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Abstract: Previously, the turbulent flows were studied as they have been disregarding their origin, 

and without looking into some of the details of the mechanism of turbulence production and 

sustainment. This approach focusing its attention particularly on the details of the fluctuating motion 

superimposed on the main motion led to most of controversial and misunderstood results from which 

the law of equal action and reaction, and the circulation-conserving were excluded. The paper is 

aiming at removing these drawbacks and presenting the turbulence phenomenon as a mechanical 

process triggered off at the beginning of motion. The fluid as deformable continuum without a definite 

shape must be guided by some physical surfaces, where the rotor-translational motion approximation 

is more suited than the no-acceleration parallel flow approximation. The main features of shear 

turbulence are described by means of the mechanical prototype of a perturbed rotor-translational 

motion continuously self-accelerating at wall and conserving the mass and angular momentum. 

Key Words: Laminar-turbulent transition, Shear turbulence, Rotor-translational flow model. 

1. INTRODUCTION 

Any motion, both of solids and fluids that starts from rest is the result of an impact process 

occurring during the momentum exchange between two colliding bodies within a short time 

of contact. This kind of collision will be called starting impact in the sequel. With respect to 

a single impacted body or structure, the loading in such a process acts with high intensity 

during this short period of time. As a result, the initial velocity distribution is rapidly 

changed inducing locally pressure wave loadings. Such rapid loading in the contacting area 

is a source where waves are emitted and that propagate with finite speeds through the body. 

In the case of sufficiently small amplitudes (in the far field), linear elastic body waves 

propagate with the speed of sound waves. In the near field, if the body force is absent/ 

unimportant or has the analogous representation by means of the Helmholtz force potentials

grad curlb k B , the local perturbation propagates as a wave packet/group at the interface 

of bodies containing the fast longitudinal L-waves and the slower transverse T-waves [1]. 

However, a further complication arises when the impact is a ballistic type one that acts on 

the micro structural change with non-Gaussian behavior of the molecular thermal 

agitation/energy [2]. In the near field large deformations with non-linear material behavior 

occurred that may even render fracturing of solid material and turbulence of fluids. The 
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impact problems are similar for both solids and fluids with the difference that the 

dispersion/inertia waves encountered in the wall-bounded turbulent flows complicate the 

pattern [3]. 

Within an idealized theory of the impact process, the rate form of the conservation laws 

by time integration and through the limit of vanishing duration of the loading is transformed 

to a set of finite difference relations. Their application is illustrated by the wave packets in an 

elastic rolling wheel and a boundary layer on a flat plate. Considerations of these typical 

examples give some insight into actual problems and, in an informal manner, yield some 

justification/interpretation of confused hairpin vortex structures in wall turbulent flows [4]. 

2. THE KINEMATICS AND KINETICS OF BODIES WITH ROTOR-

TRANSLATIONAL MOTION 

The gross properties of solids, liquids and gases are directly related to their molecular 

structure and to the nature of the force between the molecules. It is possible to distinguish 

two kinds of force which act on matter in bulk. In the first group are long-range force like 

gravity which decreases slowly with increase of distance between interacting elements/ 

molecules and which are still appreciable for distances characteristic of natural fluid flows. 

Long-range forces are also called volume or body forces. 

In the second group there are short-range forces, which have a direct molecular origin, 

decrease extremely rapidly with increase of distance between interacting elements, and are 

appreciable only when that distance is the order of the separation of molecules of the 

solid/fluid. They are called surface/shear forces and are negligible unless there is direct 

mechanical contact between the interacting elements, as in the case of reaction/collision 

between two rigid bodies. But, in the case of starting impact/collision the short-range forces 

exerted between two deforming bodies, in contact at their common boundary, are due 

predominantly to transport of momentum across boundary by migrating molecules: from 

warmer body to colder body. The intrinsic/molecular-thermal energy involved in this 

molecular process may thus also be called “latent heat” of compressing. In the case of sharp 

loading, the energy dissipated cyclically through internal/molecular friction increases the 

amplitude of nonlinear instabilities (turbulence of flowing fluids). The self-vibrating 

mechanical systems with nonlinear restoring forces and nonlinear/hysteretic damping have 

originated from micro-structural changes of materials, during the starting impact where the 

structural damping is characteristic of all systems with hysteretic cycle (particularly 

turbulence of flowing fluids). The shear forces activated by the starting impact act on matter 

in bulk at the onset of a motion, occurring dissipative molecular-thermal effects, less or more 

pronounced, from simple dry friction forces (frictional shearing stress) up to nonlinear 

restoring forces with hysteretic damping (turbulence), depending on the intensity of starting 

impact, Fig. 1. 

