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Abstract: The goal of this article is to select optimal parameters of various structures of the passive 
redundant subsystems of flying vehicles (hereinafter to be referred to as the “the aircraft”) with due 
consideration of the established tolerances in respect of decrease in output parameters of these 
subsystems in the cases of failure of the aircraft components (in accordance with the required failure-
free operation). It was demonstrated that synthesis of such structure is based on the solving the two-
objective optimisation problem, which can be reduced to the one-criterion problem with the help of 
various methods. Authors of this article have selected the linear convolution method. Due to the 
absence of information on quantitative values of the prescribed tolerances and on the required 
failure-free operation of actual subsystems, authors have performed calculations of relevant 
dependences within the wide range of the realisable tolerances of the first and second levels. Authors 
have investigated influence of values of the required failure-free operation and values of tolerances 
upon the optimal structure of the passive redundancy subsystems of the aircraft. 

Key Words: failure-free operation of subsystems, multipleness of redundancy, prescribed tolerances, 
realisable tolerances. 

1. INTRODUCTION 
One of the important problems in the course of modernisation of the existing systems, as 
well as in the course of development of the future-oriented technical equipment is 
compliance with the ever-increasing requirements, which were established in order to ensure 
failure-free operation of the aircraft subsystems in the cases of sudden failures. As concerns 
many aircraft subsystems, which do not permit even short-time work stoppages, these 
requirements can be only complied with the help of the passive redundancy. In these 
circumstances, the neighbouring subsystem, which is connected with the relevant subsystem 
in accordance with its output parameter W, can exert essential influence upon the structure of 
redundancy (which is designated by any two of the following three parameters: quantity of 
the main elements m, quantity of the reserved elements r, and total quantity of all elements 
n). This influence is exerted in the cases, where such neighbouring subsystem permits 
deviation of the parameter W from its nominal value (nominal) upward or downward without 
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failure of its working capacity. Situation, which is connected with deviation of the output 
parameter W downward, is the most important problem for the aerospace equipment [1], [2], 
[3]. This problem is analysed in the present article. In the following, we will designate 
structure of redundancy with the help of two parameters n and m, because of these 
parameters determine not only structure of subsystems. They determine multipleness of 
redundancy as well [4], [5]. The following subsystems are the subject matter of analysis 
within this article: onboard electric power supply subsystem (AC/DC; electricity consumers) 
[6]; fuel supply subsystem (aircraft engines) [7]; power amplifiers (actuators) [8], other 
actuators – actuating devices of the aircraft control circuits [9], and so on. 

The goal of this article is to select optimal parameters of the structure of the aircraft 
passive redundant subsystems, which are designated in accordance with the best proportions 
between the failure-free operation parameters of these subsystems and elements of these 
subsystems, with due consideration of the requirements in respect of their failure-free 
operation, as well as the acceptable deviations of their output parameters. 

2. DISCUSSION OF THE SYNTHESIS PROBLEM IN RESPECT OF THE 
STRUCTURE OF THE PASSIVE REDUNDANCY OF THE AIRCRAFT 

SUBSYSTEMS 
Tolerable deviation ∆𝑊𝑊𝑛𝑛 of parameter W of the neighbouring subsystem in absolute terms is 
determined in accordance with the difference between its nominal 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 and minimal 𝑊𝑊𝑚𝑚  
values as follows: 

∆𝑊𝑊𝑛𝑛 = 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 −𝑊𝑊𝑚𝑚 (1) 

This deviation is designated by designer of the neighbouring subsystem in accordance 
with the continuous scale of possible values. It determines the limiting quantity of the 
elements (r) (hereinafter to be referred to as the “the reserved elements”), which is 
acceptable for a failure within the passive redundant subsystem (which is connected with its 
neighbouring subsystem) without disturbance of working capacity of the neighbouring 
subsystem. Parameter r determines the realisable deviation ∆𝑊𝑊𝑝𝑝 of the output parameter of 
the passive redundant subsystem in absolute terms as follows: 

∆𝑊𝑊𝑝𝑝 = 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝑟𝑟 = 𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝑛𝑛 −𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛 ∙ 𝑚𝑚 (2) 

It is obvious that the following condition must be met: 

∆𝑊𝑊𝑝𝑝 ≤ ∆𝑊𝑊𝑛𝑛 (3) 

It would be handler to use the prescribed and realisable tolerances as relative units: 

𝑑𝑑𝑊𝑊𝑝𝑝=𝑤𝑤𝑛𝑛𝑛𝑛𝑛𝑛∙𝑛𝑛−𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛∙𝑚𝑚
𝑊𝑊𝑛𝑛𝑛𝑛𝑛𝑛∙𝑛𝑛

∙ 100% = 𝑟𝑟
𝑛𝑛
∙ 100% (4) 

Once again, the following condition must be met: 

𝑑𝑑𝑊𝑊𝑝𝑝 ≤ 𝑑𝑑𝑊𝑊𝑛𝑛 (5) 

The prescribed tolerance 𝑑𝑑𝑊𝑊𝑛𝑛 (in relative units) is designated along the continuous scale 
of tolerances as values from 0 to 100%. The realisable tolerance 𝑑𝑑𝑊𝑊𝑝𝑝 is designated by values 
r and n. This tolerance determines the discrete scale of possible structures of the passive 
redundancy. The realisable tolerance is the most important parameter for solving the 
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synthesis problem. One and the same realisable tolerance can be ensured by various 
structures, as a rule, by the structures of the aliquant passive redundancy [10]. These 
structures are determined by the line (multitude) of the increasing multiplenesses hereinafter 
to be referred to as 𝐾𝐾𝑖𝑖 (in the aggregate), beginning from the minimal value of the respective 
index 𝑖𝑖: 

𝐾𝐾𝑖𝑖=
𝑛𝑛𝑖𝑖
𝑚𝑚𝑖𝑖

 (6) 

𝑑𝑑𝑊𝑊𝑝𝑝 = 𝑟𝑟𝑖𝑖
𝑛𝑛𝑖𝑖
∙ 100% =

𝑛𝑛𝑖𝑖−𝑚𝑚𝑖𝑖
𝑛𝑛𝑖𝑖

∙ 100%  (7) 

The realisable tolerances are varied in the levels depending on the quantity of the 
reserved elements, which are included to the minimal multipleness of redundancy. In the 
following, we will analyse the discrete scales of the realisable tolerances of the first and the 
second levels only because they are the most important figures for practical calculations. In 
these circumstances, we will further understand “tolerance” as the realisable tolerance 
without word “realisable”, if it is clear in context. 

