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Abstract: The paper deals with the extension of isotropic plates problem to the case of composite 
plates. In order to perform it, the Kirchhoff-Love hypotheses were “softened” by some additional 
ones. Considering the constitutive laws for composite materials the stress functions were eliminated 
by using Cauchy equations. As a result a partial derivative equation in displacements was obtained. 
Finally the boundary condition formulation was extended for the case of complex composite plates.  
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1. INTRODUCTION 

This paper aims at finding an approachable form in displacements of equations governing 
the mechanical response of composite plates. Unlike the solutions proposed by S. G. 
Lekhnitskij [1,2], utilizing the facilities offered by several simplifying assumptions that will 
be presented below, intermediate equations requiring an integration (usually numerical one) 
can be eliminated. 

Eventually, a partial differential equation of 4th order (the analytical solution in 
displacements of the anisotropic problem of the composite plate) – which is a generalization 
for the anisotropic problem of the Sophie-Germain equation, can be determined. 

Thus, an analytical alternative of the numerical solutions with stress solving that are 
proposed by most works dealing with the composite plates mechanics, is approached. 

The starting point in this case is the Kirchhoff-Love hypothesis that allows a 
considerable simplification of the equations of the anisotropic elasticity theory, which in 
their turn are “weakened” by new hypotheses as will be shown below. 

In addition, exploiting favorably the assumptions made, analytical expressions are 
proposed for all types of boundary conditions. 

2. WORKING HYPOTESIS 

1. During deformation, the normal vectors to the central plane of the plate remain straight 
and normal to the median deformed surface. 
This hypothesis implies that 

0 yzxz  (1) 

 From constitutive equation of orthotropic composites considering principal anisotropic 
directions, it results unequivocally. 
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0 yzxz  (1’) 

 “Weakening” of this hypothesis consists in interpreting previous relation (1’) as an 
indicator for the fact that unitary efforts yzxz  ,  are very small with respect to the normal 

ones, but their gradient could be appreciable, namely 

0


z
xz  

(1’’) 

2. During deformation of the laminate its thickness is constant, which equates with the 
condition 

0 z  (2) 

3. The small strain hypothesis is also considered thus resulting that the points located in 
median plane of the plate remain on the same vertical after deformation. 
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3. THE PLATE PROBLEM SOLVED IN DISPLACEMENTS 

The constitutive equation can be written with respect to the main directions of anisotropy in 
the form 
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In relation to any coordinate system equation (4) becomes 
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where 

INCAS BULLETIN, Volume 3, Issue 2/ 2011 



47 Strain resolving method of composite plane plates 
 

INCAS BULLETIN, Volume 3, Issue 2/ 2011 

 
 
 






















































































66

12

22

11

333333

333333

222222222

22442222

222244

222244

26

16

66

12

22

11

2

2

2

4

42

42

Q

Q

Q

Q

mnnmmnnmnmmn

nmmnnmmnmnnm

nmnmnmnm

nmnmnmnm

nmnmmn

nmnmnm

Q

Q

Q

Q

Q

Q

 (7)

with m = cos  and n = sin ;  is the angle made by the fibers direction (the principal 
anisotropic direction) and Ox axis direction. 

Replacing (3) in (6) we obtain the constitutive equation in relation with the strain 
function of medium plane; it results 
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If the mass forces are neglected in equilibrium equations, we can write 
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Because the ‘hard’ hypothesis of Kirchhoff does not involve the corresponding nullity of 
the unitary efforts, it can be ‘weakened’ assuming that these slides are small compared to the 
gradient of plate deformation– as in (10) 
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NOTE. “Weakening” Kirchhoff's first assumption is legitimate in order to ensure the balance 
of the plate element under transverse loads  
 To estimate the transverse efforts in plate the equilibrium relations (9) are considered. 
 From the first relation in system (9) one deduces  
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or, by using relations from (8) it can be written 
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or 
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If we note 
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and integrating the (13) equation with respect to z variable it is obtained 
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Where f1(x,y) represents an arbitrary function which will be determined from outline 

conditions. Thus from the assumption that on the plate surfaces (at 
2

h
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Where h is the plate thickness. 
Similarly, for the second component of the transverse effort we can successively deduce 

the following: 
From the second relation of system (9) it can be deducted 
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or, using the relations from (8) 
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And the (20) equation is integrated with respect to variable z it is obtained  
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Where f2(x,y) represents an arbitrary function which will be determined from outline 
conditions. 

