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Abstract. The paper presents an adaptive method using the controlled grid deformation over an 
elastic, isotropic and continuous domain. The adaptive process is controlled with the principal strains 
and principal strain directions and uses the finite elements method. Numerical results are presented 
for several test cases. 
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1. INTRODUCTION 

In the last decade, remarkable progresses have been made for developing new methods to 
obtain adaptive mesh. The latter issued from the necessity to increase the spatial accuracy 
required to solve problems of physics, described by differential equations. 

The purpose of an adaptive mesh is to provide a local increase of the number of nodes 
where the error distribution has large values and to thin the mesh where the error is minimal. 
Generally speaking, the error parameters are built on the basis of the gradient of a previous 
considered variable s, which supposes that one knows the values of variable on the initial 
mesh. The main ways to follow in order to obtain adaptive meshes are: 1) mesh regenerating, 
2) moving the inner nodes, 3) adding or extracting a number of nodes, 4) a composed 
method and taking into account the previous 3 methods already presented. The author 
suggest the reader to consider references [1], [2] for the case 1), [5], [8], [9] for the case 2), 
[3], [4], [7] for the case 3), [6] for the case 4). 

The present method belongs to the 2) category, because the nodes are moved towards 
the areas with large values of gradient of variable s. The deformation of the mesh is 
performed over an elastic, isotropic and continuous domain. The adaptive process is 
controlled with the principal strains and principal strain directions of the mesh elements. 

2. DEFORMATION FUNCTION OF THE ELEMENT 

The adaptive process consists in a controlled deformation of the mesh, which creates either 
increasing or decreasing the density of the nodes, as a function to a parameter which 
indicates the local error  . For this indicator we propose the next formula: 

min

max min

s s

s s


  

  

 (1) 
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where the physical variable s is chosen according to the type of the problem to be studied. 
As one can notice, the values of   range between 0 and 1. 
Increasing or decreasing the density of the nodes supposes to modify the dimension of 

the element; by dimension of the element we mean the length in one-dimension, the area in 
two dimensions, and the volume in tree dimensions. 

Let us consider   the function that characterises the dimensional modifications of the 

element: NV OV  . The values of the function are: 1   when 0  , which means the 

growth of the element’s “dimension”, thus the mesh becoming locally less dense, and 1   

when 1  , which means the decay of the element’s “dimension”, thus the mesh becoming 
locally more dense.  

There are 2 forms proposed for the function : 

 0 11        (2.a) 

2 21
0 1
     (2.b) 

The ratio 1 0    represents the ratio between the reduced size and the enlarged size 
of the adaptive mesh ( 0 1  ). When 0  , one will obtain a highly dense mesh in the 

area with large gradients. Being given the controlling parameter  , then the parameter 0  
may be determined from the condition to preserve the dimensions: the length in 1D, the area 
in 2D, and the volume in 3D: 

V V

dV dV   (3) 

If we suppose that the principal strains are estimated in the centre of each element (this 
is a simplifying hypothesis), then the function   can be expressed by the means of the 
principal strains, as:  

     1 2 3 1 21 1 1 3f f f           (4) 

Now we’ll face the problem of choosing the functions f1 , f2, f3 which must verify the 
equation (4). For an element shaped as a parallelepiped it is convenient to consider the 
isotropic distribution of the function   over the directions of the principal strains: 

1
3

1 2 3f f f     (5) 

If there is a preferred direction of the element’s strain, then it leads to selection of the 
functions f1 , f2, f3 as: 

31 2
1 2 3 1 2, , wherekk kf f f k k k       3 1  (6) 

The direction given by the gradient of s, i.e. |g s s |  


, may be considered as a 
preferred direction of the element’s strain. We have to take into account that during the 
adaptive process, the direction g


 given by the gradient is different from the maximum strain 

direction; therefore, we must alter the controlling function of the strains (2), such that: 

     2 2 2 2 2 2 2 22 2 2 21 1 2 2 3 3 3 31 1 2 2
1 1 1

1 0 1 2 0 1 3 0 1, ,
k n k n k n k nk n k nf f f

         
  

    (7) 
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where (n1 , n2 , n3) are the components of the direction 
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g


, referred to a coordinate system 
attached to the principal strain directions. 

