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Abstract: During the last century, the theoretical investigations in the boundary vorticity dynamics 

were based on the concept of a fluid of small-constant viscosity, i.e. the Newtonian fluid, described by 

the non-slip condition at the wall and the linear law for fluid friction. But the application of current 

ideas in non-linear hydrodynamic stability theory to the flow in shear layers showed the existence of a 

class of flows involving concentrations of vorticity, also visible both in experimental conditions and 

industrial environments. The role of concentrated vorticity in fluid dynamics phenomena, concerning 

both the vorticity creation at the boundary and the response/reaction to the flow field is not entirely 

understood. The main purpose of this paper is to bring about a better mechanism of vorticity creation 

at the wall beneath a flow using the concept of thixotropic fluid associated with an active vorticity 

governed by the vorticity transport equation that is able to react back on the fluid flow. Such a 

viscoelastic behavior can be easily forecasted by the relationship between the value of the critic 

Reynolds number, Rec, and the equilibrium kinetic viscosity 2 1
0 0, Rec e    , argued in the sequel by 

means of the thixotropic fluid concept. 
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1. INTRODUCTION 

When starts from rest and interacts with the solid/fluid surface any flow introduced at a 

physical surface experiences a kind of thixotropic behavior and can memorize the initial 

conditions at the start up time, i.e. the impact conditions. A thixotropic viscous response 

shows an overshoot in the stress which makes its behavior quite complicated due to the 

unknown deformation prehistory on the fluid [1]. The impact is a process of momentum 

exchange between colliding bodies within a short time of contact when the vorticity is 

acquired at the physical solid/fluid surface. The impact problems of Newtonian fluid flows 

are drastically simplified by a vanishing contacting time assumption. This idealization loses 

the sudden jump in the velocity distribution, i.e. the onset of vorticity creation at a boundary. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Consequently, the class of flows of engineering interest, representing small or large 

periodic perturbations from a skewed shear layer must be approached by means of a 

thixotropic fluid able to describe better the impact process and, thus, the genesis of boundary 

vorticity that is the cornerstone of its dynamics. Hence, the fundamental relation for the 

Newtonian fluid is replaced by a more general one 

onw w B   , (1) 

where ωw is the transverse vorticity over two-dimensional wall B , which can take values 

from 1- uniform vorticity distribution, up to e
2
 - highly non-uniform vorticity distribution 

[2], and μ accounts for its change during the start up flow. 

Equation (1) for skewed shear layers represents, in general, a transverse shearing stress, 

that in contrast to the Newtonian classical frictional stress contains also elastic torsion 

Fourier components for both the small and concentrated vorticity, described in the more 

general form of the torsion pressure 

2, [1, ] on Btorsionp e   . (2) 

The concept of torsion for vorticity wires is used for better understanding of various 

vorticity-boundary interactions and the role of concentrated vorticity on its transport in large 

Reynolds number flows. 

2. SOLID/FLUID BOUNDARY-FLOW INTERACTION 

Any flow experiences various interactions from physical (solid/fluid) surfaces and, in fact, 

the theoretical fluid dynamics is the (hi)story of the development of these interactions. But 

Fluid Dynamics has provided and still provides a number of problems mathematically 

unsolved and/or poorly understand from a physical point of view, as paradoxes. The early 

issue of paradigmatic nature was the D’Alembert’s paradox of drag or “small” D-paradox, in 

contrast to the present nonsolved problem of turbulence, or “big” T-paradox. As 

D’Alembert’s paradox is the result of the use of the concept of perfect fluid, it is rationally to 

consider that the problem of turbulence can be similarly the result of an improper fluid 

concept − the Newtonian fluid, too restrictive 
du

dy
    and μ = μ0, to describe intricate 

phenomena as the turbulence [3]. In the paper, such a phenomenon is represented by the 

issue of vorticity-boundary interaction involving a complicated two-step process: the 

vorticity-creation at the solid-fluid/ fluid-fluid interface via non-constant viscosity and no 

slip condition followed by its relaxation/dispersion into the flow field depending on the 

Reynolds number as a control parameter governing the entire process. 

The perturbation caused by the motion of the solid/fluid surfaces into a flow is firstly an 

impact problem related to its start-up which is drastically simplified by engulfing the impact 

event into a confused initial condition when 0t  . The unknown origin of this condition is 

the main drawback of previous works [4], [5], [6], [7]. Moreover, the improper initial 

condition leads to an ill-posed problem of the Navier-Stokes equations, which makes it 

inadequate to describe the turbulent motion of the Newtonian fluid governed by the linear 

relation μ
du

dy
   and constant viscosity. Therefore, the vorticity-boundary interaction 

problem will be considered as an entire process composed by three events: 
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Events Description 

Impact, surface-flow colliding boundary-flow momentum exchange; 

velocity distribution skews 

Vorticity creation at boundaries sudden increase of vorticity to the value of 

e
2
 for stable flows [2] 

Relaxation, the reaction of created vorticity 

to the flow field 
- at large Reynolds number, 1

0Rex
  , the 

response in Newtonian fluid: vorticity 

diffusion flux [4]; 

-at very large Reynolds, 1 2 1
0 0Rex e     , 

the response in viscoelastic type fluid: 

vorticity transport by longitudinal-transverse 

waves 

In the sequel it is account for thixotropic effects on the viscosity due to the flow-induced 

collision. 