The first cornerstone of the rotor-translational motion is the starting impact triggering 

off a motion, that is idealized by a sudden jump of kinetic energy, 
2 2

0 01/ 2 1/ 2 IRCE mV I   , equal-partitioned into translational motion and rotational 

motion and described by a Dirac function    0 ,E t E t a t a   . During this starting 

short period of time a potential energy E0 is stored as the internal molecular-thermal energy 

of micro-structure of moving solid/fluid like a “latent heat” of compressing (the work of the 

internal shear forces in the time interval elapsed). After impact, the development of motion 

depends on the intensity of the starting impact: for an inelastic impact the colliding bodies 
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separate immediately and the “latent heat” of compressing, Ep, is dissipated as drag friction, 

Fig. 1a, for an elastic/linear impact, there is only neglected rolling friction, the contact point 

describes a cycloidal trajectory and the molecular thermal energy sustains 

instabilities/vibrations of the moving body, firstly linear torsional vibrations, Fig. 1b, 

followed for higher intensity by nonlinear coupled vibrations with structural damping and 

microstructure changes of materials, Fig. 1c. 
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b) 

 
 

 

 

 

 

 

c) 

 

Figure 1 – Starting impact types 

The second crucial feature of starting impact is that the strong contraction of motion, 

  1t a    at t = a, can be interpreted by means of the elementary affine transformations of 

Cantor’s set: a first time contraction in a proportion of 1/3 (equal to Fourier coefficient B(ω)) 

and a second contraction in the same proportion of 1/3 (a rotation) followed by a translation 

of 2/3, showing the rest-motion passing way by accelerating rotor-translational movements. 

The passing from the boundary rotation motion with constant angular momentum (rotational 

invariance) to a free translational motion with constant momentum (translational invariance) 
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involves always a buffer zone/boundary layer for the damping of strong boundary 

accelerations induced by the starting process. If the body forces are absent/unimportant or 

have a Helmholtz-like representation grad curlb k B , the bodies, solids and/or fluids, can 

perform continuously accelerating rotor-translational motions with light damping after 

impact. When the starting conditions are sufficiently severe some instability state sets in, 

which is followed by further (secondary, tertiary, …) instabilities (bifurcations); in the case 

of fluids the transition and a fully developed turbulent state are set in. Such sequences of 

events depending on the starting conditions originate locally in the contact/impact point and 

then are spatially developing throughout the whole motion field. It is important to stress that 

the transition from origin point to a vibration/turbulent regime may be quite sudden, 

however, the boundary rotor-translation turbulent motion induces an rotation inertial delay 

(unimportant for solids but vital for turbulence). Thus, the mechanical prototype of the rotor-

translational like movements illustrated by the wheel/disk in a straight rolling motion shows 

unexpected many similarities with the streaklines in a boundary-layer flow with travelling 

instability waves [5]. 

 

Figure 2 – Streamlines and streaklines in a boundary layer with travelling instability waves [5] 

Figure 2 sketches the unsteady streamlines and streaklines containing various instabilities 

depending on the degree of concentration of the boundary vorticity [6], [7] Fig. 3. 

 

Figure 3 – Effect of concentrated boundary vorticity on streakline patterns [6] 
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Figure 4 – Typical cycloidal trajectories: a) short cycloid, b) long cycloid, c) ordinary cycloid 

Such as cat-eyes like structures and streaklines can be easily obtained through the 

deformation of the cycloidal trajectory/path described by a no slip rolling disk. When the 

impact point M is not on the girth of the disk, this point describes a deformed cycloid: if M is 

inside CM d r   (r-radius of disk) the cycloid is a short one (Fig. 4a), and if M is outside 

d r  the cycloid is long one (Fig. 4b). For d = r, the point M describes an ordinary cycloid 

(Fig. 4c), which can deviate less or more from the typical form depending on the intensity of 

collision/impact, Fig. 1. 