 
Fig. 1. The principal strains of the element 

Relations (7) are used to compute the principal strains 1 2, , 3    and allow afterwards 

to obtain the linear strains ( , ,x y z   ) and the angular strains ( , ,xy yz zx   ), expressed 

in the global reference system of the mesh (figure 1). 

3. DETERMINING THE NODAL DISPLACEMENTS OF THE MESH 

In order to determine the nodal displacements (u, v, w) of the mesh, being known the strains 
on the elements, one may suppose that the computational domain is an isotropic, 
homogeneous and elastic material. The mesh models are: 1D- a set of beams, submitted to 
extension/compression stress, or springs; 2D- a flat plate, submitted to flat strains and flat 
stress; 3D- a deformable solid. 

The idea is to determine the nodal forces which induce the supposed set of strains. When 
computing the displacements with the aid of the finite element method, for the 2D and 3D 
model, the notion of “a concentrated force acting in the nodes of the elements” is some how 
exaggerated, in order to allow the obtaining of a simple model for an adaptive mesh. 

We’ll suppose that both the coordinates (x,y,z) and the displacement function (u,v,w) on 
each element, may be represented by a set of interpolating function (of Pascal type): 

1 1 1

1 1 1

( , , ) , ( , , ) , ( , , )

( , , ) , ( , , ) , ( , , )

p p p
i i i i i i i i

p p p
i i i i i i i i

i

i

x N x y N y z N z

u N u v N v w N w

        

        
  

  

     

     
 (8) 

where  , ,    represents the natural coordinates attached to the element. 

Between the strains and the vector of the nodal displacements on each element, stands 
the relation: 

 { } [ ]B d   (9) 

where {d} is the vector of the nodal displacements on each element and [B] is the matrix of 
the derivatives of the interpolating functions Ni. 

One may prove that for an element, the stiffness matrix can be expressed as: 

     [ ]
e

T

e

V

K B E B d  V  (10) 
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based on the principle of the stationary value of the potential energy. 
Matrix [E] is the elasticity matrix. Being known the field of the strains, for an element 

one may write the following relation: 

                       [ ]
e e e

T T T

e e e e

V V V

K d B E B dV d B E B d dV B E dV      (11) 

The concentrated forces applied in the node of order “i”, which induce the local 
deformation on the mesh, may be estimated after the addition of the contributions of all the 
elements adjacent to node “i”: 

      
1

i

e

e
T

i
e V

F B E dV


   (12) 

Next step will be to establish the nodal displacements of the mesh, with the aid of the 
finite element method (FEM). Therefore, for each element, one may write: 

     e e ek d f  (13) 

where [ke] is the stiffness matrix of the considered element and {fe} is the vector of the nodal 
forces. After performing the assembling process, one obtains the global stiffness matrix    

and 
K

F  vector of forces, represented just by the nodal concentrated forces (fig. 2). 

 
Fig. 2. Node displacements under force iF


 

There are necessary boundary conditions. Thus, the nodes on the boundary can either 
“frozen”, or moved according to an algebraic law or are allowed to a “slip” along the 
boundary Sw (“…i-1, i, i+1…” nodes – fig. 3). 

 
Fig. 3. Boundary condition 
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The linear system: 

     K d F  (14) 

has a band-matrix [K], and it can be solved with the aid of either direct eliminating Gauss 
method or by an iterative process (Gauss-Seidel or conjugated gradient). 

The solution of the system (14) offers the values for the nodal displacements; next, the 
position of the nodes in the mesh is updated: 

,N O N O
i i i i i ix x u y y v     (15) 

4. ADAPTIVE ALGORITHMS 

Input data: original mesh, the values of s estimated in nodes, the characteristics of the elastic 
medium (E and ). Steps (fig.4): 1) estimate the value of s and select the principal strain 
directions; 2) consider the values of the principal strains given by the functions (7) according 
to the values of the error parameter ; 3) calculate the linear and angular strains; 4) calculate 
the nodal forces , by means of (12); 5) determine the nodal displacements by using FEM 
solver; 6) establish the position of the mass-centres for the elements of the new mesh; 7) 
update the values of s in nodes and s. 

F

The iterative process continues with step 1) until the new position of the nodes will be 
obtained with the imposed precision.  
 