It is the most suitable to present scale of tolerances of the first level at minimal values of 
parameters of the structures 𝑛𝑛𝑚𝑚 and 𝑚𝑚𝑚𝑚, which are designated as r = 1 in the course of 
variability of the total quantity of elements n = 2, 3, 4, 5, …: 

𝑑𝑑𝑊𝑊𝑝𝑝=1
2
∙ 100% = 50% (𝑛𝑛𝑚𝑚 = 2,𝑚𝑚𝑚𝑚 =  1, 𝑟𝑟 = 1); 𝑑𝑑𝑊𝑊𝑝𝑝=1

3
∙ 100% = 33.3% (𝑛𝑛𝑚𝑚 =

3,𝑚𝑚𝑚𝑚 = 2, 𝑟𝑟 = 1); 𝑑𝑑𝑊𝑊𝑝𝑝=1
4
∙ 100% = 25% (𝑛𝑛𝑚𝑚 = 4,𝑚𝑚𝑚𝑚 =  3, 𝑟𝑟 = 1) and so on. 

Therefore, scale of tolerances of the first level is in the following form: 50%; 33.3%; 
25%; 20%; 16.7%; 14.3%; 12.5%; 11.1%; 10% and so on. Similarly to the foregoing, it is 
the most suitable to present the scale of the second level tolerances at minimal values of 
parameters of the structures 𝑛𝑛𝑚𝑚 and 𝑚𝑚𝑚𝑚, which are designated as r = 2, in the course of 
variability of the total quantity of elements n = 3, 4, 5, 6, … 

𝑑𝑑𝑊𝑊𝑝𝑝=2
3
∙ 100% = 66.7%(𝑛𝑛𝑚𝑚 = 3,𝑚𝑚𝑚𝑚 =  1, 𝑟𝑟 = 2); 𝑑𝑑𝑊𝑊𝑝𝑝=2

4
∙ 100% = 50%(𝑛𝑛𝑚𝑚 =

4,𝑚𝑚𝑚𝑚 =  2, 𝑟𝑟 = 2); 𝑑𝑑𝑊𝑊𝑝𝑝=2
5
∙ 100% = 40%(𝑛𝑛𝑚𝑚 = 5,𝑚𝑚𝑚𝑚 =  3, 𝑟𝑟 = 2); and so on. 

Scale of the second level tolerances includes the repeating (duplicate) values, which are 
the same as the values of the scale of the first level tolerances. Scale of the second level 
tolerances is in the following form: 66.7%. 50%; 40%; 33.3%; 28.6%; 25%; 22.2%; 20%; 
18.2% and so on. 

As it was mentioned earlier, each tolerance can be ensured by various structures, that is, 
by the realisable multitudes of the increasing multiplenesses, beginning from the minimal 
multipleness. For example, tolerance of the first level 𝑑𝑑𝑊𝑊𝑝𝑝=50% is realised in the following 
manner: at 𝐾𝐾1 = 2

1
 =2 (n-modular redundancy, 𝑑𝑑𝑊𝑊𝑝𝑝 = 1

2
∙ 100% = 50%), at 𝐾𝐾2 = 4

2
 

(aliquant redundancy, 𝑑𝑑𝑊𝑊𝑝𝑝 = 2
4
∙ 100% = 50%), at 𝐾𝐾3 = 6

3
 (aliquant redundancy, 𝑑𝑑𝑊𝑊𝑝𝑝 = 3

6
∙

100% = 50%) and so on. Tolerance of the first level 𝑑𝑑𝑊𝑊𝑝𝑝=33.3% is realised as follows: at 
𝐾𝐾1 = 3

2
 (aliquant redundancy, 𝑑𝑑𝑊𝑊𝑝𝑝 = 1

3
∙ 100% = 33.3%), at 𝐾𝐾2 = 6

4
 (aliquant redundancy 

𝑑𝑑𝑊𝑊𝑝𝑝 = 2
6
∙ 100% = 33.3%) and so on. Similarly to the foregoing, tolerance of the second 

level 𝑑𝑑𝑊𝑊𝑝𝑝=66.6% is realised as follows: at 𝐾𝐾2 = 3
1
 =3 (n-modular redundancy, 𝑑𝑑𝑊𝑊𝑝𝑝 = 2

3
∙
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100% = 66.6%), at 𝐾𝐾3 = 6
2
 (aliquant redundancy 𝑑𝑑𝑊𝑊𝑝𝑝 = 4

6
∙ 100% = 66.6%), at 𝐾𝐾4 = 9

3
 

(aliquant redundancy 𝑑𝑑𝑊𝑊𝑝𝑝 = 6
9
∙ 100% = 66.6%) and so on. In general terms, individual 

lines of multiplenesses are to be calculated using the following formula: 

𝐾𝐾𝑖𝑖 = 𝑛𝑛𝑖𝑖
𝑚𝑚𝑖𝑖

= 𝑛𝑛𝑚𝑚∙𝑖𝑖
𝑚𝑚𝑚𝑚∙𝑖𝑖

  (8) 

where 𝑖𝑖 ≥ 1 in respect of the 1 level tolerances and 𝑖𝑖 ≥ 2 in respect of the 2 level tolerances. 
At this time, 𝑛𝑛𝑚𝑚 and 𝑚𝑚𝑚𝑚 are minimal values of parameters of the structures, which 

ensure formation of each tolerance. Therefore, there exists certain correspondence between 
each tolerance of any level and its own line of the increasing multiplenesses, which are 
designated (in the aggregate) as 𝐾𝐾𝑖𝑖. Let us assume that T is a random time to failure. For 
simplicity, we will use the probability of no-failure operation 𝑃𝑃𝑐𝑐 during performance of the 
task 𝑡𝑡з [11] as the indicator of the failure-free operation of the redundant subsystem 

𝑃𝑃𝑐𝑐(𝑡𝑡з) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡з) = 𝑃𝑃𝑐𝑐  (9) 

while similar probability of no-failure operation of the redundant subsystem element 𝑝𝑝 
during performance of task 𝑡𝑡з would be assumed as the indicator of the failure-free operation 
of the non-redundant subsystem (of the relevant element of a redundant subsystem) 

𝑝𝑝(𝑡𝑡з) = 𝑃𝑃(𝑇𝑇 > 𝑡𝑡з) = 𝑝𝑝 (10) 

The conditions of functioning of elements of the passive redundant subsystems, which 
were accepted in this article, comply with the requirements of the Bernoulli theorem 
concerning repetition of trials/experiences [12]. Therefore, it is possible to use formula of the 
binomial distribution law in order to calculate indicator of the failure-free operation (9) as 
follows: 

𝑃𝑃𝑐𝑐=∑ 𝐶𝐶𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=𝑚𝑚 ∙ 𝑝𝑝𝑖𝑖 ∙ (1 − 𝑝𝑝)(𝑛𝑛−𝑖𝑖) (11) 

 
Fig. 1 – Diagrams of dependency of 𝑃𝑃𝑐𝑐 from 𝑝𝑝 for various multiplenesses, 𝑑𝑑𝑊𝑊𝑝𝑝 = 50% 

Parameters n and m in the formula (10) are determined by the multipleness of 
redundancy, while each tolerance (as it was mentioned above) is in correspondence with its 
multitude of the increasing multiplenesses. Therefore, there are good reasons to investigate 
dependence of 𝑃𝑃𝑐𝑐 from 𝑝𝑝 at various multiplenesses  𝐾𝐾𝑖𝑖, as well as at tolerances of the first 
and second levels with the help of this formula. 
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Figures 1, 2, 3, and 4 present sampling dependences of 𝑃𝑃𝑐𝑐 𝑓𝑓rom 𝑝𝑝 in respect of 50% and 
25% tolerances of the first level, as well as 40% and 18.2% tolerances of the second level. 

