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Abstract: A calculation method for the subsonic and transonic viscous flow over airfoil using the 
displacement surface concept is described. Part I presents a mesh generation method for 
computational grid and a finite volume method for the time-dependent Euler equations. The inviscid 
solution is used for the inviscid-viscous coupling procedure presented in the Part II. 
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1. INTRODUCTION 

In the last years transonic flow about airfoils has become a large range of interest. While 
transonic airfoil design plays an important role in the efficiency of the commercial present 
day airplanes, the increase in transonic manoeuvre limits of fighter aircraft with transonic 
wing design has been proved in flight tests for various prototypes. This transonic wing 
technology is nearly in all based on the availability of calculation methods for design and 
analysis in transonic flow since the wind tunnels are limited in Reynolds number and the cost 
of experiments in some cases can be prohibitive. On the other hand, in transonic flows the 
viscous effects strongly affect the performance of airfoils, so that the calculation methods for 
viscous transonic flow are particularly important. 

The transonic regime is analyzed with solvers based on the Reynolds Averaged Navier-
Stokes model [1-4] or solvers based on the viscous-inviscid interaction methods [5-9]. 

The present approach consists of the iterative application of an unsteady finite-volume 
Euler method and a boundary layer part with semi-empirical models for separated regions 
using the displacement thickness concept. The inviscid flow method is discussed first (Part 
I), followed by a description of the integral boundary-layer methods (Part II). The methods 
used to couple the viscid-invicid solutions is described, followed by computed results for 
supercritical flows over some airfoils for which experimental surface pressure and 
boundary/layer data are available. 

2. CALCULATION METHOD 

2.1 Mesh Generation 
The method used for mesh generation is based on the free form deformation (FFD) and it has 
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origin in „linear/ nonlinear analysis” of structures. 
The generating principle is simple: knowing the final state of deformation of the domain 

boundaries, the real problem is to determine the forces that lead to obtaining a certain 
deformed structure. Formally, the problem may be written as: 
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where: K represents the structure stiffness matrix,  displacement vector which contains n - 
the unknown displacements of the interior nodes and c the known displacements of the 
boundaries. 

The vector of forces, F, may also be divided into two sub-components: a sub-vector 0, 
which corresponds to the interior nodes of the structure and a sub-vector of the forces 
(unknown yet), Fa, which creates the structure deformation (these forces will act on the 
domain boundaries). We will not insist on determining the stiffness matrix for constitutive 
elements Ke, the assembling mode of the elementary stiffness matrix and the solving 
procedures of the resulting linear equations system, because these are presented in detail in 
any book dedicated to analysis of structures with the finite element method [10]. It is not 
necessary that all the nodal displacements on the boundaries to be known; additional 
conditions may be required for the nodes which are supposed to glide on boundaries. 

The first equation of the divided system (1) will give us the unknown displacements: 
1
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and the last equation 

21a n  F K δ K δ  (3) 

will give the applied forces Fa that create the supposed pattern of deformation field. 
The determination of new positions of interior nodes can be realized also by solving the 

global problem: 
 K δ F

,E

 (4) 
The deformation process generates a re-arrangement of the interior nodes of the mesh. 

The main advantage is the preserving of a quasi-regularity of mesh near the boundaries. 
Passing from the initial mesh to the final mesh may assume large deformations of the 

domain frontier. In that situation, in order to keep the small deformations hypothesis, is 
necessary to consider a step-by-step deformation of the structure, which will be made in 
several stages, without taking into account the remanent strain state of the previous step. 

The mesh generation control can be done by allowing the elastic characteristics of 
structure (  ) to variate in the computational domain; there is no physical support between 
those characteristics and the existing materials (we have a fictitious material). 

In Figure 1 is presented a mesh, before deformation (a) and after deformation (b). 

a.   b.  

Fig. 1 – Initial mesh (a) and (b) mesh after deformation process 
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2.2 Inviscid Method 
The two-dimensional unsteady Euler equations are written in the conservative form as 
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and 
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for a perfect gas. 
For the conservative variables ( ), the integral formulation of Eq.(5) is given by 

    
e e

xU d f U n g U n
t  




0y ds


  
    (9) 

where x yi nn n j 
 

e


 is the outward normal of the element boundary  .  In this form, is 

attractive to use a Finite Volume Method (FVM), especially for the case of the convective 
dominant flows. 