From the parametric equations of the cycloid 

sin , cosx r d y r d      , (1) 

the peripherical velocity and centripetal acceleration are directly found as 
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where the angular velocity has a constant line of action, i.e.   ztω i . 

For the initial conditions  and / 2r V      from Eqs 2, 3 it can define an impact 

coefficient as 
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where g is the acceleration of gravity and the critical value 0 1   corresponding to 

4 or 4 12.528 m/sIC V g    with reference radius r = 1 m, is the starting minimum 

condition for the rotor-translational motion with ordinary cycloidal trajectory. 

For 1  , the long/deformed cycloid contains knots (intersection points with the 

straight lines 2x k r , k is whole number) obtained from the equation 

sin 0  , (5) 

where λ1 = 4.60333 is the value corresponding to the smallest positive root of Eq. (5) and 

6.8174 or 16.356IC V   m/s. 

The impact in the range 0 1    , is an inelastic one without microstructural change 

where the molecular thermal agitation/energy is not affected by the rolling friction, and at the 

macroscale the motion obeys the Konig’s paradigm: the kinetic energy is the sum of the 

translational kinetic energy and of the rotary energy mass being concentrated in the mass 

center. 

The value 1  is equal with the Feigenbaum’s criterion (4.669…) [8] indicating the onset 

of an instability state at the molecular scale. From the equation 

sin   , (6) 

new knots are found on the straight lines  2 1x k r    as a point-couple for each line

     1 2 1 2 1 2, , , , ,P P Q Q R R , Fig. 5, where 2 7.78968  is the value corresponding to the 

smallest positive root of Eq. (6), and 9.9184 or 20IC V   m/s. 

 

Figure 5 – Cycloidal trajectories in critical regimes 

The impact in the range 1 2     is a linear elastic/random impact preserving the 

Gaussian behavior of the molecular macrostructure without inertia changes/deformations at 
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the macroscale. After impact, the motion of the elastic disk is given by a Konig-like 

paradigm as 

2 21

2 2
k M M

m
E V I   , (7) 

using the average velocity per one rotation, 2/3  and 2/3MV V r V    . 

Its vibration state depending only on the impact energy E0 is described by a linear 

slightly damped torsional oscillator of mass m and stiffness of the restoring torsional spring c 

with the initial velocity 2 2
0 0

1
,

2
IRCV E mV I    . The un-damped free vibration motion of 

the disk is the solution of equation, Fig. 6. 

2 2
0 00, , IRC

s s

Ie
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m m
       , 

 

Figure 6 – Linear-torsion oscillator regime after a random impact ( 1 2    ). 

Conservation of energy applies at any instant of time and gravity has no influence on the 

natural vibration 

2
0

1

2
k pE E E mV   , (8) 

where the translational kinetic energy kE  vanishes ( kE =0) and the rotation inertial potential 

is maximum ( 2
max 0 01/ 2p p IRCE E I E   ) for 0 00, / ,2 /t      and contrary 

2
max 0

2
k k

m
E E V E    and 0 0

3
0 for , ,...

2 2
pE t

 
   (Rayleigh’s quotient [1]). 

If the rotation frequency ω0 approaches the critical frequency ωc, the material damping 

cannot be neglected and the dispersion waves by the lateral inertia must be considered. 

In the interval   2 32 ,3  for         , through Eq. 5, the cycloid acquires new 

double knots on the straight lines  2 32 : , , on 0x k r A A x   ,  2 3, , on 2B B x r  ,

 2 3, , on 2L L x r   , etc., Fig. 5, where 3 14.102    16.171 and 25.433IC V  . 

For 2   , the impact is a nonlinear/ballistic impact involving irreversible/hysteretic 

microstructure changes with nonlinear material behavior (or non Gaussian behavior of the 
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molecular thermal energy), that lead to the changes at the macro-scale, with structural 

hysteretic/damping and inertial dispersion wave (Fig. 7). 