 
Fig. 2 – Diagrams of dependency 𝑃𝑃𝑐𝑐 from 𝑝𝑝 for various multiplenesses, 𝑑𝑑𝑊𝑊𝑝𝑝 = 25% 

 
Fig. 3 – Diagrams of dependency of 𝑃𝑃𝑐𝑐 from 𝑝𝑝 for various multiplenesses, 𝑑𝑑𝑊𝑊𝑝𝑝 = 40% 

 
Fig. 4 – Diagrams of dependency of 𝑃𝑃𝑐𝑐 from 𝑝𝑝 for various multiplenesses, 𝑑𝑑𝑊𝑊𝑝𝑝 = 18.2% 
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The above-presented diagrams make it possible to reveal the total regularities, which are 
inherent to all realisable tolerances: 

1) In the case of the aliquant passive redundancy of the aircraft subsystems, there 
exist critical values of probabilities of their elements 𝑃𝑃𝑘𝑘𝑘𝑘,, which are similar to the active 
redundancy [13] and which divide (0 – 1) interval into 2 areas: subcritical area (0 - 𝑃𝑃𝑘𝑘𝑘𝑘,), 
within which failure-free operation of the redundant subsystem is lower than failure-free 
operation of the nonredundant subsystem, and supercritical area, within which this kind of 
redundancy is beneficial; 

2) The supercritical area decreases along with decrease of the tolerance; 
3) As concerns each tolerance for each multipleness of redundancy, there exists the 

extreme value of the failure-free operation of the redundant subsystem with respect to the 
failure-free operation of elements (of the non-redundant subsystem). These extreme values 
determine the best (in some specified sense) structures of redundancy; 

4) As concerns each tolerance, the extreme values of the failure-free operation 
increase along with increase of the multipleness of redundancy. 

The last two properties make it possible to formulate the synthesis problem, in other 
words, problem of selection of optimal parameters of the passive redundancy structure. 

3. FORMULATION OF THE PROBLEM OF SYNTHESIS OF THE PASSIVE 
REDUNDANCY STRUCTURE OF THE AIRCRAFT SUBSYSTEMS 

One of the problems facing the designers of the aircraft subsystems is as follows: 
development of the highly-reliable objects with the help of the objects, which are less 
reliable ones as compared with the highly-reliable objects and which consist of the 
inexpensive components, as a rule [14]. As concerns the task under investigation, this means 
that the optimal structure of the passive redundancy must comply with such values n and m, 
at which failure-free operation of the redundant subsystem would be as high as possible, 
while failure-free operation of the elements, which are included to this subsystem, would be 
as low as possible. 

Therefore, we have the task of optimisation in respect of two indicators:  
- indicator of the failure-free operation of the redundant subsystem 

𝑃𝑃𝑐𝑐 = ∑ 𝐶𝐶𝑛𝑛𝑖𝑖𝑛𝑛
𝑖𝑖=𝑚𝑚 ∙ 𝑝𝑝𝑖𝑖 ∙ (1 − 𝑝𝑝)(𝑛𝑛−𝑖𝑖) → 𝑚𝑚𝑚𝑚𝑚𝑚     (12) 

- indicator of the failure-free operation of the redundant subsystem elements: 

𝑝𝑝(𝑝𝑝) → 𝑚𝑚𝑚𝑚𝑚𝑚 (13) 

It is necessary to perform convolution of two indicators and transform it into one 
complex criterion, because of the task of optimisation in respect of many indicators is 
incorrect from a mathematical standpoint. 

As concerns the situation under consideration, the task of convolution of two partial 
indicators and subsequent transformation into one complex criterion is simplified by the fact 
that both indicators are dimensionless values, which have the same names. There exists a 
large set of possible methods of convolution, and there are two approaches, which are the 
best suited ones and which make it possible to find the compromise solution for the task of 
synthesis from a mathematical standpoint. 

The first approach involves linear convolution of two indicators: 

∆𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑐𝑐 − 𝑝𝑝, (14) 
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where 𝑃𝑃𝑐𝑐 → 𝑚𝑚𝑚𝑚𝑚𝑚, (−𝑝𝑝) → 𝑚𝑚𝑚𝑚𝑚𝑚, ∆𝑃𝑃𝑐𝑐 → 𝑚𝑚𝑚𝑚𝑚𝑚. 
The second approach involves formation of the ratio/proportion of two indicators. This 

proportion can be formed with the help of two methods: 

𝑑𝑑𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑐𝑐
𝑝𝑝

   (15) 

where 𝑃𝑃𝑐𝑐 → 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝 → 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑑𝑑𝑃𝑃𝑐𝑐 → 𝑚𝑚𝑚𝑚𝑚𝑚, or 

𝑑𝑑𝑃𝑃𝑐𝑐 = (𝑃𝑃𝑐𝑐−𝑝𝑝)
𝑝𝑝

,   (16) 

where ∆𝑃𝑃𝑐𝑐 → 𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑝𝑝 → 𝑚𝑚𝑚𝑚𝑚𝑚, 𝑑𝑑𝑃𝑃𝑐𝑐 → 𝑚𝑚𝑚𝑚𝑚𝑚. 
Criteria (15) and (16) within the second approach provide the same result of synthesis. 

However, there is an essential difference between the results of synthesis in accordance with 
the criteria (14) and (15 or 16). In contrast to other well-known methods of convolution of 
partial indicators, these two approaches have obvious technical sense. Complex criterion (14) 
shows the absolute value of exceedance of the indicator of failure-free operation of the 
redundant subsystem over the indicator of failure-free operation of those elements, which are 
included to the redundant subsystem. Complex criterion (15 or 16) shows relative value of 
exceedance of the indicator of failure-free operation of the redundant subsystem over the 
indicator of failure-free operation of those elements, which are included to the redundant 
subsystem (in relative units). It should be noted that in the course of optimisation in respect 
of these complex criteria, no extremums are satisfied in respect of any partial indicators, 
which are included to these criteria. Instead of this, a new solution, which is a certain 
compromise between the partial extremums, is found. This compromise solution is 
determined (to a considerable degree) by the method of transformation of partial indicators 
into the single complex criterion and this solution depends on the goals and tasks, with 
which a designer is faced. Let us select the complex criterion (14) in order to use it in the 
course of the following investigations. In this case, mathematical statement of the problem of 
synthesis of the passive redundancy structure of the aircraft subsystems (with due 
consideration of the established requirements in respect of the failure-free operation and 
tolerances) will be written down as follows: 