The main feature of the FVM is the integration of the flux on the surface of the control 
volume e . For the convective terms, the problem becomes 1-D in the direction of the 
normal to the surface. The one-dimensional Euler system may be easily diagonalized and 
then the surface flux can be evaluated in an upwind purpose. 

In order to perform calculations on the structured meshes, changing the cartesian 
coordinates with coordinates attached to the local directions of structured mesh is justified: 

   ,, ,x y x y     (10) 

where   is the coordinate along airfoil surface and   is the normal coordinate to 
airfoil. 

Using the geometric transformation (10), having the Jacobian (11) and the variables (12)  
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where the flux components f and g  are given by: 
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U

v V 

denote the medium state on the cell and U represents the vector of conservative variables.  
The contravariant velocities have the following form: 

,u V      
 

 (15) 

We had used the cell-centered finite volume for the spatial approximation of solution. 
For each cell (i , j) results the differential equation: 
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where the numerical fluxes etc. contain both the outwards normal and the 

boundary length of the element, because 
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 , etc. The fluxes are 

calculated in upwind manner with left/right states of the adjacent cells. For example, the flux 
through (i+1/2, j) interface is given by 
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and it is calculated numerically using the Roe scheme [11]. This scheme is simple and 
efficiently, and is strict connected with the hyperbolic character of the Euler system. 

The time integration with the fourth order Runge-Kutta scheme is already classic 
scheme for the discretization with FVM. The evolution in time is referred at the medium 
state corresponding to each finite volume cell. Therefore, we have implemented the scheme 
proposed by Jameson [12], which consists in the following steps: 
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 are given by where the coefficients 
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The global step time is chosen following the well-know stability criterion [13]: 
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which ensures that the simple wave produced at the cell interface should not pass over the 
boundaries of the neighbouring cells. 

Boundary condition is ruled by the type of the boundaries and the hyperbolic character 
of the Euler system.  

The infinite boundary (in the case of exterior flows) is a fictive boundary which limits 
the computational domain. We had supposed that the fluid state remains unchanged outside 
of the computational domain. Thus, the calculus of fluxes is performed using the 
neighbouring cells of the fluid boundary and a fictive cell outside of the computational 
domain. 

At the wall, for inviscid flows, the boundary condition is: 
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0V n 
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 (19) 
and as a consequence the convective flux vanishes. 

This condition is implemented using a fictive cell on the solid frontier where the 
velocity has the opposite sign with respect to the velocity in the neighbouring cell, while 
pressure, density and energy remain constant. A numerical correction for the interior 
component of velocity is required: 

 c cV n nV V 
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c


 (20) 

where V  is the calculate velocity. 

To obtain the second order spatial accuracy, we have adopted a MUSCL formulation 
(Monotone Upstream-centred Schemes for Conservation Laws) for nonuniform structured 
grid. The limiter used in MUSCL reconstruction (at the interface level) was proposed by van 
Albada [13], because it has simple mathematical form and smooth properties. 

3. RESULTS AND DISCUSSION 

The results presented here have been obtained using a computational “C” grid with 280x75 
points (Fig. 2). The solution was obtained with a residual of 10-6 in the inviscid part and it 
was used for interacting cycle in inviscid-viscous method.  

We start with some calculations for the RAE 2822 airfoil. In [14] a number of cases 
have been extensively tested. We have chosen the case: 0.725M  , , 

, transition point at 3%.  

66.5 10 
02.3

Re

exp
Figure 3 shows a comparison of the pressure coefficient distribution calculated without 

boundary layer and experiment.  
The agreement between computational solution and experiment is relatively good in 

limit of inviscid flow  assumptions. 
 

 

Fig. 2 – C-grid (280 x 75 points) obtained using free form deformation   
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   i.  
 

ii.  

Fig. 3 – Pressure coefficient isolines (i) and distribution (ii) for the RAE2822 airfoil: , 0.725M

66.5 10Re   , : (a) experiment, (b) inviscid solution (Euler). 0
exp 2.3 

The present work will be continued with Part II including the inviscid – viscous 
interaction method. 
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