 
Fig. 4. Adaptive algorithm 
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5. RESULTS 

The purpose of the first case study is to verify the form of the two functions proposed (2.a 
and 2.b). The variation of s is described by the function: 

  ( ) 1 for ; sin 2 for ; 1 for }f x x x x x                 (16) 

where  =0.4. 
Figure 5 shows the variations of the function f(x) and the parameter  ; also, the 

adaptive mesh is presented for different values of the parameter  . The mesh has 41 equally 
spaced nodes and the adaptive process is performed in 5 iterations. The variation of the 2 
functions looks alike, as regards the increase of the mesh density when 1  . 

 
Fig. 5. Adaptive mesh in 1D 

The second case study deals with an adaptive mesh built for a square, having 35 x 35 
equally spaced nodes. The variation of  s is described by: 

2

2 2
( ) {0 for ; for }rf r r C e


 


 r    (17) 

where 0.85 , 

2

2 2

1C e d


 










  and  2 2r x y  . 

Boundary conditions: “freezing” the 4 corners; considering the slip condition over all 
the edges. 

The adaptive mesh obtained in 3 iterations is shown in Figure 6. One may notice an 
increase of the nodes number in the areas where s has large values. 
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Fig. 6. Adaptive mesh built for a square ( =0.4) 

Steady supersonic flow in 2D channel 
The third test was conducted on a 2D channel (fig. 7), in which inviscid flow is 

supersonic (Mach = 1.6). The two-dimensional flow is described using the unsteady Euler 
equations: 

0
U

F
t


  




 (18) 

where 

 T
U u v

F f i g j

   

   
  

E
 

  
  

2

2

T

T

f u u p uv E p u

g v uv v p E p v

   

   

  

  
 

(19) 

and 

 2 21 1

2 1

p
E u v

 
  


 (20) 

for a perfect gas. 
For the conservative variables (U), the integral formulation of Eq.18 is given by 

     0
e e

x yU d f U n g U n ds
t  





  

    (21) 
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where x yn n i n j 
 

 is the outward normal of the element boundary e . 

In this form, is attractive to use a Finite Volume Method (FVM), especially for the case 
of the convective dominant flows. 

The main feature of the FVM is the integration of the flux on the surface of the control 
volume e . 

For the convective terms, the problem becomes 1-D in the direction of the normal to the 
surface. The one-dimensional Euler system may be easily diagonalized and then the surface 
flux can be evaluated in an upwind purpose. 

At the wall, for inviscid flows, the boundary condition is: 

0V n 
 

 (22) 

and as a consequence the convective flux vanishes. 
This condition is implemented using a fictive cell on the solid frontier where the 

velocity has the opposite sign with respect to the velocity in the neighbouring cell, while 
pressure, density and energy remain constant. A numerical correction for the interior 
component of velocity is required: 

 c cV V V n n 
    

 (23) 

where  is the calculate velocity. cV


To obtain the second order spatial accuracy, we have adopted a MUSCL formulation 
(Monotone Upstream-centred Schemes for Conservation Laws) for nonuniform structured 
grid. The limiter used in MUSCL reconstruction (at the interface level) was proposed by van 
Albada [14], because it has simple mathematical form and smooth properties. 

Choosing r=0.3 and maximum allowed reduction order 0.35 between two consecutive 
iterations, the adapted mesh looks similar to the one in figure 7 (a-b). There is also a 
comparison between the isobar curves ( 2/( )p V  ) in the two situations (fig. 7 c-d,e-f). 

 
Fig. 7: Mesh before (a) and after (b) the adaptive process; isobar contours - (c-e) original mesh; (d-f) adapted 

mesh 
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6. CONCLUSIONS 

The tests, which have been done over 1D and 2D meshes, show the capability of the 
algorithm to increase the number of nodes whenever high values of s are obtained. Also, 
the proposed method shows a good accuracy for the iterative process and being fast 
convergent has convenient computing time. 

The adaptive algorithm is robust and relatively quick. Basically, for a 2D mesh, the 
algorithm converges after a few iterations. Keeping the number of nodes and mesh 
connectivity, the necessary hardware resources for the adaptive process are relatively small. 
The Euler solver converges fairly quickly on the adapted mesh, having as initial data the 
solution obtained on the original mesh, and then extrapolated on the adapted mesh. The 
adaptive procedure is also suitable for multi-zoned meshes, the adaptive process being done 
in this case on sub-domains. 
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