∆𝑃𝑃𝑐𝑐∗ = max
(𝑝𝑝,𝐾𝐾𝑖𝑖)

(𝑃𝑃𝑐𝑐 �𝑝𝑝, 𝐾𝐾𝑖𝑖, 𝑑𝑑𝑊𝑊𝑝𝑝, 𝑃𝑃тр, 𝑑𝑑𝑊𝑊н, 𝑝𝑝𝑘𝑘𝑘𝑘� − 𝑝𝑝),  (17) 

provided that there exist limitations as follows: 

𝑝𝑝∗ > 𝑝𝑝𝑘𝑘𝑘𝑘,  (18) 

𝑑𝑑𝑊𝑊𝑝𝑝 ≤ 𝑑𝑑𝑊𝑊н, (19) 

𝑃𝑃𝑐𝑐∗ ≥ 𝑃𝑃тр, (20) 

𝐾𝐾𝑖𝑖 = 𝑛𝑛𝑖𝑖
𝑚𝑚𝑖𝑖

 , 𝑛𝑛𝑖𝑖, 𝑚𝑚𝑖𝑖 > 0, integer numbers. (21) 

4. SOLVING THE SYNTHESIS PROBLEM OF THE PASSIVE 
REDUNDANCY STRUCTURE OF THE AIRCRAFT SUBSYSTEMS 

Let us assume that the values of the prescribed tolerance 𝑑𝑑𝑊𝑊н, as well as values of the 
required failure-free operation 𝑃𝑃тр of the redundant of the aircraft subsystem are already 
prescribed. The prescribed tolerance 𝑑𝑑𝑊𝑊н makes it possible to determine the nearest value 
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𝑑𝑑𝑊𝑊𝑝𝑝 in accordance with the frame of the realisable tolerances of the first and second levels 
in accordance with the condition (19). As it was mentioned earlier, the found realisable 
tolerance is ensured by the multitude of the increasing multiplenesses 𝐾𝐾𝑖𝑖, beginning from the 
minimal multipleness. 

Moreover, each multipleness specifies parameters 𝑛𝑛𝑖𝑖 and 𝑚𝑚𝑖𝑖 of the already determined 
structure of redundancy. Formula (17) for calculation of the complex criterion makes it 
possible to solve the so-called weakened problem of the synthesis, which will be written 
down as follows: 

∆𝑃𝑃𝑐𝑐∗ = max
(𝑝𝑝)

(𝑃𝑃𝑐𝑐 �𝑝𝑝, 𝐾𝐾𝑖𝑖, 𝑑𝑑𝑊𝑊𝑝𝑝, 𝑑𝑑𝑊𝑊н, 𝑝𝑝𝑘𝑘𝑘𝑘� − 𝑝𝑝)  (22) 

provided that there exist limitations as follows: 

𝑝𝑝∗ > 𝑝𝑝𝑘𝑘𝑘𝑘,  (23) 

𝑑𝑑𝑊𝑊𝑝𝑝 ≤ 𝑑𝑑𝑊𝑊н (24) 

𝐾𝐾𝑖𝑖 = 𝑛𝑛𝑖𝑖
𝑚𝑚𝑖𝑖

 , 𝑛𝑛𝑖𝑖,𝑚𝑚𝑖𝑖 > 0, integer numbers  (25) 

The weakened task does not take into account the existing limitation in respect of the 
failure-free operation of the redundant subsystem (20) of the original task. Solution of this 
task makes it possible to find the dependences of optimal values of the complex criterion 
∆𝑃𝑃𝑐𝑐∗ and partial indicators 𝑃𝑃𝑐𝑐∗ and 𝑝𝑝∗, which create these values, from the redundancy 
multiplenesses 𝐾𝐾𝑖𝑖: 

∆𝑃𝑃𝑐𝑐∗ = ∆𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖); (26) 

𝑃𝑃𝑐𝑐∗ = 𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖); (27) 

 𝑝𝑝∗ = 𝑝𝑝∗(𝐾𝐾𝑖𝑖). (28) 

As it follows from the diagrams, which are presented by Figures 1, 2, 3 and 4, 
dependence 𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖) has the growing nature along with increase of the redundancy 
multipleness 𝐾𝐾𝑖𝑖 at any realisable tolerances. 

This fact makes it possible to solve the original problem of the synthesis, in other words, 
to find such values of multiplenesses 𝐾𝐾𝑖𝑖∗, at which the following condition is fulfilled 𝑃𝑃𝑐𝑐∗ ≥
𝑃𝑃тр. It is very simple to solve the weakened task with the help of the enumerative technique. 

If the value of the realisable tolerance 𝑑𝑑𝑊𝑊𝑝𝑝, as well as the multitude, which ensures this 
tolerance of multiplenesses 𝐾𝐾𝑖𝑖, are already prescribed, it is necessary to perform enumeration 
of the probability values of the respective elements p within the supercritical area (𝑝𝑝𝑘𝑘𝑘𝑘 – 1), 
and then calculate the complex criterion (24). 

The step of such enumeration determines accuracy of calculation of the optimal value of 
the complex criterion ∆𝑃𝑃𝑐𝑐∗. In addition, it determines accuracy of the relevant partial 
indicators 𝑃𝑃𝑐𝑐∗ and 𝑝𝑝∗. The dependences ∆𝑃𝑃𝑐𝑐∗ = ∆𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖); 𝑃𝑃𝑐𝑐∗ = 𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖); 𝑝𝑝∗ = 𝑝𝑝∗(𝐾𝐾𝑖𝑖), which 
would be determined in such a manner, make it possible to find the solution of the desirable 
synthesis problem. 

Due to the absence of information concerning the quantitative values of the prescribed 
tolerances, as well as concerning the required failure-free operation of the prospective 
aircraft subsystems, which are now at the stage of development [15], let us calculate the 
dependences (26, 27, 28) for the wide range of the realisable tolerances of the first and 
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second levels. Table 1 presents the results of calculations of the optimal values ∆𝑃𝑃𝑐𝑐∗, 𝑃𝑃𝑐𝑐∗, and 
𝑝𝑝∗ for ten multiplenesses, as well as for the most important tolerances of the first level, while 
Table 2 presents similar results for nine multiplenesses, as well as for the important 
tolerances of the second level. These results were calculated with the accuracy to 0.001. 

