Strain resolving method of composite plane plates
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Abstract: The paper deals with the extension of isotropic plates problem to the case of composite
plates. In order to perform it, the Kirchhoff-Love hypotheses were “ softened” by some additional
ones. Considering the constitutive laws for composite materials the stress functions were eliminated
by using Cauchy equations. As a result a partial derivative equation in displacements was obtained.
Finally the boundary condition formulation was extended for the case of complex composite plates.
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1. INTRODUCTION

This paper aims at finding an approachable form in displacements of equations governing
the mechanical response of composite plates. Unlike the solutions proposed by S. G.
Lekhnitskij [1,2], utilizing the facilities offered by several simplifying assumptions that will
be presented below, intermediate equations requiring an integration (usually numerical one)
can be eliminated.

Eventually, a partia differential equation of 4™ order (the analytical solution in
displacements of the anisotropic problem of the composite plate) — which is a generalization
for the anisotropic problem of the Sophie-Germain equation, can be determined.

Thus, an analytical alternative of the numerical solutions with stress solving that are
proposed by most works dealing with the composite plates mechanics, is approached.

The starting point in this case is the Kirchhoff-Love hypothesis that allows a
considerable simplification of the equations of the anisotropic elasticity theory, which in
their turn are “weakened” by new hypotheses as will be shown below.

In addition, exploiting favorably the assumptions made, analytical expressions are
proposed for al types of boundary conditions.

2. WORKING HYPOTESIS

1. During deformation, the normal vectors to the centra plane of the plate remain straight
and normal to the median deformed surface.
This hypothesis implies that

Yo =Yy, =0 (1)

From constitutive equation of orthotropic composites considering principal anisotropic
directions, it results unequivocally.
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rxzzryzzo (1)

“Weakening” of this hypothesis consists in interpreting previous relation (1') as an

indicator for the fact that unitary efforts t,,,t,, are very small with respect to the normal

ones, but their gradient could be appreciable, namely

ot,, 40 (1)
0z
2. During deformation of the laminate its thickness is constant, which equates with the
condition
g,=0 2

3. The small strain hypothesis is also considered thus resulting that the points located in
median plane of the plate remain on the same vertical after deformation.
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3. THE PLATE PROBLEM SOLVED IN DISPLACEMENTS

The constitutive equation can be written with respect to the main directions of anisotropy in
the form

G, Q, Q, O €
Gy =4Qp Qp 0 ¢-7¢, (4)
T2 0 0 Qg Y12

where

Qe = L S v Qi =Gy 5)

= , , =
1-vpvy 1-vpvy

Qu = 5

1-vpvy ’
In relation to any coordinate system equation (4) becomes
Ox 911 912 916 €x

Oy (= 912 922 926 8y (6)
Oxy Qs Qs Qus 28y

where
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Q. m* n*  2m?n? 4nm?n?

Q,, n*  m*  2m’n? 4mPn? Qu

Qu| _|mn? mPn?2 m*+nt - 4mPn? Q

Q| |mnz mnz —2mnz  (m2-n2f | |Qy @)
Qu mPn —mn® mn® — m*n 2(mn® — mPn)| | Qg

Q| | mn® —min mPn—mn? 2(mPn — mn3)

with m = cos 6 and n = sin 0; 6 is the angle made by the fibers direction (the principal
anisotropic direction) and Ox axis direction.

Replacing (3) in (6) we obtain the constitutive equation in relation with the strain
function of medium plane; it results

ow
Ox 911 912 916 g%(\jv
Gy (=~2 912 922 926 ' W 8)
Oy Q6 Qz Qes ) 22w
oxoy |,
If the mass forces are neglected in equilibrium equations, we can write
oG, N Oty N 0Ty _0
oX oy 0z
0 0 0
Txy+6y+ryz:0 (9)
OX oy 0z
o1y, . oty, . 0o, _ 0
oX oy 0z

Because the ‘hard’ hypothesis of Kirchhoff does not involve the corresponding nullity of
the unitary efforts, it can be ‘weakened’ assuming that these dlides are small compared to the
gradient of plate deformation—asin (10)

N MW =0 10
NOTE. “Weakening” Kirchhoff's first assumption is legitimate in order to ensure the balance
of the plate element under transverse loads
To estimate the transverse efforts in plate the equilibrium relations (9) are considered.
From thefirst relation in system (9) one deduces

0T, _ oG, . 0ty (11)
0z OX oy

or, by using relations from (8) it can be written
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= 62W — ow — 0w
Q,—+Q,—+2-Q } +
a’tzx |: 11 Ao 12 A o ay 13 axay
oz “ — azw — 0’w — 0’w 12
Q +Qp— +2-Q }
8y|: 13 A2 23~ 2 ay 33 axay
or
0T, = 0w — w = Pw
—= +2- +3-
- {Qn #0a+2: Qa5 +3- Quar + Qs } (139
If we note
— 83W — 03w — o’w = 0w
A=+ 00+ 2:Qu) 3 Qu g +Qu s (14)
and integrating the (13) equation with respect to z variableit is obtained
ZZ
T = A+ fi(xy) (15)

Where fi(x,y) represents an arbitrary function which will be determined from outline

conditions. Thus from the assumption that on the plate surfaces (at z = ig) there are no

forcesin plane( t,, = 0) one deduces

2

h
f,(x, Y)=—E'A (16)
namely in the end
22 h?
= —-—|. A
w-(2-1) w

Where h isthe plate thickness.

