as entrainment, (e
-1

 proportion at a large scale) 

and slipping (2/π proportion at a small scale) effects. Compared with the original Stokes’s 

problems, these model problems are more realistic prototypes expressing respectively, the 

adherence (Fig. 11) and molecular slipping (Fig. 12) effects at a fluid-solid interface. 
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Figure 12. – Transverse vorticity waves in Stokes’s second problem  

5. CONCLUSIONS 

The “start-up” of a flow from rest evolves mostly impulsively when the starting acceleration 
2 /U l  exceeds the acceleration of gravity g and the flow is strong disturbed becoming 

turbulent. The neglect of such large accelerations led to misconceptions and approaches 

failing to describe the essence of turbulence, i.e. the origin and the self-sustaining process of 

turbulence [13]. At the beginning most of the research in turbulence was conducted almost 

exclusively by the engineering world for solving some practical tasks. The last three decades 

have been marked by the increasing involvement of physicists and applied mathematicians 

though still with pretty limited foci. The less interest on the details of the mechanisms of 

turbulence production and sustainment, promoted particularly by Kolmogorov’s ideas [16], 

led to what now is known as the crisis/ paradox of turbulence. The main paradigmatic 

misconceptions of turbulence such as Newtonian viscous fluid, boundary vorticity flux, 

vorticity-rate of strain tensor mutual mechanism of turbulence, eluding the law of equal 

action and reaction and circulation-preserving near-wall flow, and whereby fail to describe 

most of issues/ difficulties/ features of turbulence. In the present paper a new flexible 

paradigm for the turbulence phenomenon is proposed according to the dual concept of 

concentrated boundary vorticity-thixotropic fluid that can remove the above drawbacks. The 

suddenly change of the motion state of bodies, with the fluid bounded by a solid surface, 

involves large accelerations that can be less or more than g. The latter introduces deviant 

behavior from continuity hypothesis of both motion/flow and fluid microstructure called 

turbulence and thixotropy, respectively. This localized perturbation case has been 

approached in Fourier sense by a continuum of modes, that is by packets of waves: 

hydrodynamic instabilities as disturbances to the velocity field (transverse shear waves) and 

instabilities of fluid-microstructure as a thixotropic effect able to adjust itself continuously 

with the flow state. The perturbation of the translation motion Ue of the fluid at a fluid-solid 

boundary interface breaks off the continuity of motion, that can be restored smoothly as 

laminar flows with low frequency /eU l , acceleration 2 /eU l g , large scales (small wave 

numbers) and the discontinuity of wall-bounded flow (u = 0), or impulsively as turbulent 

flow involving large accelerations 2 /lU l g , high frequency ( 100 kHz), small scales 
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(large wave number proportional to frequency and the molecular slip of velocity at wall 

/ 2/s lU U   ). The high frequency – large wave number proportionality ( 2 /l s lf U k  ) for 

turbulent wall-bounded flows known as Taylor’s hypothesis is a consequence of the 

invariance of rotation motion where any incompressible plane flow disturbed by the 

boundaries guiding a flow is restored by rotation oscillations with high frequency on account 

of the molecular potential energy of fluid, exhibiting a rotational relativity. The present 

paradigm using the concentrated vorticity – thixotropic fluid concept has allowed finding the 

mechanisms of turbulence phenomenon at molecular scale that physically represents early 

compressibility effects (
1/ 2M e ). As a general rule, any plane turbulent flow can be 

restored as a smooth (in statistic sense) plane flow in (2/π) proportion carrying distributed 

vorticity/dipoles in (e
-1

) proportion, without energy loss. The new vision on the turbulence 

phenomenon has been illustrated by some model problems. 
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