Table 1. – Optimal values of the complex criterion ∆𝑃𝑃𝑐𝑐∗ and of the partial indicators 𝑃𝑃𝑐𝑐∗ and 
𝑝𝑝∗ for the realisable tolerances of the first level, as well as for 10 generalised multiplenesses 

𝑑𝑑𝑊𝑊𝑝𝑝 
% 

Para- 
meters 

multiplenesses 𝐾𝐾𝑖𝑖 
𝐾𝐾1 𝐾𝐾2 𝐾𝐾3 𝐾𝐾4 𝐾𝐾5 𝐾𝐾6 𝐾𝐾7 𝐾𝐾8 𝐾𝐾9 𝐾𝐾10 

 
50 

∆𝑃𝑃𝑐𝑐∗ - 0.224 0.233 0.245 0.257 0.267 0.276 0.284 0.291 0.297 
𝑃𝑃𝑐𝑐∗ - 0.863 0.898 0.915 0.926 0.934 0.940 0.944 0.948 0.951 
𝑝𝑝∗ - 0.639 0.665 0.670 0.669 0.667 0.664 0.660 0.657 0.654 

𝑛𝑛∗. 𝑚𝑚∗ 2.1 4.2 6.3 8.4 10.5 12.6 14.7 16.8 18.9 20.10 
 
33.3 

∆𝑃𝑃𝑐𝑐∗ 0.096 0.104 0.119 0.131 0.141 0.150 0.157 0.164 0.170 0.175 
𝑃𝑃𝑐𝑐∗ 0.885 0.933 0.947 0.954 0.958 0.962 0.964 0.967 0.969 0.970 
𝑝𝑝∗ 0.789 0.829 0.828 0.817 0.812 0.807 0.803 0.799 0.795 0.792 

𝑛𝑛∗. 𝑚𝑚∗ 3.2 6.4 9.6 12.8 15.10 18.12 21.14 24.16 27.18 30.20 
 
25 

∆𝑃𝑃𝑐𝑐∗ 0.048 0.062 0.075 0.085 0.094 0.101 0.107 0.112 0.117 0.121 
𝑃𝑃𝑐𝑐∗ 0.944 0.961 0.967 0.970 0.973 0.974 0.976 0.977 0.978 0.979 
𝑝𝑝∗ 0.896 0.899 0.892 0.885 0.879 0.873 0.869 0.865 0.861 0.858 

𝑛𝑛∗. 𝑚𝑚∗ 4.3 8.6 12.9 16.12 20.15 24.18 28.21 32.24 36.27 40.30 
 
20 

∆𝑃𝑃𝑐𝑐∗ 0.028 0.042 0.053 0.062 0.069 0.075 0.080 0.084 0.088 0.092 
𝑃𝑃𝑐𝑐∗ 0.968 0,975 0,977 0,979 0,980 0,981 0,982 0,983 0,984 0,985 
𝑝𝑝∗ 0.940 0.933 0.924 0.917 0.911 0.906 0.902 0.899 0.895 0.893 

n. m 5.4 10.8 15.12 20.16 25.20 30.24 35.28 40.32 45.36 50.40 
 
16.7 

∆𝑃𝑃𝑐𝑐∗ 0.018 0.030 0.040 0.048 0.054 0.059 0.063 0.067 0.070 0.073 
𝑃𝑃𝑐𝑐∗ 0.979 0.981 0.983 0.984 0.985 0.986 0.986 0.987 0.987 0.987 
𝑝𝑝∗ 0.961 0.951 0.943 0.936 0.931 0.927 0.923 0.920 0.917 0.914 

𝑛𝑛∗. 𝑚𝑚∗ 6.5 12.10 18.15 24.20 30.25 36.30 42.35 48.40 54.45 60.50 
 
14.3 

∆𝑃𝑃𝑐𝑐∗ 0.013 0.023 0.032 0.038 0.044 0.048 0.052 0.055 0.058 0.061 
𝑃𝑃𝑐𝑐∗ 0.986 0.986 0.987 0.987 0.988 0.988 0.989 0.989 0.989 0.990 
𝑝𝑝∗ 0.973 0.963 0.955 0.949 0.944 0.940 0.937 0.934 0.931 0.929 

𝑛𝑛∗. 𝑚𝑚∗ 7.6 14.12 21.18 28.24 35.30 42.36 49.42 56.48 63.54 70.60 
12.5 ∆𝑃𝑃𝑐𝑐∗ 0.010 0.019 0.026 0.032 0.036 0.040 0.044 0.047 0.050 0.052 

𝑃𝑃𝑐𝑐∗ 0.990 0.989 0.989 0.990 0.989 0.990 0.991 0.991 0.991 0.992 
𝑝𝑝∗ 0.980 0.970 0.963 0.958 0.953 0.950 0.947 0.944 0.942 0.940 

𝑛𝑛∗. 𝑚𝑚∗ 8.7 16.14 24.21 32.28 40.35 48.42 56.49 64.56 72.63 80.70 
11.1 ∆𝑃𝑃𝑐𝑐∗ 0.007 0.015 0.022 0.027 0.031 0.035 0.038 0.041 0.043 0.045 

𝑃𝑃𝑐𝑐∗ 0.992 0.991 0.991 0991 0991 0992 0992 0.992 0993 0.993 
𝑝𝑝∗ 0.985 0.976 0.969 0.964 0.960 0.957 0.954 0.952 0.950 0.948 

𝑛𝑛∗. 𝑚𝑚∗ 9.8 18.16 27.24 36.32 45.40 54.48 63.56 72.64 81.72 90.80 
 
10 

∆𝑃𝑃𝑐𝑐∗ 0.006 0.013 0.019 0.923 0.027 0.030 0.033 0.036 0.038 0.040 
𝑃𝑃𝑐𝑐∗ 0.994 0.993 0.993 0.992 0.992 0.992 0.993 0.994 0.994 0.994 
𝑝𝑝∗ 0.988 0.980 0.974 0.969 0.965 0.962 0.960 0.958 0.956 0.954 

𝑛𝑛∗. 𝑚𝑚∗ 10.9 20.18 30.27 40.36 50.45 60.54 70.63 80.72 90.81 100.99 

Table 2. – Optimal values of the complex criterion ∆𝑃𝑃𝑐𝑐∗, values of the partial indicators 𝑃𝑃𝑐𝑐∗, and 
𝑝𝑝∗ for the realisable tolerances of the second level, as well as for 9 generalised multiplenesses 

𝑑𝑑𝑊𝑊𝑝𝑝 
% 

Para- 
meters 

multiplenesses 𝐾𝐾𝑖𝑖 
𝐾𝐾2 𝐾𝐾3 𝐾𝐾4 𝐾𝐾5 𝐾𝐾6 𝐾𝐾7 𝐾𝐾8 𝐾𝐾9 𝐾𝐾10 

 
66.7 

∆𝑃𝑃𝑐𝑐∗ - 0.391 0.410 0.427 0.441 0.453 0.463 0.471 0.479 
𝑃𝑃𝑐𝑐∗ - 0.880 0.908 0.924 0.934 0.941 0.946 0.950 0.954 
𝑝𝑝∗ - 0.489 0.498 0.497 0.493 0.488 0.483 0.479 0.475 
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𝑛𝑛∗, 𝑚𝑚∗ 3.1 6.2 9.3 12.4 15.5 18.6 21.7 24.8 27.9 
 