Similarly, for the second component of the transverse effort we can successively deduce
the following:

From the second relation of system (9) it can be deducted

0T, _ 0ty . do, (18)
0z OX oy
or, using the relations from (8)
— 0w = 0w Al
+2- +
% . |:Q13 Q23 ay Q33 8X5y:| (19)
oz — W = Pw = 0w
W{Qﬁ +Qp— o2 +2-Qy GX(?y}
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or
Oty o*w — Pw = w
22 {ng #(02+2 Qa5 +3-Qug 5+ 0 ay} (20)
If denoting
— 83W — 0w — Pw = Pw
B= Q13 (12 2- Qas) Gy 3'Q23 6X6y2 sz&y (21)
And the (20) equation is integrated with respect to variable z it is obtained
22
Ty = B+ fy(x,y) (22)

Where f,(x,y) represents an arbitrary function which will be determined from outline
conditions.

Thus from the assumption that on the plate surfaces (at z = ig) there are no in plane

forcesin the plane(t,, = 0) one deduces

h2
foly)= -5 B (23)
and finally
2 h?
) =(E—§J-B (22
In order to obtain an equation to be solved trough strain, in the third equation of (9)
system, we determine
0
oo, _ oy, N Tyz (25)
0z OX oy

Or, using relations from (17) and (24) we write

]

oo, _(PP_Z)

oz 8 2

— O0*'w o'w

{Qnax“ +4- Q13 6y+2 (Q12+2 Q33)

If note

or

o*w ow = a4w} 27)

axzayz +4- Q23 @@’3 Q22 ay4
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— 64W — 0w = ow = 0t
C= Q11 Q13 ox 30y +2- (le +2- st)W +4-Qy oxy° +Qy oy (28)
and integrating the (27) equation with respect to z variable it results
h? yad
GZ:(E'Z_EJ'CJF f3(x, y) (29)

Where f3(x,y) represents an arbitrary function which will be determined from outline
conditions.

Thus from the assumption that on inner plate surface (at z = +2) there are no normal

forces to the plane (o, = 0) and also on upper surface (at z = —2) the p pressure is acting,
it is successively obtained
h3

falx, -—-C 30
0y =-2, (30)
or
h® h? z
GZ:_[E_K'“E)C (31)
h .
and, for z = 5 weconsider ¢, = —p.l.e,
h3
—.C= 32
T p (32)
Or, explicitly, in the final form
— 0'w o'w 0w
Qll +4 Q13 +2- (le_'_2 Q33) 2 2 +
ox’oy ox“0y
o* ot 12. (33
= w = W
4-Qy +Qy P

oxoy° oyt n

The (33) equation represents the displacement solution of composite plane plate
problem transversally loaded which can be numerically integrated.

As dready stated it is a generalization of Sophie Germain equation for the composite
plane plate.

4. BOUNDARY CONDITIONS
4.1 Generalities

To achieve an optimization code of the plate composite structure in relation to its dynamic
response to interaction with the fluid field, it is interesting to define each possible case of
boundary conditions, especialy in strain for the plate defined by the equation (31).

In afirst step it is useful to define the sectional effortsinside the plate.
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Fig. 1 Geometry of the plate with unitar length and width

Thus, as shown in pictureit can be noted

o, - Z-dz —bending moment

— N T

M, =1
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NIz

o, - Z-dz —bending moment

—o | T

M, =1

NIz

- Z-dz —torque moment
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-dz — shear force on the face paralel to Oy
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T, =1

X Txy
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NIz

-dz — shear force on the face parallel to Ox
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(34)

(35

(36)

(37)

(38)
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4.2. Fixed edge

For the fixed edge the boundary conditions will block the movement of the points situated on
the respective side along the vertical direction (Oz) as well as prevent the rotation of the
plague surface around its axis.

Considering the system of axis from figure 1 the following conditions can be written

a) on the edge parallé to the Oy axis

w=0
w_, (39)
OX
b) on the edge paralel to the Ox axis
w=0
M _g (40)
oy

4.3. Simply supported edge

For simply supported edge the boundary conditions will block the movement of the points
situated on the respective side along the vertical direction (Oz). On the other hand, the
bending moment on this surface must be null because the simply support does not introduce
reaction moment. Making reference to the system of axes in figure 1 the following
conditions can be written:

a) on the edge parallel to the Ox axis

w=0
{szo (41)

The second relation from (41), taking (34) into account leads to the condition
h

2
My =1 [o,-2-dz=0 42)

2

Namely, if relation (8) is used it can be written
h

— 0*w = 9w _ = 0w
IZ [Q21 Q22 > +2 st Jz-dz:O (43)
oxoy
2
Or, noting
— 0w = 0w o*w
D= Q21 +Q228y Q2388y (44)
It results
h
235 h3
—1 =0 > D-—=0 < D=0 45
D 3| 12 (45)
2
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So, finally, the relation (41) becomes