Thus from the assumption that on the plate surfaces (at 
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In order to obtain an equation to be solved trough strain, in the third equation of (9) 
system, we determine 
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If note 
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and integrating the (27) equation with respect to z variable it results 
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Where f3(x,y) represents an arbitrary function which will be determined from outline 
conditions. 

Thus from the assumption that on inner plate surface (at 
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Or, explicitly, in the final form 
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The (33) equation represents the displacement solution of composite plane plate 
problem transversally loaded which can be numerically integrated. 

As already stated it is a generalization of Sophie Germain equation for the composite 
plane plate.  

4. BOUNDARY CONDITIONS 

4.1 Generalities 

To achieve an optimization code of the plate composite structure in relation to its dynamic 
response to interaction with the fluid field, it is interesting to define each possible case of 
boundary conditions, especially in strain for the plate defined by the equation (31). 

In a first step it is useful to define the sectional efforts inside the plate. 
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Fig. 1 Geometry of the plate with unitar length and width 

Thus, as shown in picture it can be noted  
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4.2. Fixed edge 

For the fixed edge the boundary conditions will block the movement of the points situated on 
the respective side along the vertical direction (Oz) as well as prevent the rotation of the 
plaque surface around its axis. 
 Considering the system of axis from figure 1 the following conditions can be written 
 a) on the edge parallel to the Oy axis 
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b) on the edge parallel to the Ox axis 
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4.3. Simply supported edge 

For simply supported edge the boundary conditions will block the movement of the points 
situated on the respective side along the vertical direction (Oz). On the other hand, the 
bending moment on this surface must be null because the simply support does not introduce 
reaction moment. Making reference to the system of axes in figure 1 the following 
conditions can be written: 
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The second relation from (41), taking (34) into account leads to the condition 
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So, finally, the relation (41) becomes 
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 b) on the edge parallel to the Oy axis 
 Similarly for the other side is written 
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 The second relation from (47), taking (35) into account leads to the condition 
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Namely, if relation (8) is used it can be written 
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it results 
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So, finally, the relation (51) becomes 
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4.4. Free edge 

For the free edge the boundary conditions stem in the condition that all efforts in that section 
are null. 
 Making reference to the system of axes mentioned in figure 1 the following conditions 
can be written  

 a) on the edge parallel to the Ox axis 

0,0,0
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 xxyy TMM  (53)

Because for determining the solution two independent relations in the form of boundary 
conditions, are needed, by using Saint-Venant’s principle and considering that the shearing 
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force Tx and the components of the torque moment Mxy (as distributed moment) are steady, 
from the last two equations from (53) it results the relation: 
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Meaning, from (53) the boundary conditions become 
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 (55)

The first relation from (55) is equivalent with the second relation from (47) i.e. 
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After processing the second relation from (55) it results 
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or, 
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where B is the notation from (21). If, denoting 
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Then (58) becomes 
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or 
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And, replacing 
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Finally, after processing, the two boundary conditions are written 
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 b) on the edge parallel to the Oy axis 

0,0,0  yxyx TMM   (64)

Similar to the previous case it results the relation: 
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Or, from (64) the boundary conditions become 















0

0

x

M
T

M

xy
y

x

 (66)

The first relation from (66) is equivalent with the second relation from (41) i.e. 
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After processing the second relation from (66) it results 
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where A is the notation of (14). If the notation from (59) is considered, then (69) becomes 
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or 
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And, replacing 
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Finally, after processing, the two boundary conditions are written 
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 (73)

5. CONCLUSIONS 

 In the case of composite plane plates subjected to transverse loads and if small 
displacements assumption is considered, the equation (33) is a relatively simple and easy 
solution to integrate, which eliminates the considerable calculus effort and additional 
errors introduced by classical numerical methods. 

 The boundary conditions are easily applicable and allow a simple interpretation of the 
phenomena which have generated the mathematical conditions. 

 By dropping the assumption of anisotropy the Sophie-Germain equation is re-found. 
 The proposed method requires a comparison between classical and numerical method in 

terms of solving time and accuracy of the calculus. 
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