50 

∆𝑃𝑃𝑐𝑐∗ 0.224 0.245 0.267 0.284 0.297 0.308 0.317 0.325 0.331 
𝑃𝑃𝑐𝑐∗ 0.863 0.915 0.934 0.944 0.951 0.956 0.959 0.962 0.964 
𝑝𝑝∗ 0.639 0.670 0.667 0.660 0.654 0.648 0.642 0.637 0.633 

𝑛𝑛∗, 𝑚𝑚∗ 4.2 8.4 12.6 16.8 20.10 24.12 28.14 32.16 36.18 
 
40 

∆𝑃𝑃𝑐𝑐∗ 0.147 0.173 0.194 0.209 0.221 0.231 0.239 0.246 0.252 
𝑃𝑃𝑐𝑐∗ 0.907 0.939 0.951 0.957 0.962 0.966 0.968 0.971 0.972 
𝑝𝑝∗ 0.760 0.766 0.757 0.748 0.741 0.735 0.729 0.725 0.720 

𝑛𝑛∗, 𝑚𝑚∗ 5.3 10.6 15.9 20.12 25.15 30.18 35.21 40.24 45.27 
 
33.3 

∆𝑃𝑃𝑐𝑐∗ 0.104 0.131 0.150 0.164 0.175 0.183 0.191 0.197 0.202 
𝑃𝑃𝑐𝑐∗ 0.933 0.954 0.962 0.967 0.970 0.972 0.975 0.976 0.978 
𝑝𝑝∗ 0.829 0.823 0.812 0.803 0.795 0.789 0.784 0.779 0.776 

𝑛𝑛∗, 𝑚𝑚∗ 6.4 12.8 18.12 24.16 30.20 36.24 42.28 48.32 54.36 
 
28.6 

∆𝑃𝑃𝑐𝑐∗ 0.079 0.104 0.121 0.134 0.144 0.151 0.158 0.163 0.168 
𝑃𝑃𝑐𝑐∗ 0.951 0.963 0.969 0.973 0.975 0.977 0.979 0.980 0.981 
𝑝𝑝∗ 0.872 0.859 0.848 0.839 0.832 0.826 0.821 0.817 0.813 

𝑛𝑛∗, 𝑚𝑚∗ 7.5 14.10 21.15 28.20 35.25 42.30 49.35 56.40 63.45 
 
25 

∆𝑃𝑃𝑐𝑐∗ 0.062 0.085 0.101 0.112 0.121 0.128 0.134 0.139 0.143 
𝑃𝑃𝑐𝑐∗ 0.961 0.970 0.974 0.977 0.979 0.980 0.982 0.983 0.983 
𝑝𝑝∗ 0.899 0.885 0.873 0.865 0.858 0.852 0.848 0.844 0.840 

𝑛𝑛∗, 𝑚𝑚∗ 8.6 16.12 24.18 32.24 40.30 48.36 56.42 64.48 72.54 
 
22.2 

∆𝑃𝑃𝑐𝑐∗ 0.050 0.072 0.086 0.097 0.105 0.111 0.116 0.121 0.126 
𝑃𝑃𝑐𝑐∗ 0.969 0.975 0.978 0.981 0.982 0.983 0.984 0.985 0.985 
𝑝𝑝∗ 0.919 0.903 0.892 0.884 0.877 0.872 0.868 0.864 0.861 

𝑛𝑛∗, 𝑚𝑚∗ 9.7 18.14 27.21 36.28 45.35 54.42 63.49 72.56 81.63 
 
20 

∆𝑃𝑃𝑐𝑐∗ 0.042 0.062 0.075 0.084 0.092 0.098 0.103 0.107 0.110 
𝑃𝑃𝑐𝑐∗ 0.975 0.979 0.981 0.984 0.985 0.986 0.987 0.987 0.987 
𝑝𝑝∗ 0.933 0.917 0.906 0.899 0.893 0.888 0.884 0.880 0.877 

𝑛𝑛∗, 𝑚𝑚∗ 10.8 20.16 30.24 40.32 50.40 60.48 70.56 80.64 90.72 
 
18.2 

∆𝑃𝑃𝑐𝑐∗ 0.035 0.054 0.066 0.075 0.082 0.087 0.092 0.096 0.099 
𝑃𝑃𝑐𝑐∗ 0.978 0.982 0.984 0.985 0.987 0.987 0.988 0.989 0.989 
𝑝𝑝∗ 0.943 0.928 0.918 0.910 0.905 0.900 0.896 0.893 0.891 

𝑛𝑛∗, 𝑚𝑚∗ 11.9 22.18 33.27 44.36 55.45 66.54 77.63 88.72 99.81 
In order to ensure usability of the above tables in the course of finding solutions of the 

synthesis problem, these tables present not only values ∆𝑃𝑃𝑐𝑐∗, 𝑃𝑃𝑐𝑐∗, and 𝑝𝑝∗, but parameters of 
the redundancy structures 𝑛𝑛∗, 𝑚𝑚∗ (which were calculated using the formula (8)) as well. 

Minimum values 𝑛𝑛𝑚𝑚 and 𝑚𝑚𝑚𝑚 of the first level tolerances, which are presented in Table 
1, are included to the first column, which corresponds to the generalised multipleness 𝐾𝐾1. As 
concerns the second level tolerances, which are presented in Table 2, values 𝑛𝑛𝑚𝑚 and 𝑚𝑚𝑚𝑚 are 
included to the first column, which corresponds to the generalised multipleness 𝐾𝐾2. 

Values 𝑛𝑛𝑚𝑚=2 and 𝑚𝑚𝑚𝑚=1 of the tolerance 50% in Table 1, as well as values 𝑛𝑛𝑚𝑚=3 and 
𝑚𝑚𝑚𝑚=1 of the tolerance 66.7% in Table 2 correspond to the multiple redundancy. Therefore, 
parameters ∆𝑃𝑃𝑐𝑐∗, 𝑃𝑃𝑐𝑐∗, and 𝑝𝑝∗ for these structures are not presented. 