The kinetic energy of a deformed body is given by 

  2 1

2 2

T
k M

m
E t V I  ω ω , (9) 

where the kinetic energy becomes the sum of the translational kinetic energy (mass is 

considered to be concentrated in the mass center) and of the rotary energy. 

With respect to principal axes, the later is given by (the inertia tensor is diagonal) 

 2 2 21 1

2 2

T
z z x x y yI I I I     ω ω  

Using the Lorenz curve [8], [9], [10] for the distribution of rotary energy, Eq. (9) becomes 

 2 21
1

2 2
k M M

m
E V I G    , (10) 

where 
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2

1

3
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z z

I I
G

I
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
 is the Gini coefficient [11], 2/3  and / 2/3MV V r V    . 

In the case of sharp loading of a disk of a material sensitive to tension, tensile fracture 

may occur despite original loading in compression, due to the sign change during reflection 

of the dispersion wave (“spalling effect”). 

The cycloid curve has some interesting geometrical properties related with above 

instabilities induced by motion of bodies describing such trajectories. 

Thus, the ratio of arc of ordinary cycloid to circular arc, 4/π, and the area swept by 

cycloid to circular area, 3, show that the accelerating cycloidal motion can smooth out the 

translation-rotation phase difference, induced during the starting impact, by the increase of 

frequency and/or the rotational inertia decreasing. 

Also, the area generated by the rotation of a cycloid around its height (DF) can illustrate 

the vibration zone (see shaded area in Fig. 7c). 

The instantaneous velocity and inertia distributions (Fig. 7a) across the traveling 

direction of the rolling wheel, can be approximated as 
 
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(11) 

where Ek is translational kinetic energy and Ep is rotary inertial energy. 

The equation show the intrinsic flywheel mechanism of kinetic energy preserving in a 

slightly damped rotor-translational motion. 

This motion induces an inertial potential around of the instantaneous rotation center, 

Fig. 7a, b where the oscillating inertia center is below the mass center and the value ¼ is the 

energy fraction dissipated per cycle by the structural damping. Equation (11) is a kind of 

Rayleigh’s quotient [1] based Lorentz’s distribution. 
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b) 

 

 

Figure 7 – Hysteretic behavior after a ballistic impact ( 2 7.789   ) 

The equality of shaded areas from Fig. 6c, the petal AQDP and the half of generator 

disk, can be interpreted as the dynamic balance between Ep and Ek, that is assumed to be 

affine to their inertia, Fig. 7a. 

3. SHEAR WAVES IN WALL-BOUNDED FLOWS 

The considerations and interpretations herein concerning the shear waves previously found 

in boundary layer [3], [7], [12], [13], [14], are based on the references to the body waves 

(section 2). Among various shear layers, the thin boundary layers are final gross structures 

generated by and adjacent to solid surfaces during the onset of motion. The concentrated 

boundary vorticity (CRV) generated by the starting impact is a primary local structure [7] 

inducing travelling instability waves across the whole boundary layer non excluding three 

dimensional effects. The future evolution of CVB only depending on the present state (and 

not on this history), is described by a longitudinal compressing/expanding wave with a 

displacement in the direction of the main motion. 

The CBV plays the role of the generator disk from the above cycloidal motion inducing 

instabilities. The local instabilities generated by CBV propagate across the whole boundary 

layer in the form of transverse shear wave packets containing an incident frictional shear 

wave and two reflected waves: elastic shear wave and dispersion shear wave, in opposite 

phase with the incident wave [14]. 

The importance of boundary layers consist in their rotation inertial potential that 

balances the transitional kinetic energy of main motion. For large Reynolds number 

exceeding the critical boundary value 2 2 1
0bcrR l e    [7] the starting impact is a ballistic-like 

impact that induces irreversible/hysteretic fluid micro-structure changes accompanied by an 

augmented molecular thermal energy feeding the shear wave system. The dynamic balance 

between the translational kinetic energy of main motion and the rotary inertial potential of 

the whole boundary layer is achieved by means of a self-sustaining shear wave system with 
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lower frequencies ( 1/ 2Rel ) called the self-sustaining mechanism of turbulence. In addition to 

this slow gross hysteretic cycle with the frequency about 1/ 2Rel  at the boundary layer scale 

(δ), there is a local faster molecular thermal process at the fluid-solid interface with the 

natural frequency of fluid, 1
0Recr   . 