2.1 Impact-vorticity creation 

First step of vorticity-boundary interaction process involves the perturbations in time 

generating the changes of vorticity at the boundary of a flow. Stuart’s study, of a mixing 

layer of than y form reported on the existence of a class of hydro dynamically stable flows 

representing skewed shear layers, with strong vorticity concentrations. The change of the 

flow pattern in terms of the level of concentration is discussed with reference to the vorticity 

given by 

 
22 cosh cose y A x     , (3) 

where  ln cosh cosy A x    is the stream function, x is the longitudinal coordinate in the 

direction of mean flow and y is the transverse coordinate normal to that direction; the x and y 

velocity components are u
y





 and v
x


 


, respectively. 

 

Figure 1. – Gauss like vorticity distribution 

The Gauss function like solution named Stuart’s e
ω
 –solution, represents a spatially 

periodic mixing layer, consisting of a single row of vortical structures, with constant 
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circulation, Γ = 4π, around the contour: , 0,2y x    , Fig. 1. e
ω
-solution can be 

summarized as: 

1) for the same amount of vorticity entering the flow field it can describe different 

distribution of ω with x and y changes and values from e
0
 (uniform distribution) to e

2 

(strongly skewed distribution); 

2) the motion following impact is initiated with a set of point vortices on the boundary, 

Fig. 2; 

3) the time-dependent solutions simulating flows generating small and large periodic 

perturbations in shear layers are stationary nondispersive waves traveling along with the 

flow in the longitudinal direction obtained by translation of axes, Fig. 3. As it is seen in Fig. 

3, the shape of waves depends to a great extent on the concentration of vorticity [8]. 

  

Figure 2. – Contours of constant vorticity for several ω 

 

Figure 3. – Effect of γ on streakline patterns R=0.25 and R=1, any ω. 

2

0

(ln ) 2

e

e

d   . (4) 
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The relation (4) shows the consistence of the concept of torsion wire for the 

concentrated vorticity. 

Two important parameters must be taken in consideration in order to describe the 

vorticity distribution entering the mixing layer: 

 

2

2

1

cosh cos
R

y x t

 
 

   

, (5) 

- the circulation parameter defined as the extreme velocity ratio    1 2 1 2/R U U U U   , 

and  

- the vorticity concentration parameter γ calculated as the ratio of maximum total vorticity to 

maximum mean vorticity (at y = 0, x-t = π) [9]. 

 max

max

1
1

1

  
  

  
. (6) 

The concentration of vorticity at the boundary was simulated/provoked by successive 

increments   for several values of vorticity ω and vorticity concentration parameter γ 

according to (5). 

This result evidently shows that the correct modeling of a vorticity-boundary interaction 

requires to associate the torsion concept of vorticity with a viscoelastic type fluid able to 

react back on the fluid flow. 

2.2 Post-impact evolution 

The post-impact relaxation/reaction of the concentrated boundary vorticity aims at 

describing the mechanism of vorticity change at the wall and also at estimating the amount 

of vorticity entering the flow. 

In the case of Newtonian fluids, Lighthill described the vorticity production at a solid 

boundary as a slow diffusion process of the vorticity similarly to Fourier’s heat conduction 

1
on

p
B

x y

 
  

  
, (7) 

where diffusivity constant ν is the kinematic viscosity, as that for momentum, Fig. 4 [4]. 

However, Lighthill’s mechanism is a qualitative one that can predict only the weak 

vorticities entering the flow. 

Its restriction is in fact the constraint of the too stiff Newtonian fluid. The vorticity 

dynamics as a whole requires the use of a thixotropic fluid hypothesis [1] to more accurately 

simulate the torsion shearing stress of vorticity at impact and post-impact. 

A typical behavior of the viscosity of a thixotropic fluid is shown in Fig. 5(a, b). At 

impact, the viscosity will initially be higher, but will decrease and end up at the same value 

or at a lower level depending on how vigorously the material was initially loaded. 

Similarly, the post-impact thixotropic response is seen as an overshoot in the stress 

controlled flow. 