In order to illustrate results of optimisation, which are presented in Tables 1 and 2, 
Figures 5, 6, 7, 8, 9, and 10 present dependences of the desirable optimal values from the 
generalised multipleness 𝐾𝐾𝑖𝑖. 
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Fig. 5 – Diagrams of dependency ∆𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖) in respect of the 1 level tolerances 

 
Fig. 6 – Diagrams of dependency 𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖) in respect of the 1 level tolerances 

 
Fig. 7 – Diagrams of dependency 𝑝𝑝∗(𝐾𝐾𝑖𝑖) in respect of the 1 level tolerances 
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Fig. 8 – Diagrams of dependency ∆𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖) in respect of the 2 level tolerances 

 
Fig. 9 – Diagrams of dependency 𝑃𝑃𝑐𝑐∗(𝐾𝐾𝑖𝑖) in respect of the 2 level tolerances 

 
Fig. 10 – Diagrams of dependency 𝑝𝑝∗(𝐾𝐾𝑖𝑖) in respect of the 2 level tolerances 
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It should be noted that the lines (multitudes) of the increasing individual multiplenesses 
of the 1 level and 2 level tolerances have different natures. Therefore, these lines/multitudes 
do not match with each other. This is due to the fact that lines of the 1 level tolerances 
include many series of the increasing numerical values of the reserved elements, which are 
governed by the arithmetic progression law with the difference d=1. At the same time, lines 
of the 2 level tolerances include many series of the increasing numerical values of the 
reserved elements, which are governed by the arithmetic progression law with the difference 
d=2. For example, as concerns the 1 level tolerances, we have the following: 

𝑑𝑑𝑊𝑊𝑝𝑝=50%, 𝐾𝐾1 = 2
1

= 2 (𝑟𝑟1 = 1), 𝐾𝐾2 = 4
2

 (𝑟𝑟2 = 2), 𝐾𝐾3 = 6
3

 (𝑟𝑟3 = 3),… 

𝑑𝑑𝑊𝑊𝑝𝑝=33.3%, 𝐾𝐾1 = 3
2

 (𝑟𝑟1 = 1), 𝐾𝐾2 = 6
4

 (𝑟𝑟2 = 2), 𝐾𝐾3 = 9
6

 (𝑟𝑟3 = 3),… 

𝑑𝑑𝑊𝑊𝑝𝑝=25%, 𝐾𝐾1 = 4
3

 (𝑟𝑟1 = 1), 𝐾𝐾2 = 8
6

 (𝑟𝑟2 = 2), 𝐾𝐾3 = 12
9

 (𝑟𝑟3 = 3),… 

and so on. Similarly to the foregoing, as concerns the 2 level tolerances we have the 
following: 

𝑑𝑑𝑊𝑊𝑝𝑝=66.7%, 𝐾𝐾2 = 3
1

= 3 (𝑟𝑟2 = 2), 𝐾𝐾3 = 6
2

 (𝑟𝑟3 = 4), 𝐾𝐾4 = 9
3

 (𝑟𝑟4 = 6),… 

𝑑𝑑𝑊𝑊𝑝𝑝=50%, 𝐾𝐾2 = 4
2

 (𝑟𝑟2 = 2), 𝐾𝐾2 = 8
4

 (𝑟𝑟3 = 4), 𝐾𝐾4 = 12
6

 (𝑟𝑟4 = 6),… 

𝑑𝑑𝑊𝑊𝑝𝑝=40%, 𝐾𝐾2 = 5
3

 (𝑟𝑟2 = 2), 𝐾𝐾3 = 10
6

 (𝑟𝑟3 = 4), 𝐾𝐾4 = 15
9

 (𝑟𝑟4 = 6),…, 

and so on. 
This regularity results in the different pattern of change of the desirable characteristics 

depending on the multiplenesses of the tolerances of various levels because of quantity of the 
reserved elements within the redundancy structures of the aircraft subsystems has the 
greatest influence upon the indicators of their failure-free operation. 

Let us draw up the summary table with the help of the data, which are presented in 
Tables 1 and 2. This Table 3 makes it possible to find solution of the synthesis problem in 
respect of the aircraft subsystems for seven values of the required failure-free operation, 
which is used in the course of operation of the frame/multitude, which consists of the 1 level 
and the 2 level tolerances. 
Table 3. – Optimal characteristics, which ensure achievement of the required level of failure-free operation of the 

aircraft subsystems 

𝑃𝑃тр Optimal 
characteristics 𝑃𝑃тр 

 
Values of the optimal characteristics 𝑃𝑃тр 

 
0.93 

𝑃𝑃𝑐𝑐∗ ≥ 𝑃𝑃тр 0.934 0.934 0.939 0.933 - - 
𝑑𝑑𝑊𝑊𝑝𝑝% 66.7 50 40 33.3 - - 

𝐾𝐾𝑖𝑖∗ 𝐾𝐾6 𝐾𝐾61. 𝐾𝐾42 𝐾𝐾3 𝐾𝐾21.2 - - 
𝑛𝑛∗,𝑚𝑚∗ 15.5 12.6 10.6 6.4 - - 

 
0.94 

𝑃𝑃𝑐𝑐∗ ≥ 𝑃𝑃тр 0.941 0.944 0.944 - - - 
𝑑𝑑𝑊𝑊𝑝𝑝 66.7 50 25 - - - 
𝐾𝐾𝑖𝑖∗ 𝐾𝐾7 𝐾𝐾81. 𝐾𝐾52 𝐾𝐾11 - - - 

𝑛𝑛∗,𝑚𝑚∗ 18.6 16.8 4.3 - - - 
 
0.95 

𝑃𝑃𝑐𝑐∗ ≥ 𝑃𝑃тр 0.950 0.951 0.951 0.954 0.951 - 
𝑑𝑑𝑊𝑊𝑝𝑝 66.7 50 40 33.3 28.6 - 
𝐾𝐾𝑖𝑖∗ 𝐾𝐾9 𝐾𝐾101 . 𝐾𝐾62 𝐾𝐾4 𝐾𝐾41. 𝐾𝐾32 𝐾𝐾2 - 
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𝑛𝑛∗,𝑚𝑚∗ 24.8 20.10 15.9 12.8 7.5 - 
 
0.96 

𝑃𝑃𝑐𝑐∗ ≥ 𝑃𝑃тр 0.962 0.962 0.962 0.963 0.961 0.968 
𝑑𝑑𝑊𝑊𝑝𝑝 50 40 33.3 28.6 25 20 
𝐾𝐾𝑖𝑖∗ 𝐾𝐾92 𝐾𝐾6 𝐾𝐾61. 𝐾𝐾42 𝐾𝐾3 𝐾𝐾21.2 𝐾𝐾11 

𝑛𝑛∗,𝑚𝑚∗ 32.16 25.15 18.12 14.10 8.6 5.4 
 
0.97 

𝑃𝑃𝑐𝑐∗ ≥ 𝑃𝑃тр 0.971 0.972 0.973 0.970 0.975 0.979 
𝑑𝑑𝑊𝑊𝑝𝑝 40 33.3 28.6 25 20 16.7 
𝐾𝐾𝑖𝑖∗ 𝐾𝐾9 𝐾𝐾72 𝐾𝐾5 𝐾𝐾41. 𝐾𝐾32 𝐾𝐾21.2 𝐾𝐾1 

𝑛𝑛∗,𝑚𝑚∗ 40.24 36.24 28.20 16.12 10.8 6.5 
 
0.98 

𝑃𝑃𝑐𝑐∗ ≥ 𝑃𝑃тр 0.980 0.980 0.981 0.981 0.982 0.981 
𝑑𝑑𝑊𝑊𝑝𝑝 28.6 25 22.2 20 18.2 16.7 
𝐾𝐾𝑖𝑖∗ 𝐾𝐾9 𝐾𝐾72 𝐾𝐾5 𝐾𝐾61. 𝐾𝐾42 𝐾𝐾3 𝐾𝐾2 