Its augmented intrinsic/ molecular thermal energy supplies the energy at wall for the 

rotation inertial potential, that is a little out of sync with the less inertia translational kinetic 

potential. In contrast to the impulsive starting, the stress relaxation/damping after impact is 

achieved differently depending on three frequency levels: 1) high frequency ( 1
0Recr   ) at 

fluid-solid boundary by means of the longitudinal wave and structural damping, i.e. 

internal/molecular friction involving micro-structure changes; 2) frequencies depending on 

Reynolds number ( 1/ 2Rel ) and distinct modes with small wave numbers (kδ = π/4, π/2, 2π/3) 

by means of the nonlinear shear wave packets and nonlinear/hysteretic damping across the 

boundary layer; 3) frequencies depending on Reynolds number ( 1/ 2Rel ) and random modes 

with large wave numbers ( 2k  ) that transport Helmholtz like weak vorticity by viscous 

diffusion across the whole boundary layer. 

The velocity field of both laminar and turbulent boundary layers are dominated by the 

bound conditions so that the details of the nonlinear fluctuating motion at large wave number 

and high frequency superimposed on the average motion is not contradictory to the 

translational invariance (momentum-preserving) and the latter can be decoupled by the 

rotational field of waves with small wave numbers and high frequency obeying the angular 

momentum-preserving, i.e. the rotational invariance. 

Based on this wave number decomposition, the present approach of wall-bounded flows 

uses the similar solutions of the Navier-Stokes equations in the boundary-layer 

approximation associated with a mutual induction function, CBV-viscosity (Re )l . Thus, 

the boundary layer playing the role of the rotation inertia must be associated with a 

relaxation/accommodation relation between the CBV and variable viscosity, self- adjusting 

with the flow state (thixotropic fluid hypothesis [7]) that determines the proper frequencies 

of wave system. For Prandtl boundary-layer flow, Blasius equation corrected with 

acceleration effect (α4) given by the mutual induction factor (Fig. 8) becomes a soliton, 

which retain identity upon the flow-solid collision: 

Corrected Blasius equation 

4 ''' '' 0f ff   , (12) 

Boundary conditions 

0: 0, ' 1
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f f
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, (13) 
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 

4

4
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e
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   
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Figure 8 – The mutual induction factor  4 Rel  

    
inelastic impact linear/elastic impact 
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Figure 9 – Similar soliton solutions of mean velocity and shear wave fields for the Prandtl boundary-layer flow 
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Figure 9 illustrates the superposition of velocity field with large wave number 

 2 ,n n   on the shear wave field with small wave number  2  for different 

Reynolds numbers. The velocity field and wave field are consistent with translational 

invariance and rotational invariance, respectively. The longitudinal slight 

dispersion/damping of the CBV is of molecular nature and can be modelled by a near 

harmonic motion described by 

     2
0'' sgn ' 0g g s g        , (15) 

where 2/g e e  and s characterizes the frictional force by the limit of the spring force for 

the thixotropic like behaviour of fluid  2s e . The mutual induction between the CBV and 

the viscoelastic fluid produces a fast longitudinal compressing/expanding wave that 

propagates along the solid wall with high frequency near the natural frequency 

 2 1
0 for 1 /c b bU U m s     and has a lightly damped oscillating decay, Fig. 10. 

  

 

 

Figure 10 – The oscillating motion of CBV: a) longitudinal lightly damped wave in thixotropic fluid; 

b) phase curves and separatrix of frictional vibrations 

The key mechanism of transverse dispersion/damping of the CBV is the boundary rotor-

translational motion generating shear waves on independent modes with small wave number 

that penetrate the velocity field averaged on random large wave number-modes and by their 

coupling the boundary non-linearity/accelerations effect is offset. The penetrating process of 

vorticity waves from a fluid-solid boundary into the boundary-layer flow can be illustrated 

by a simple harmonic surface wave exponentially decaying with the distance y from the wall 