The time of shearing is accounted by the Reynolds number based on the reference 

viscosity ν0. 
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Figure 4. – Lighthill diffusion mechanism of vorticity change at the wall beneath a non-zero gradient pressure 

flow 

  

Figure 5. – Thixotropic effects of start-up flow a) shearing of a thixotropic fluid, b) various regions of start-up 

flow [1] 

An assumption with respect to the deformation of the fluid at the time after impact is 

necessary. In this case, it is sufficient to assume that the admissible distribution of vorticity is 

affined to the one of the fluid, ων = constant, which together with (2) defines the constitutive 

relation of viscoelastic type fluid. Furthermore, the vorticity-boundary interaction recasts 

into the problem of a vorticity source where waves are emitted and propagate in the flow 

field. Figure 6 illustrates the wave mechanism of vorticity transport near the wall beneath a 

flow at very large Reynolds numbers,  
2

0 0

1
Re Rex c

e
 
 

 (see next section). 
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Figure 6. – The wave mechanism of vorticity transport of the wall beneath a flow (Rex – control parameter) 

3. VORTICITY WAVES IN PLATE BOUNDARY LAYER 

Generally, the Cauchy motion equations can be written as [7] 

 
1dv

a f A
dt

   


, (8) 

where f  is an external force and the irrotational potential φ and the vector potential A  

characterize the two basic dynamic processes: the longitudinal compressing/expanding 

process, and the transverse torsion shearing process, respectively.   is the velocity field 

outside a shear layer and A  represents the velocity field as the rotation of a vector 

potential A  ,u v
y x

  
   
  

, but both paradigms of the incompressible flow satisfy the 

continuity equation. The Stokes-Helmholtz decomposition of the stress tensor T  

T , 0A A     , (9) 

allows, for thixotropic fluid, a distinction between two systems of fluid waves with different 

propagation speeds: the fast longitudinal L-waves and the slower transverse T-waves. 

We shall illustrate the simplest example of application of the boundary–layer equation 

(flow along a very thin flat plate) where the vorticity dynamics is the result of coupling the 

longitudinal-transverse wave system. In this case, velocity of the potential flow is constant, 

that is , 0
dp

U x
dx

   , and  ,A x y k  with Ψ as a stream function defined by 

,u v
y x

 
  
 

. (10) 

With  

   
 

1/ 2

2 , ,
x y

xU f x
U x





 
       

 
, (11) 
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where f(η) is the dimensionless stream function, δ(x) is a scaled measure of the boundary 

layer thickness (up to the approximation u=0.99U∞) and / '( )u U f    is the similarity law 

of the velocity profile, the boundary layer equations and their boundary equations become 

one ordinary differential equation for the stream equation [10] 

''' '' 0kf f f  , (12) 

0: 0, ' 0,

: ' 1

f f

f

  

 
. (13) 

This nonlinear third order equation and the three boundary conditions completely 

determine its solution. In the case of a Newtonian fluid, the wall value ''(0) ''wf f  is the 

local wall frictional shear stress 

( ) 0.332w

w

Uu
x U

y x




 
     

  
, (14) 

which is misinterpreted as the dissipation of the boundary vorticity since the flow-induced 

collision process is completely reversible [1]. 

This drawback can be avoided using the concept of torsional vorticity-thixotropic fluid 

able to describe better the vorticity dynamics. Thus, (12) and (13) are completed with the 

vorticity transport equation and its initial/end boundary conditions: 

2( )u v x
t x y

  
     

  
, (15) 

 

 

2

0

0

0, 0 :

0, :

:
2

y t e

y t e

y e

  

  


 

, 
(16) 

 

Figure 7. – Full Blasius type solution for T-waves, f”, elastic component, f”’, dispersion component, fiv: a) T-

wave in laminar flow, k = 2; b) T-wave in turbulent flow, k = e-2 
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The thin viscous-elastic sublayer 
2

y
 

 
 

 is governed by the Blasius type solution '''( )f   

(Fig. 7), ignored before, and the constitutive equation 

dv  , (17) 

where vd is a dispersion velocity which is just the flow velocity Ue. Since during impact the 

whole process is reversible, the conservation of angular momentum leads to 
2

0

Rec

e


  

except a dimensional constant, which is the location where the vorticity amount created at 

the boundary completely enters the flow. 

The Reynolds number is a measure of the frequency of the wave system and the 

constant k from (12) depend on its amplitude decreasing for large amplitudes. 

The motion following impact is analyzed by using the vorticity transport equation near 

the wall, 0y  , an implicit constitutive relation eU   and the initial/end values of 

vorticity: 2 00

2
0: , Re :c

c

e e e

xx
t e t e

U U U


      . 