𝑛𝑛∗,𝑚𝑚∗ 56.40 48.36 36.28 30.24 22.18 12.10 
 
0.99 

𝑃𝑃𝑐𝑐∗ ≥ 𝑃𝑃тр 0.990 0.990 0.991 - - - 
𝑑𝑑𝑊𝑊𝑝𝑝 14.3 12.5 11.1 - - - 
𝐾𝐾𝑖𝑖∗ 𝐾𝐾11 𝐾𝐾6 𝐾𝐾3 - - - 

𝑛𝑛∗,𝑚𝑚∗ 77.66 48.42 27.24 - - - 
The generalised multiplenesses, which are presented in Table 3, can have both lower 

and upper indices. The upper index 1 determines that this multipleness is connected with the 
tolerance of the first level, while index 2 determines that this multipleness is connected with 
the tolerance of the second level. Presence of two values of multiplenesses within a single 
cell of this Table states that relevant structure of redundancy can be implemented with the 
help of two different generalised multiplenesses of two similar tolerances of different levels, 
provided that these tolerances ensure the same individual multipleness of redundancy. For 
example, the required failure-free operation 𝑃𝑃тр=0.93 can be implemented with the help of 
the tolerance 𝑑𝑑𝑊𝑊𝑝𝑝 = 50% of the first level and the generalised multipleness 𝐾𝐾6, as well as 
with the help of the tolerance dWp=50% of the second level and the generalised multipleness 
𝐾𝐾4. In this case, individual multiplenesses in both situations are the same and they designate 
the optimal structure of redundancy with parameters: 𝑛𝑛∗=12, 𝑚𝑚∗=6. The optimal failure-free 
operation of the redundant subsystem, which can be achieved, is as follows: 
𝑃𝑃𝑐𝑐∗=0.934>𝑃𝑃тр=0.93. 

The Summary Table 3 makes it possible to find the optimal structures of redundancy for 
the prescribed multitude of the required values of the failure-free operation, as well as values 
of the realisable tolerances of the 1 and 2 levels. For example, the required value of the 
failure-free operation of the redundant subsystem, which is equal to 0.95, can be ensured in 
the situations that are described as follows: realisable tolerance at the level of 66.7% along 
with the structure 𝑛𝑛∗=24, 𝑚𝑚∗=8; realisable tolerance at the level of 50% along with the 
structure 𝑛𝑛∗=20. 𝑚𝑚∗=10; realisable tolerance at the level of 40% along with the structure 
𝑛𝑛∗=15, 𝑚𝑚∗=9; realisable tolerance at the level of 33.3% along with the structure 𝑛𝑛∗=12, 
𝑚𝑚∗=8; realisable tolerance at the level of 28.6% along with the structure 𝑛𝑛∗=7, 𝑚𝑚∗=5. 
Similarly, to the foregoing, with the help of Table 3 it is possible to find optimal structures of 
redundancy for other values of the required failure-free operation of the redundant subsystem 
of the aircraft. 

In order to ensure the pictorial view of the results, which are presented in Table 3, 
Figure 11 presents dependences of the optimal quantity of the elements (which are included 
to the optimal structure 𝑛𝑛∗) from the values of the realisable tolerances for various values of 
the required failure-free operation of the redundant subsystem of the aircraft. 
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Fig. 11 – Diagrams of dependency 𝑛𝑛∗ from values of the realisable tolerances in percentage points 

5. CONCLUSIONS 
Analysis of the results, which are presented in the tables and diagrams, makes it possible to 
establish the following regularities: 

1. Optimal values of the complex criterion ∆𝑃𝑃𝑐𝑐∗ = 𝑃𝑃𝑐𝑐∗ − 𝑝𝑝∗ at any values of the realisable 
tolerances increase monotonically along with increase of the redundancy multipleness 𝐾𝐾𝑖𝑖. At 
any value of the redundancy multipleness 𝐾𝐾𝑖𝑖 they decrease monotonically (tending to zero) 
along with decrease of the realisable tolerances. 

2. Optimal values of the partial indicator 𝑝𝑝∗, which determines failure-free operation of 
elements, decrease monotonically along with increase of the redundancy multipleness 𝐾𝐾𝑖𝑖 at 
the realisable tolerances of the 1 level, which are lesser than 25%, as well as at the realisable 
tolerances of the second level, which are lesser than 40%. At the tolerances, which exceed 
the above-stated values, these optimal values begin to increase (but no more than by 5% at 
the redundancy multiplenesses, which are lesser than 𝐾𝐾4), and then they begin to decrease 
monotonically along with increase of the redundancy multipleness. 

3. It is possible to increase the optimal values of failure-free operation of the redundant 
subsystems 𝑃𝑃𝑐𝑐∗ by decreasing the realisable tolerances at any prescribed redundancy 
multipleness 𝐾𝐾𝑖𝑖 or by increasing the redundancy multipleness 𝐾𝐾𝑖𝑖 at the prescribed tolerance. 

4. Optimal values of failure-free operation of the redundant subsystems 𝑃𝑃𝑐𝑐∗ increase 
monotonically along with decrease of the realisable tolerances (tending to unity) at the 
approach of the realisable tolerance to zero at any multipleness of redundancy. 

5. Optimal values of failure-free operation of the redundant subsystems 𝑃𝑃𝑐𝑐∗ increase 
monotonically along with increase of the redundancy multipleness 𝐾𝐾𝑖𝑖 (tending to unity) at 
the tending of the redundancy multipleness to infinity for the realisable tolerances of any 
level, which exceed 12.5%. As concerns the realisable tolerances which do not exceed 
12.5%, indicator 𝑃𝑃𝑐𝑐∗ does not change practically along with increase of the redundancy 
multipleness and it maintain the values, which are designated by the value of the realisable 
tolerance near the level of 0.99. 

6. At the tolerances, which exceed 25%, as well as at high requirements to the failure-
free operation of the redundant subsystems (more than 0.98), solution of the synthesis 
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problem can be only found at big redundancy multiplenesses, where optimal quantity of 
elements of the redundant subsystem 𝑛𝑛∗ is essentially higher than 100. As concerns the 
tolerances, which do not exceed 25% and at the same high requirements to the failure-free 
operation of subsystems, the optimal multipleness of redundancy 𝐾𝐾𝑖𝑖∗ drops sharply, thus 
ensuring process of solving the synthesis problem at optimal quantity 𝑛𝑛∗, which does not 
exceed 20-30 elements. 

In conclusion, it should be noted that realisable tolerances of two levels only were 
analysed in this article. Increase of the range of levels of the realisable tolerances would 
make it possible to present more detailed description of all possible structures of the passive 
redundancy, as well as all possible solutions of the synthesis problem depending on the 
prescribed tolerances and requirements in respect of the failure-free operation of the aircraft 
subsystems. 
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