2 w 0
_ 52 52
Q21 Y+ Qu ayW+2 Qe a";’/ 0 (46)

b) on the edge paralel to the Oy axis
Similarly for the other side iswritten

w=0
M, =0 47)

The second relation from (47), taking (35) into account leads to the condition
h

2
M, =1 J.o-x-z-dz=0 (48)
h

2
Namely, if relation (8) is used it can be written

h
2 2 2 2
— 0W —= O0°W — O°W
J; [Qn le 8y Q13 aYJ z-dz=0 (49)
2
Or, by noting
— 0w = *w _ = o*w
D1=Q;— o +Qp— Y +2- Q13a X3y (50)
it results
h
2| 0 D1 h” 0 D1=0 51
Ll =0 = —=0 & =
D1 3l B (51)
So, findly, the relation (51) becomes
w=0
— 0’w = o*w —  9°w
Q11 +Q12 ay +2:Qp—— oxdy =0 (52)

4.4. Free edge

For the free edge the boundary conditions stem in the condition that all effortsin that section
arenull.
Making reference to the system of axes mentioned in figure 1 the following conditions
can be written
a) on the edge paralld to the Ox axis

M,=0, M, =0, T,=0 (53)

Because for determining the solution two independent relations in the form of boundary
conditions, are needed, by using Saint-Venant's principle and considering that the shearing
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force T and the components of the torque moment M, (as distributed moment) are steady,
from the last two equations from (53) it results the relation:

- oM, 0 (5
X + =
oy
Meaning, from (53) the boundary conditions become
M, =0
T oM,, 0 (55)

X

Thefirst relation from (55) is equivaent with the second relation from (47) i.e.

0° o*w o*w

= 0w
Q11 +le o +2 Q13 oxdy =0 (56)
After processing the second relation from (55) it results
h h
fracee 2 ]
- |7 dz+— |7,,-2dz=0 (57)
R
2 2

or,

h
202 p2 2 (= 22w — —  0%w
J‘(%—h—]'A'dZ—i Z'(Ql?:gz nggyw"‘ Qasaay] z-dz=0 (58)
_h

— O°W = O0°W — 0w
E= ng 6X2 + QZSW-F 2- Q33 _axay (59)
Then (58) becomes
h h
2 2 2 2
I[Z__h_J.A.dz—ﬁjzz-dho (60)
2 8 oy 4,
2 2
or
3 3
_A.h__i Eh_ =0 o A—{-ﬁzo (61)
12 oyl 12 oy
And, replacing

— fw (= —\ dw ow dw| o=
{Quer(le"'z‘%s)W 3Q13@<26y QZSayg:| [QB&(Z Q236y2+2 Q33_ =0 (62

Finally, after processing, the two boundary conditions are written
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S~ P Pu
Qny +Q12¥ +2: le% =0

(63)
ow w = Fw
Quaxg +4 leaxz (Q12+4 QgS)W +2’Q23¥ =0
b) on the edge paralel to the Oy axis
M,=0, M, =0, T,=0 (64)
Similar to the previous case it results the relation:
oM
T,+—2=0 65
v o (65)
Or, from (64) the boundary conditions become
M, =0
oM
T,+—>=0 (66)
OX
Thefirst relation from (66) is equivaent with the second relation from (41) i.e.
— 0w = 0*w —~  2*w
Q12 > +Qn—— Y +2 Q23 oxdy =0 (67)
After processing the second relation from (66) it results
h h
2 P 2
—J;TydeJr&J;Txy'Zdho (68)
2 2

or,

h

2(22 B2 0 — 62w W —  0*w

'[,[7_§ 'B'dZ——XIZ' Q13 Q23 'Qsaaxay -z-dz=0 (69)
2

f the notation from (59) is considered, then (69) becomes

h h
2/.2 .2 2 2 2
z2 h 0 — 0w = = ow
£ _ |.B-dz—-= Q +Q 2-Q ] z-dz=0 (70)
Jh(z 8} ox 4, (13 238y * oxoy
2 2
or
3 3
B[N o AL%E_p (71)
12 ox| 12 OX
And, replacing

{leaxa (Q12+2 st) al +3 Q23$ sziﬁw} 4 [QBZZ(\;V Q23(Z;\;v+2 Qi }_0 (72)
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Finally, after processing, the two boundary conditions are written

ow = dw = Fw_

Q21 @(2 +Q22 6y2 +2 Q23
Fw Fw 63\/\/
20,034 S 40 20,050

5. CONCLUSIONS

(73)

In the case of composite plane plates subjected to transverse loads and if small

displacements assumption is considered, the equation (33) is arelatively simple and easy
solution to integrate, which eliminates the considerable calculus effort and additional

errors introduced by classical numerical methods.

phenomena which have generated the mathematical conditions.

terms of solving time and accuracy of the calculus.
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