We set 
2

, logRexg
e


    and then obtain the following ordinary equation for the wall 

vorticity distribution 

2
2

0

'' ' 0

0 : 1

log :

g gg

g

e
g e

 

  

  


, 
(18) 

  

Figure 8. – Vorticity change after a distribution of the state of equilibrium: a) vorticity transported by L-wave g 

and concentration degree of vorticity γ; b) vorticity transported by T-wave g’ and vorticity dispersed by flow 

momentum g” 

In this case, the partial differential equation (15) has been transformed into one 

nonlinear ordinary differential equation which simulates a nonlinear longitudinal wave 

steepening in flow field. 
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Figure 8a shows the formation of a bore penetrating into the flow and the concentration 

degree of vorticity calculated from the vorticity balance at a boundary 

1 ' ''g g g     , (19) 

where: 

1 is the torsional vorticity/pressure at impact; 

g is wall vorticity transported by longitudinal wave (L); 

g’ is vorticity transferred to transverse wave (T), Fig. 8b; 

g’’ is vorticity dispersed by flow momentum, Fig. 8b. 

The values marked in Fig. 8 follow the change of the vorticity/viscosity in the post-

impact flow: 

- 
1/ 2

0Rex    is the onset of the vorticity transport by weak waves (Tollmien-

Schlichting waves) in the range (
1/ 2 1

0 0   ) of Rex the approximation of Lighthill’s 

vorticity flux diffusion is applied (Fig. 4b); 

- 
1

0Rex    is the onset of the concentrated vorticity transported by strong transverse 

waves (lambda-vortical structures, turbulent spots) for 
1

0Rex    the proposed wave 

mechanism works (Fig. 6); 

- 
2 1Rec e    is the change of the creeping motion of vorticity to the vibrational one, 

i.e. the classic laminar-turbulent transition. 

The mechanism of longitudinal-transverse wave coupling involves an exciting 

longitudinal wave (L) depending on the Reynolds number, followed by a number of 

dispersive transverse waves (T). 

The transverse wave is a superimposing of three components with different roles: the 

torsion shear component, f”, excited by the longitudinal wave, '' 'wf g , in terms of the 

Reynolds number, the elastic intrinsic component, '''f , retarding the fast component, ''
wf , up 

to ''' 0
max  at / 2 where f y e   , and the dispersion component of the Newtonian fluid, f

iv
, is 

transported along with the flow. 

The vorticity waves in laminar flows are dispersive non dissipative waves, which 

transfers to the flow field about half amount of vorticity created at the boundary. 

This is a general result showing that the angular momentum induced by a boundary in 

the form of the vorticity (as a specific angular momentum) in laminar flows, can be 

recovered at the most of its half amount. 

The other half locked at the boundary in a thin elastic sublayer is the active vorticity of 

wave system. 

In the range of the large Reynolds numbers ( 1/ 2 1
0 0   ) the momentum-vorticity 

coupling is rather a diffusive one and its effect on the drag increase can be estimated by 

interpolation of the end values. 

Figure 9 illustrates the increasing effect of the viscous drag caused by the torsional 

loading of the thixotropic fluid within the short time of impact [10]. 

Moreover, the numerical results presented in Fig. 10, show that the unsteady RANS 

(URANS) technique was unable to account for the fluctuations of flow field induced by the 

concentrated vorticity. 
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Figure 9. – Local skin-friction coefficient of a flat plate at zero incidence: ─ Blasius theory; --- thixotropic effect 

LES technique [11] reproduces the solutions most accurately and consistently because it 

resolves the unsteady fluctuations that capture the wave process within the shear layer. 

 

Figure 10. – Numerical results on the plate boundary layer Re=2/3 105 ― 5 105. 

4. CONCLUSIONS 

The main aim of this paper is an extensive treatment of the boundary vorticity issue with in 

emphasis on aspects of a conceptual nature. Since the Lighthill’s mechanism of boundary-

vorticity based a diffusion process, analogous to the Fourier heat conduction, is not applied 

to very large Reynolds flows involving concentrated vorticities, a wave mechanism of 

vorticity transport at wall is proposed. Using the concept of torsional vorticity associated 

with a thixotropic fluid hypothesis, a wave system is devised for the boundary-vorticity 

dynamics as an intrinsic dispersive phenomenon conserving both angular momentum and 

energy. The visco-elastic type fluid is used to describe the onset of vorticity at physical 

surfaces caused by the surface-fluid impact. Then, the Stuart’s vorticity model and some 

hidden solutions of Blasius equation can simulate the impact process by means of a 
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dispersive longitudinal-transverse wave system: the longitudinal waves excite the torsional 

vorticity created at wall, and the vorticity is further transported by transversal waves into the 

flow field. On the other hand, the wave mechanism can be extended to turbulent flow. It is 

shown the importance of the torsional vorticity- thixotropic fluid concept to described the 

vorticity creation from a boundary and its transfer to the flow field including the changes of 

the creeping motion of vorticity to the vibration one at 
2

0Re /c e  , i.e. the turbulent flow 

field. 
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