[14], 

 
1

0

, / cos( ), logRe ,
2log

t
k y

e t l t
n

U y t U e nt k y n k





    , (16) 

where / t
k y

eU e   is the amplitude decreasing outwards, tk y  is a phase lag of wall-bounded 

flow compared to the fast surface motion of CBV, and nt is a kind of wave number, 2nt  . 
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The velocity distribution for distinct wave numbers is shown in Fig. 11, indicating the 

presence of three shear wave packet for small wave numbers, where the frictional shear wave 

 / 4rad  is in opposite phase with the elastic wave  / 2 rad  and the inertial dispersion 

wave  2 /3 rad . The penetration depth or attenuation length is equal to 2/3 δ (δ – 

boundary layer thickness) that is just the wave length of oscillation. The three wave structure 

is consistent with the soliton solutions from Fig. 9. 

4. CONCLUSIONS 

The particular examples considered herein have shown that the starting conditions play an 

important role in the development of the motion of both solids and fluids including turbulent 

flows. Any motion of both solids and fluids that starts from rest is the result of an impact 

process occurring during the momentum exchange between two colliding bodies within a 

short time of contact. With respect to single impacted body or structure, the loading in such a 

process acts with high intensity during this short period of time. The starting impact induces 

a rotational relativity towards the incoming/incident translational motion involving important 

consequences on the evolution of motion after impact. The key assumption of this analysis is 

the self accelerating rotor-translation motion of the impact point describing a cycloidal 

trajectory. The cycloid curve has some interesting geometrical properties related with the 

instabilities induced by the motion of bodies describing such trajectories. Thus, the ratio of 

arc of ordinary cycloid to circular arc, 4/, and the area swept by cycloidal to circular area, 3, 

show that the accelerating cycloidal motion can smooth out the translation-rotation phase 

difference, induced during the starting impact, by the increase of frequency and/or the 

decreasing of rotational inertia. Also, the area generated by the rotation of a cycloid around 

its height (DF) can illustrate the vibration zone (see shaded area in Fig. 7c). The motion 

along a cycloid self-generates various instabilities depending on the intensity of starting 

impact. An impact coefficient/criterion has been devised and a classification of impact types 

has been done by means of this criterion. The field of a solid and fluid motion has been 

described at both macro and micro-scale showing the wave system accompanying motion. 

 

Figure 11 – The average velocity field (averaging on random modes with large wave numbers) and shear wave 

field (a superposition of three independent modes with small wave numbers 
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The two parallel examples of motions close to a solid surface have universal importance, so 

that, up to some yet be specified conditions, the results can be carried over the regions close 

to the wall of general turbulent flows. The main results of this study can be summarized as 

follows. 

1. The onset of any flow generates three shear wave packets at the fluid-solid boundary 

moving with 2/3 of free velocity V
 called group/convection velocity; the result is 

known as the Taylor’s frozen-field hypothesis; the transverse shear waves are governed 

by a modified Blasius equation/soliton, analogous to the KdV equation for solitary 

waves in shallow water, where the effects of boundary non-linearity will be offset only 

by the dispersion of CBV, without near-wall viscous dissipation. 

2. The small wave number-Rel depending on the frequency wall shear waves are mostly 

dispersing/damping across a thin boundary layer with non important viscous/dissipative 

effect on the velocity field averaged on large wave numbers; colloquially, the boundary 

vorticity dispersing flow is known as turbulent wake. 

3. The turbulence mechanism without kinetic energy loss is a self-sustaining process 

supported by the molecular thermal energy released from fluid micro-structure changes 

during the starting impact (“latent heat” of compressing); it is a mechanical system with 

nonlinear restoring stresses and nonlinear/hysteretic light damping caused at a fluid-solid 

boundary by the starting impact. 

4. The turbulence phenomenon has its origins at fluid-solid boundaries where localized 

singularities arise during the onset of motion and their effect propagates across the whole 

boundary layer (a dilemma of mathematicians: local versus integral [15]); the turbulence 

is characteristic to incompressible flows up to 2/3M   (about half of the latent heat of 

compressing) and represents early compressibility effect: a stronger initial collision 

resulting in weakly attached microstructure elements is described by a new fluid state 

equation, .
p

const

  with 

2

e
   as a remanent vorticity, i.e. early compressibility effects. 
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